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A NOTE ON THE EXISTENCE OF NON-SIMPLE DESIGNS
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Abstract. Designs over finite fields arise by replacing finite sets by vector
spaces and orders of sets by dimensions of vector spaces. More formally, a
t− (v, k, λ; q) design is a collection of k-subspaces over Fv

q , called blocks, such

that each t-subspace is contained in exactly λ blocks. Such a design over a finite
field is called simple, if no repeated blocks occur in the collection. Otherwise,
the design is called non-simple. In this paper we prove that for every parameter
set 0 < t < k < v− t and each subgroup G of the general linear group GL(v, q)

a non-simple t− (v, k, λ; q) design exists for some appropriate λ > 0 admitting
G as a group of automorphisms.

1. Introduction

A t−(v, k, λ; q) design is a collection B of k-subspaces of the v-dimensional vector
space Fv

q over the finite field Fq, called blocks, such that each t-subspace of Fv
q is

contained in exactly λ blocks of B. The design B is called simple if no repeated
blocks occur in B, otherwise the design is called non-simple.

Designs over finite fields have been studied now for almost 25 years, since Thomas
[13] published the first family of simple 2-designs. Further results on the construc-
tion of simple 2- and 3-designs appeared in [1, 2, 4, 6, 11, 12, 14]. No simple
t-designs over finite fields are known for t > 3. Necessary and sufficient conditions
for the existence of simple t− (v, k, 1; q) designs, also called q-Steiner systems were
published in [3, 9]. No q-Steiner systems have been constructed so far with t > 1.

Furthermore, some families of non-simple 2- and 3-designs have been defined
using quadratic forms in [8]. No further results are known for non-simple designs
over finite fields.

In this paper we also consider non-simple t-designs over finite fields and prove
the following main theorem:

Theorem 1. Let 0 < t < k < v − t be natural numbers and let G be a subgroup
of the general linear group GL(v, q). Then there exists a non-simple t− (v, k, λ; q)
design admitting G as a group of automorphisms for some appropriate λ > 0.
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2. Incidence Matrices

In this section we describe the well-known method which has been already ap-
plied successfully for the construction of simple designs over finite fields. The ap-
proach is due to Kramer and Mesner [5] and describes the construction of ordinary
t−(v, k, λ) designs on sets with a prescribed group of automorphisms, a subgroup of
the symmetric group Sv, using an incidence matrix between orbits on the t-subsets
and on the k-subsets.

Generalizing this construction we introduce some notation and define the inci-
dence matrix between orbits on vector spaces.

If V := Fv
q denotes the v-dimensional vector space over the finite field Fq with q

elements, the set [
V
k

]
:= {K ≤ V | dim(K) = k}

denotes the set of k-subspaces of V . It is called the Grassmannian. The order of
this set is the Gaussian number, also called q-Binomial coefficient. It is abbreviated
by

[
v
k

]
q
and satisfies[

v
k

]
q
:= |

[
V
k

]
| = (qv − 1)(qv−1 − 1) · · · (qv−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

A subgroup G of the general linear group GL(v, q) acts on
[
V
k

]
. The orbit of G on

a k-subspace K is denoted by

G(K) := {gK | g ∈ G},

where the set of all orbits is abbreviated by G\\
[
V
k

]
:= {G(K) | K ∈

[
V
k

]
}.

The q-analog of a Kramer-Mesner matrix, also called q-Kramer-Mesner matrix,
denoted by

AG
t,k = (aGTK) = (· · · |aG∗K | · · · )

is defined by
aGTK := |{K ′ ∈ G(K) | T ⊆ K ′}|

where T resp. K runs through a transversal of the orbits of G on
[
V
t

]
resp.

[
V
k

]
.

The special case G = {1} yields the ordinary incidence matrix

A
{1}
t,k = At,k = (aTK)

with entries

aTK :=

{
1, T ⊆ K
0, otherwise,

where T resp. K runs through all subspaces of
[
V
t

]
resp.

[
V
k

]
. The addition of all

columns yields: ∑
K

aG∗K = (
[
v−t
v−k

]
q
, . . . ,

[
v−t
v−k

]
q
)t

Now with the generalization of the Kramer-Mesner-theorem [5] to non-simple de-
signs and considering subspaces instead of subsets we get the following construction
theorem:

Theorem 2. Let G be a subgroup of GL(v, q). Then a non-simple t − (v, k, λ; q)
design exists if and only if there is a solution vector x with non-negative integral
enrites of the Diophantine System of equations:

AG
t,k · x = (λ, . . . , λ)t
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3. Strict Monotony of the Number of Orbits

An auxiliary result which will be used in the proof of our main theorem is about
the orbit sizes: If 0 < t < k < v−t are natural numbers and if G denotes a subgroup
of GL(v, q), the orbits of G on the set of t- resp. k-subspaces satisfy the inequality

|G\\
[
V
t

]
| < |G\\

[
V
k

]
|. This result is already known and was proven in paper [7, 10].

Since these proofs were made in a more general setting, namely in the theory of
group actions on posets, we sketch the proof in our context of subspaces, for the
sake of completeness. The idea is that we use a linear representation to determine
the number of orbits and consider a linear transformation on factor spaces.

We define a
[
v
k

]
q
-dimensional vector space over the field Q of all rational numbers:

The set

Qk := {f :
[
V
k

]
→ Q}

forms a Q vector space with basis vectors {fK | K ∈
[
V
k

]
}, where

fK :
[
V
k

]
→ Q, S 7→

{
1, S = K,
0, otherwise.

The dimension of Qk is obviously
[
v
k

]
q
. Now, we define a subspace QG

k of Qk by

QG
k := ⟨fK − fgK | K ∈

[
V
k

]
, g ∈ G⟩.

The factor space Qk/QG
k is generated by the set {fK +QG

k | K ∈
[
V
k

]
}, where some

generating elements are equal, i.e. for all K,K ′ ∈
[
V
k

]
holds:

fK +QG
k = fK′ +QG

k ⇐⇒ K ′ ∈ G(K)

This equivalence follows immediately from the definition of QG
k . Hence Qk/QG

k is
generated by {fK +QG

k | K ∈ R} where R is a transversal of the orbits of G on the

set of k-subspaces. The dimension of Qk/QG
k is then |R| = |G\\

[
V
k

]
|, the number of

orbits:

dim(Qk/QG
k ) = |G\\

[
V
k

]
|

Now we consider the correspondance between Qt and Qk for t ≤ k. We define a
linear mapping ζ : Qk → Qt by the images of all basis vector fK ,K ∈

[
V
k

]
of Qk,

representend by the basis vectors fT , T ∈
[
V
t

]
of Qt:

ζ : Qk → Qt, fK 7→
∑

T :T⊆K

fT

The matrix representation of ζ is exactly the incidence matrix At,k. As this matrix
has full row rank for all 0 < t < k < v − t the corresponding mapping ζ is
surjective and also satisfies ζ(QG

k ) ⊆ QG
t . We obtain as immediate consequence,

that ζ : Qk → Qt induces a mapping on the corresponding factor spaces,

ζ ′ : Qk/QG
k → Qt/QG

t , f +QG
k 7→ ζ(f) +QG

t ,

which is surjective and yields dim(Qt/QG
t ) < dim(Qk/QG

k ). This proves, that

|G\\
[
V
t

]
| < |G\\

[
V
k

]
|.
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4. Proof of the Main Theorem

In this section we prove our main Theorem 1. We adopted the idea from the
proof of the existence of non-simple designs over sets to designs over finite fields,
but also considered the existence of a group of automorphisms, which means, that
we have to use the G-incidence matrix AG

t,k instead of the ordinary incidence matrix
At,k.

Proof of Theorem 1. To construct a non-simple t − (v, k, λ; q) design with G as a
group of automorphisms we use the Kramer-Mesner-theorem and construct a vector
x with integral non-negative entries such that AG

t,k · x = (λ, . . . , λ)t.
Since 0 < t < k < v − t we get from the previous section, that the number of

orbits satisfy |G\\
[
V
t

]
| < |G\\

[
V
k

]
|, which means that the incidence matrix AG

t,k has

more columns than rows. Hence the columns aG∗K of AG
t,k are linearly dependent

over the field Q, i.e. there is a non-zero vector z = (. . . , zK , . . .)t with entries in Q,
such that

AG
t,k · z =

∑
K

aG∗KzK = (0, . . . , 0)t.

Let α be the least common multiple of the non-zero denominators of all entries zK
of the vector z. If we set y := αz = (. . . , αzK , . . .) we also get

AG
t,k · y =

∑
K

aG∗KyK = (0, . . . , 0)t

but the vector y = (. . . , yK , . . .) has integral values yK ∈ Z. If β is the minimum
of all values of y (it is obviously β < 0), the non-negative integral vector

x = (. . . , xK , . . .)t with xK := yK − β

satisfies

AG
t,k · x =

∑
K

aG∗KxK

=
∑
K

aG∗K(yK − β)

=
∑
K

aG∗Kyk − β
∑
K

aG∗K

= (0, . . . , 0)t − β(
[
v−t
v−k

]
q
, . . . ,

[
v−t
v−k

]
q
)t

= (−β
[
v−t
v−k

]
q
, . . . ,−β

[
v−t
v−k

]
q
)t.

Finally, we have proven that the integral vector x = (. . . , xK , . . .)t defines a non-
simple t − (v, k, λ; q) design having G as a group of automorphisms with value
λ = −β

[
v−t
v−k

]
q
. �
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