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TANGENCY AND ORTHOGONALITY OF ARCS IN METRIC

SPACES

TADEUSZ KONIK

(Communicated by Levent KULA)

Abstract. In this paper the problems of tangency and orthogonality of rectifi-
able arcs in metric spaces are considered. Some connections between tangency
and orthogonality relations of rectifiable arcs have been given here.

1. Introduction

Let E be an arbitrary non-empty set and ρ a metric of this set. Let Ip denotes
the class of all arcs A with origin at point p ∈ E in the metric space (E, ρ). For A
belonging to Ip we understand here homeomorphic image of closed interval [0, 1].

Let ℓA(
⌣
px) denotes the length of arc

⌣
px of A with origin at point p ∈ E and end

at point x ∈ E. By Ãp we shall denote the class of all arcs A ∈ Ip fulfilling the
condition:

(1.1) lim
A∋x→p

ℓA(
⌣
px)

ρ(p, x)
= g < ∞.

The arc A ∈ Ip fulfilling the condition (1.1) we call the rectifiable arc at point
p ∈ E of metric space (E, ρ). If the arc A ∈ Ip is rectifiable in each its point, then
we call it a rectifiable arc.

If g = 1, then we say that the arc A ∈ Ãp has Archimedean property at point
p ∈ E. It is easily to prove that every regular arc at point p ∈ E of the Cartesian
space (E, ρ) has Archimedean property in this point.

In the book [1] A.D. Aleksandrov defines the angle between arcs A,B ∈ Ip as an
angle α ∈ [0, π] fulfilling the following equality:

(1.2) cosα = lim
(x,y)→(p,p)

ρ2(p, x) + ρ2(p, y)− ρ2(x, y)

2ρ(p, x)ρ(p, y)
for x ∈ A and y ∈ B.

Before we will move to the definition of the tangency of arcs in metric space
(E, ρ) based on the definition of Aleksandrov′s angle between these arcs, we will
talk over in short the so called Riemannian angle for regular arcs.
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Let us assume now that E is a Riemannian manifold with symmetric tensor field
g about the valence (0, 2). Using the metric tensor we may define in manifold E
among others such notions as: distance of points, length of arc, length of tangency
vector and scalar product of vectors.

By ρ we shall denote the metric of manifold E generated by its metric tensor.
Let A,B be regular arcs defined respectively by the vector equations: −→r1 = −→r1(t),−→r2 = −→r2(t) for t ∈ [0, 1]. Let′s accept moreover, that p = −→r1(0) = −→r2(0).

The Riemannian angle between these arcs is defined as an angle γ ∈ [0, π] be-
tween vectors tangent to these arcs at the point p, by formula:

(1.3) cos γ =
(
−→
r
′

1(0) |
−→
r
′

2(0))

|
−→
r
′

1(0)| |
−→
r
′

2(0)|
,

where (
−→
r
′

1(0) |
−→
r
′

2(0)) denotes the scalar product of vectors
−→
r
′

1(t),
−→
r
′

2(t) at the point
t = 0.

Two regular arcs A,B ∈ Ip are tangent at the point p ∈ E corresponding to the
parameter t = 0 if they have at this point equal tangent vectors or ones differing

at most in a positive factor, i.e.
−→
r
′

1(0) = λ
−→
r
′

2(0) for λ > 0.
Hence and from (1.3) it follows that the regular arcs A,B ∈ Ip are tangent at

the point p ∈ E if cos γ = 1, where γ denotes the Riemannian angle between these
arcs.

M.R. Bridson and A. Haefliger in the book [2] proved that the Riemannian angle
γ between the regular arcs in Riemannian manifold is equal to the Alexandrov′s
angle α between them (see Figure 1).

Figure 1

Based on the definition of Aleksandrov′s angle between arcs A,B ∈ Ip S. Midura
gives in the paper [5] the following definition of the tangency of arcs in the metric
space (E, ρ):

Definition 1.1. The arc A is tangent to the arc B at the point p ∈ E, if for x ∈ A
and y ∈ B

(1.4) lim
(x,y)→(p,p)

ρ2(p, x) + ρ2(p, y)− ρ2(x, y)

2ρ(p, x)ρ(p, y)
= 1.
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If the arc A is tangent to the arc B at the point p ∈ E, then we write that
(A,B) ∈ Tp. The set Tp of the form:

(1.5) Tp=

{
(A,B): A,B ∈ Ip and lim

A×B� (x,y)→(p,p)

ρ2(p, x)+ρ2(p, y)−ρ2(x, y)
2ρ(p, x)ρ(p, y)

=1

}
.

we call the tangency relation of arcs of the class Ip at point p ∈ E.
From the definition (1.5) it results immediately that the tangency relation Tp is

symmetric in the class of arcs Ip. This relation is moreover transitive in the class
Ip what shows Theorem 4 of the paper [5]. The set Tp is not reflexive relation in
the class Ip. If we assume however that (A,B) ∈ Tp for A,B ∈ Ip, then (A,A) ∈ Tp

and (B,B) ∈ Tp, what results from symmetric and transitivity of this relation in
the class of arcs Ip.

2. Tangency and orthogonality of rectifiable arcs

In this Section we shall consider the tangency and the orthogonality of rectifiable

arcs of the class Ãp and their mutual relationship. Similarly as in the definition of
tangency of arcs, we can use the angle of Alexandrov′s to the definition of orthog-
onality of rectifiable arcs.

Definition 2.1.

(2.1) Op=

{
(A,B): A,B∈ Ãp and lim

A×B� (x,y)→(p,p)

ρ2(p, x)+ρ2(p, y)−ρ2(x, y)
ρ(p, x)ρ(p, y)

=0

}
.

The set Op we call the orthogonality relation of arcs of the class Ãp at the point
p of the metric space (E, ρ).

If (A,B) ∈ Op for A,B ∈ Ãp, then we say that the arc A is orthogonal to the
arc B at the point p ∈ E.

It results directly from the definition (2.1) that the orthogonality relation Op is

symmetric in the class of rectifiable arcs Ãp.
Before we give some theorem related to the tangency and orthogonality rela-

tions of arcs of the class Ãp, we will formulate two lemmas necessary to prove this
theorem.

Lemma 2.1. If arcs A,B ∈ Ãp are tangent at point p ∈ E and

(2.2) ρ(p, x) = ρ(p, y) = r for x ∈ A, y ∈ B,

then

(2.3) lim
r→0+

ρ(x, y)

r
= 0.

Proof. Using the definition (1.5) of the tangency of arcs and the assumption (2.2)
of this lemma we have

lim
r→0+

2r2 − ρ2(x, y)

2r2
= 1.

Hence we get the equality

lim
r→0+

ρ2(x, y)

r2
= 0,

from where the thesis (2.3) of this lemma results immediately.
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Lemma 2.2. If arcs A,B ∈ Ãp are orthogonal at point p ∈ E and the condition
(2.2) is fulfilled, then

(2.4) lim
r→0+

ρ(x, y)

r
=

√
2.

Proof. From the definition (2.1) of the orthogonality of arcs and from the condition
(2.2) we have

lim
r→0+

2r2 − ρ2(x, y)

2r2
= 0.

Hence follows

lim
r→0+

ρ2(x, y)

r2
= 2,

from where we get the thesis (2.4) of this lemma.

Using the above lemmas we will prove the following theorem:

Figure 2

Theorem 2.1. If (A,B) ∈ Tp and (B,C) ∈ Op, then (A,C) ∈ Op for arbitrary

arcs A,B,C ∈ Ãp.

Proof. Let accordingly x and z be a points of rectifiable arcs A,C ∈ Ãp. Let
′s

suppose that ρ(p, z) ≤ ρ(p, x) (see Figure 2). For any point x ∈ A there exists
a point yx ∈ B such that ρ(p, x) = ρ(p, yx). Hence and from assumption that
(A,B) ∈ Tp and from Lemma 2.1 equality follows

(2.5) lim
x→p

ρ(x, yx)

ρ(p, x)
= 0.

Similarly for any point z ∈ C there exists a point yz ∈ B such that ρ(p, z) = ρ(p, yz).
Hence, from the fact that (B,C) ∈ Op and from Lemma 2.2 we get

(2.6) lim
z→p

ρ(z, yz)

ρ(p, z)
=

√
2.
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Moreover from the assumption that (A,B) ∈ Tp, (B,C) ∈ Op and from the defini-
tion of tangency and ortogonality of arcs equalities result

(2.7) lim
(x,yz)→(p,p)

ρ2(p, x) + ρ2(p, yz)− ρ2(x, yz)

2ρ(p, x)ρ(p, yz)
= 1,

and

(2.8) lim
(z,yx)→(p,p)

ρ2(p, z) + ρ2(p, yx)− ρ2(z, yx)

ρ(p, z)ρ(p, yx)
= 0.

From the triangle inequality for metric ρ and the points x, z, yz we have

(2.9) |ρ(x, yz)− ρ(yz, z)| ≤ ρ(x, z) ≤ ρ(x, yz) + ρ(yz, z).

Hence it follows

−ρ2(x, yz)− ρ2(yz, z)− 2ρ(x, yz)ρ(yz, z) ≤ −ρ2(x, z)

≤ −ρ2(x, yz)− ρ2(yz, z) + 2ρ(x, yz)ρ(yz, z).(2.10)

Therefore, remembering that ρ(p, z) = ρ(p, yz), we receive

ρ2(p, x) + ρ2(p, yz)− ρ2(x, yz)− ρ2(yz, z)− 2ρ(x, yz)ρ(yz, z)

ρ(p, x)ρ(p, z)

≤ ρ2(p, x) + ρ2(p, z)− ρ2(x, z)

ρ(p, x)ρ(p, z)

≤ ρ2(p, x) + ρ2(p, yz)− ρ2(x, yz)− ρ2(yz, z) + 2ρ(x, yz)ρ(yz, z)

ρ(p, x)ρ(p, z)
,

that is

ρ2(p, x) + ρ2(p, yz)− ρ2(x, yz)

ρ(p, x)ρ(p, yz)
− ρ2(yz, z)

ρ(p, x)ρ(p, yz)
− 2

ρ(x, yz)ρ(yz, z)

ρ(p, x)ρ(p, yz)

≤ ρ2(p, x) + ρ2(p, z)− ρ2(x, z)

ρ(p, x)ρ(p, z)

≤ ρ2(p, x) + ρ2(p, yz)− ρ2(x, yz)

ρ(p, x)ρ(p, yz)
− ρ2(yz, z)

ρ(p, x)ρ(p, yz)
+ 2

ρ(x, yz)ρ(yz, z)

ρ(p, x)ρ(p, yz)
.(2.11)

If x → p, then from assumption that ρ(p, yz) = ρ(p, z) ≤ ρ(p, x) and from (2.6)
results

(2.12) lim
(x,yz)→(p,p)

ρ2(yz, z)

ρ(p, x)ρ(p, yz)
= lim

z→p

ρ2(yz, z)

ρ2(p, z)
= 2.

Moreover from (2.5) by assumption that ρ(p, yz) = ρ(p, z) ≤ ρ(p, x) = ρ(x, yx) we
get

(2.13) 0 = lim
x→p

ρ(x, yx)

ρ(p, x)
= lim

x→p

ρ(x, yz)

ρ(p, x)
.

Hence, from (2.6), (2.7), (2.12) and from the inequality (2.11) follows

(2.14) lim
(x,z)→(p,p)

ρ2(p, x) + ρ2(p, z)− ρ2(x, z)

ρ(p, x)ρ(p, z)
= 0,

that is to say that (A,C) ∈ Op, when ρ(p, z) ≤ ρ(p, x).
If ρ(p, x) < ρ(p, z), then in a similar way we get the equality (2.14). This ends

the proof.
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The proof of this theorem gets considerably simpler when x, y, z are respectively

the points of arcs A,B,C ∈ Ãp such that

(2.15) ρ(p, x) = ρ(p, y) = ρ(p, z) = r,

this means that they are the points created from the intersection of these arcs with
the sphere Sρ(p, r) about the centre at the point p ∈ E and the radius r in the
metric space (E, ρ).

3. Tangency of higher order for rectifiable arcs

In this Section we shall define the tangency relation of higher order (k ≥ 1) for

rectifiable arcs of the class Ãp and we will give its certain properties. Using Lemma
2.1 we may give the following definition of the tangency of rectifiable arcs:

Definition 3.1. If

(3.1) lim
r→0+

ρ(x, y)

rk
= 0

for x ∈ A, y ∈ B and r = ρ(p, x) = ρ(p, y), then we say that the arcs A,B ∈ Ãp

are tangent (have the tangency) of order k ≥ 1 at the point p ∈ E.

If the rectifiable arcs A,B ∈ Ãp are tangent of order k at the point p ∈ E, then
we shall write that (A,B) ∈ Tp,k. The set Tp,k we call the tangency relation of order

k at the point p for rectifiable arcs of the class Ãp.
Therefore

Tp,k = {(A,B) : A,B ∈ Ãp and for x ∈ A, y ∈ B, r = ρ(p, x) = ρ(p, y)

lim
r→0+

ρ(x, y)

rk
= 0}.(3.2)

From given here definitions it follows immediately that (A,B) ∈ Tp,1, if and only if

(A,B) ∈ Tp for A,B ∈ Ãp.
In the paper [6] W.Waliszewski gave the following definition of the tangency

relation of sets (more exactly: (a, b)-tagency) of order k at the point p ∈ E in
generalized metric space (E, l):

Tl(a, b, k, p) = {(A,B) : A,B ∈ E0, the pair of sets (A,B) is (a, b)-clustered

at point p of the space (E, l) and

lim
r→0+

1

rk
l(A ∩ Sl(p, r)a(r), B ∩ Sl(p, r)b(r)) = 0}.(3.3)

In the formula (3.3) l denotes any non-negative real function defined on the Carte-
sian product E0 × E0 of the family E0 of all non-empty subsets of the set E,
however a, b are non-negative real functions defined in a certain right-hand side
neighbourhood of 0 such that

(3.4) lim
r→0+

a(r) = 0 and lim
r→0+

b(r) = 0.

If in the definition of tangency of sets W.Waliszewski′s we will assume that
a(r) = b(r) = 0 for r ≥ 0 and

(3.5) l({x}, {y}) = ρ(x, y) for x, y ∈ E,

then we will receive definition 3.1 of the tangency of rectifiable arcs of the class Ãp

in metric space (E, ρ).
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We shall give now some basic properties of the tangency relation (3.2) of rectifi-
able arcs. Using properties of the metric we can easily prove the following theorem:

Theorem 3.1. In the class of rectifiable arcs Ãp the tangency relation Tp,k is
equivalence, i.e.

10 (A,A) ∈ Tp,k (reflexivity),

20 (A,B) ∈ Tp,k =⇒ (B,A) ∈ Tp,k (symmetry),

30 (A,B) ∈ Tp,k ∧ (B,C) ∈ Tp,k =⇒ (A,C) ∈ Tp,k (transitivity)

for any arcs A,B,C ∈ Ãp.

Lemma 3.1. If (A,B) ∈ Tp,n, then (A,B) ∈ Tp,k for A,B ∈ Ãp and n ≥ k.

Proof. We will assume that (A,B) ∈ Tp,n for A,B ∈ Ãp. Therefore

lim
r→0+

ρ(x, y)

rn
= 0

for x ∈ A, y ∈ B and r = ρ(p, x) = ρ(p, y). Hence and from the assumption that
n− k ≥ 0 we get

lim
r→0+

ρ(x, y)

rk
= lim

r→0+
rn−k lim

r→0+

ρ(x, y)

rn
= 0,

what marks that (A,B) ∈ Tp,k.

Theorem 3.2. If (A,B) ∈ Tp,n and (B,C) ∈ Tp,k, then (A,C) ∈ Tp,m for any

arcs A,B,C ∈ Ãp and m = min{n, k}.

Proof. We shall assume that (A,B) ∈ Tp,n and (B,C) ∈ Tp,k for A,B,C ∈ Ãp.
Hence it follows

(3.6) lim
r→0+

ρ(x, y)

rn
= 0 and lim

r→0+

ρ(y, z)

rn
= 0

for x ∈ A, y ∈ B, z ∈ C and r = ρ(p, x) = ρ(p, y) = ρ(p, z).
From Lemma 3.1, from the assumption of this theorem and from (3.6) we get

lim
r→0+

ρ(x, y)

rm
= 0 and lim

r→0+

ρ(y, z)

rm
= 0.

Hence and from the triangle inequality for the metric ρ results

0 ≤ lim
r→0+

ρ(x, z)

rm
≤ lim

r→0+

ρ(x, y) + ρ(y, z)

rm

= lim
r→0+

ρ(x, y)

rm
+ lim

r→0+

ρ(y, z)

rm
= 0,

what means that (A,C) ∈ Tp,m.
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