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A V -COHOMOLOGY WITH RESPECT TO COMPLEX

LIOUVILLE DISTRIBUTION

ADELINA MANEA AND CRISTIAN IDA

(Communicated by Murat TOSUN )

Abstract. We define a complex Liouville distribution on the holomorphic
tangent bundle of a complex Finsler manifold. Some new operators on verti-
cal forms with respect to Liouville distribution are defined, a Dolbeault type
lemma is proved and new cohomology groups are studied.

1. Introduction and preliminaries

The idea of decomposing the exterior derivative for real smooth or complex
analytic foliated manifolds and the study of their cohomology is due to I. Vaisman
(see [13, 14]). There, are proved some Poincaré type Lemmas with respect to some
differential operators corresponding to (0, 1) foliated type or to (0, 1) mixed type
for the analytic case, respectively. Latter on, in [12] is studied a decomposition of
the exterior differential for the complex type forms on complex Finsler manifolds
and it is proved a Grothendieck-Dolbeault type Lemma for the conjugated vertical
differential operator d

′′v which appears in the decomposition of the operator d
′′

corresponding to (0, 1) complex type. Also, there the v - cohomology groups of a
complex Finsler manifold are defined. Recently, in [9] the first author has studied
a new type cohomology with respect to Liouville foliation on the tangent bundle of
a real Finsler manifold and a de Rham type theorem is obtained.

The main purpose of the present paper is to extend this cohomology theory on
complex Finsler manifolds and to find new cohomology groups related to this spaces.
Firstly, following [3, 4] and [8], we define the complex Liouville distribution on the
holomorphic tangent bundle of a complex Finsler space and we get an adapted
basis on the holomorphic vertical bundle with respect to the orthogonal splitting

V
′
(M̃) = L

′
(M̃) ⊕ {ξ}, where ξ is the complex Liouville vector field. Next, by

analogy with [9], we consider new type of vertical forms with respect to conjugated
Liouville distribution of v(s, 0) type and v(s−1, 1) type, respectively, and we obtain

a decomposition of the conjugated vertical differential operator d
′′v = d

′′v
1,0+d

′′v
0,1 for

vertical forms of v(s, 0) type. Finally, by applying the results from [12] concerning
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to the operator d
′′v we prove a Grothendieck-Dolbeault type Lemma with respect

to the operator d
′′v
1,0 and new cohomology groups are obtained and studied.

Let M be a n dimensional complex manifold and (zk), k = 1, ..., n the complex
coordinates in a local chart U . The complexified of the real tangent bundle TRM
denoted by TCM splits into the direct sum of holomorphic and antiholomorphic
tangent subbundles T

′
M and T

′′
M , respectively, namely TCM = T

′
M ⊕ T

′′
M .

The total space of holomorphic tangent bundle π : T
′
M → M is in turn a 2n

dimensional complex manifold with u = (zk, ηk), k = 1, ..., n the induced complex

coordinates in the local chart π−1(U), where η = ηk ∂
∂zk ∈ T

′

zM .

A complex Finsler space is a pair (M,F ), where F : T
′
M → R+ ∪ {0} is a

continuous function satisfying the conditions

(i) G := F 2 is smooth on M̃ := T
′
M − {o}, where o denotes the zero section of

T
′
M ;
(ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;
(iii) F (z, λη) = |λ|F (z, η) for any λ ∈ C, the homogeneity condition;

(iv) the complex hessian (Gij) = ( ∂2G
∂ηi∂ηj ) is positively definite, or equivalently,

it mean that the indicatrix Iz = {η/Gij(z, η)η
iηj = 1} is strongly pseudoconvex

for any z ∈M .
In the following we consider the notations:

Gi =
∂G

∂ηi
, Gj =

∂G

∂ηj
, Gij =

∂2G

∂ηi∂ηj
, Gij =

∂2G

∂ηi∂ηj
etc.

According to [5], the strongly pseudoconvex complex Finsler structure has the
following properties:

(1.1) Gijη
i = 0 ; Gi jη

i = 0 ; Giη
i = G ; Gjη

j = G

(1.2) Gijkη
i = 0 ; Gij kη

j = 0 ; Gijkη
j = Gik

(1.3) Gijη
i = Gj ; Gijη

j = Gi ; Gijη
iηj = G

Let V
′
(M̃) ⊂ T

′
(M̃) be the holomorphic vertical bundle, locally spanned by

{ ∂
∂ηk } and V

′′
(M̃) be its conjugate, locally spanned by { ∂

∂ηk }. A complex nonlin-

ear connection, briefly c.n.c., on M̃ is given by a supplementary complex subbundle

to V
′
(M̃) in T

′
(M̃), namely T

′
(M̃) = H

′
(M̃)⊕ V

′
(M̃). The horizontal subbundle

H
′
(M̃) is locally spanned by { δ

δzk = ∂
∂zk −N j

k
∂

∂ηj }, where N j
k(z, η) are the coeffi-

cients of the c.n.c., which obey a certain rule of change at the local charts change

such that δ
δzk = ∂z

′j

∂zk
δ

δz′j performs. Obviously, we also have that ∂
∂ηk = ∂z

′j

∂zk
∂

∂η′j .

The pair {δk := δ
δzk ;

.

∂k:=
∂

∂ηk }, k = 1, ..., n will be called the adapted frames

of the c.n.c. By conjugation an adapted frame {δk ;
.

∂k} is obtained on T
′′
(M̃).

The dual adapted bases are given by {dzk} , {δηk = dηk + Nk
j dz

j} , {dzk} and

{δηk = dηk+Nk
j
dzj} which span the dual bundles H

′∗(M̃) , V
′∗(M̃) , H

′′∗(M̃) and

V
′′∗(M̃), respectively.
According to [1, 2, 11], a c.n.c. related only to the fundamental function of the

complex Finsler space (M,F ) is almost classical now, the Chern-Finsler c.n.c.,

locally given by
CF

N j
k= Gmj ∂Glm

∂zk ηl, where (Gmj) denotes the inverse of (Gjm).
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Throughout this paper we consider the adapted frames and coframes with respect
to this c.n.c.

2. A complex Liouville distribution

It is well known that a strongly pseudoconvex complex Finsler structure F defines

a hermitian structure on the holomorphic vertical bundle V
′
(M̃) by

(2.1) Gv(X,Y )(z, η) = Gij(z, η)
.

X
i
(z, η)

.

Y
j
(z, η)

for all X =
.

X
i
(z, η)

.

∂i , Y =
.

Y
j
(z, η)

.

∂j∈ Γ(V
′
(M̃)).

An important global vertical vector field is defined by ξ = ηi
.

∂i and it is called
the complex Liouville vector field (or radial vertical vector field). We notice that
the third equation of (1.3) says that

(2.2) G = Gv(ξ, ξ) > 0

so ξ is an embedding of M̃ into V
′
(M̃).

Let {ξ} be the complex line bundle over M̃ spanned by ξ and we define the

complex Liouville distribution as the complementary orthogonal distribution L
′
(M̃)

to {ξ} in V
′
(M̃) with respect to Gv, namely V

′
(M̃) = L

′
(M̃)⊕{ξ}. Hence, L

′
(M̃)

is defined by

(2.3) Γ(L
′
(M̃)) = {X ∈ Γ(V

′
(M̃)) ; Gv(X, ξ) = 0}

Consequently, let us consider the vertical vector fields

(2.4) Xk =
.

∂k −tkξ , k = 1, ..., n

where the functions tk(z, η) are defined by the conditions

(2.5) Gv(Xk, ξ) = 0 , k = 1, ..., n

Thus, the above conditions become

Gv(
.

∂k, η
j

.

∂j)− tkG
v(ξ, ξ) = 0, k = 1, ..., n

so, taking into account (1.3) and (2.1), we obtain the local expression of the func-
tions tk in a local chart (U, (zi, ηi))

(2.6) tk =
Gk

G
, k = 1, ..., n

If (U
′
, (z

′i, η
′i)) is another local chart on M̃ , then on U ∩ U ′ ̸= ϕ, we have

t
′

j =
G

′

jl
η

′l

G
=

1

G

∂z
′l

∂zk
ηk

∂zi

∂z′j

∂zk

∂z
′l
Gik =

∂zi

∂z′j
ti

so we obtain the following changing rule for the vector fields from (2.4)

(2.7) X
′

j =
∂zk

∂z′j
Xk , j = 1, ..., n

By conjugation we obtain the decomposition VC(M̃) = L
′
(M̃)⊕{ξ}⊕L

′′
(M̃)⊕

{ξ}.
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Proposition 2.1. The functions {tk}, k = 1, ..., n, locally given by (2.6) satisfies

(2.8) tkη
k = tkη

k = 1 ; Xkη
k = Xkη

k = 0

(2.9)
.

∂k (tl) =
Glk

G
− tltk ;

.

∂k (tl) =
Glk

G
− tltk

(2.10) ξtk = −tk ; ξtk = 0 ; ηk
.

∂j (tk) = −tj ; ηk(ξtk) = −1

Proof. We have that tkη
k = Gk

G ηk = 1 and similarly tkη
k =

Gk

G ηk = 1, where we

used (2.6) and the last two equalities from (1.1). Now, Xkη
k = (

.

∂k −tkξ)ηk =
1 − tkη

k = 0 and similarly for conjugated. Thus, the relations (2.8) are proved.
Similarly, by direct calculations using (1.1), (1.3) and (2.6), one gets (2.9) and
(2.10). �

Proposition 2.2. There are the relations

(2.11) [Xi, Xj ] = tiXj − tjXi ; [Xi, ξ] = Xi

(2.12) [Xi, Xj ] = 0 ; [Xi, ξ] = 0

and its conjugates.

Proof. Taking into account (2.10), [
.

∂i,
.

∂j ] = 0, Gij = Gji and the clasical properties

of Lie brackets we obtain [Xi, Xj ] = −tj
.

∂i +ti
.

∂j −titjξ+ tjtiξ = tiXj − tjXi and

[Xi, ξ] = [
.

∂i, ξ] + ξ(ti)ξ = δki
.

∂k −tiξ = Xi. Now, by direct calculations we have

[Xi, Xj ] = Xj(ti)ξ −Xi(tj)ξ =
.

∂j (ti)ξ−
.

∂i (tj)ξ

= (
Gj

G
− tj)

.

∂i −(
Gi

G
− ti)

.

∂j= 0

and [Xi, ξ] = [
.

∂i, ξ]− ti[ξ, ξ] + ξ(ti)ξ = 0. �

The above proposition says that the distribution L
′
(M̃) is one integrable.

By the conditions (2.5), {X1, ..., Xn} are n vectors fields orthogonal to ξ, so they

belong to the (n−1) dimensional distribution L
′
(M̃). It results that they are linear

dependent and, from (2.8)

(2.13) Xn = − 1

ηn

n−1∑
i=1

ηiXi

since the local coordinate ηn is nonzero everywhere.
We have

Proposition 2.3. The system of complex vertical vector fields {X1, ..., Xn−1, ξ} is

a locally adapted basis on V
′
(M̃) with respect to the complex Liouville distribution.

Proof. The proof is similar with the analogue result from real case (see [8]), and
it consist to check that the rank of the matrix of change from the natural basis

{
.

∂k}, k = 1, ..., n of V
′
(M̃) to {X1, ..., Xn−1, ξ} is equal to n. �
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As in the real case (see [9]), we have the following concludent remark: Let

(U
′
, (z

′k, η
′k)) and (U , (zk, ηk)) be two local charts which domains overlap, where

η
′k and ηn are nonzero functions (in every local chart on M̃ there is at least one

nonzero coordinate function ηi).

The adapted basis in U
′
is {X ′

1, ..., X
′

k−1, X
′

k+1, ..., X
′

n, ξ}. In U ∩ U
′ ̸= ϕ we

have (2.7) and (2.13), hence

X
′

j =
n−1∑
i=1

(
∂zi

∂z′j
− ηi

ηn
∂zn

∂z′j
)Xi ; Xi =

n∑
j=1,j ̸=k

(
∂z

′j

∂zi
− η

′j

η′k

∂z
′k

∂zi
)X

′

j

for all j = 1, ..., n, i = 1, ..., n− 1. One can see that the above relation also imply

∂zi

∂z′k
− ηi

ηn
∂zn

∂z′k
= −

n∑
j=1,j ̸=k

η
′j

η′k
(
∂zi

∂z′j
− ηi

ηn
∂zn

∂z′j
)

By a straightforward calculation we have that the determinant of the change
matrix

{X1, ..., Xn−1, ξ} → {X
′

1, ..., X
′

k−1, X
′

k+1, ..., X
′

n, ξ}

on V
′
(M̃) is equal to (−1)n+k η

′k

ηn det( ∂zi

∂z′j )

3. New operators on vertical forms with respect to complex
Liouville distribution

According to [12], let us consider Ap,q,r,s(M̃) the set of all (p, q, r, s) -forms with

complex values on M̃ locally defined by

(3.1) φ =
1

p!q!r!s!
φIpJqHrKs

(z, η)dzIp ∧ δηJq ∧ dzHr ∧ δηKs

where Ip = (i1...ip), Jq = (j1...jq), Hr = (h1...hr), Ks = (k1...ks) and these forms

can be nonzero only when they act on p vectors from Γ(H
′
(M̃)), on q vectors from

Γ(V
′
(M̃)), on r vectors from Γ(H

′′
(M̃)) and s vectors from Γ(V

′′
(M̃)), respectively.

We also consider the conjugated vertical differential operator d
′′v : Ap,q,r,s(M̃) →

Ap,q,r,s+1(M̃), locally given by

(3.2) d
′′vφ =

∑
k

.

∂k (φIpJqHrKs
)δηk ∧ dzIp ∧ δηJq ∧ dzHr ∧ δηKs

where the sum is after i1 < ... < ip, j1 < ... < jq, h1 < ... < hr and k1 < ... < ks.

This operator has the property (d
′′v)2 = 0 and it locally satisfies a Grothendieck-

Dolbeault type lemma (for details see [12] and [11] p. 88).

Proposition 3.1. The (0, 0, 0, 1) vertical form ω0 = tiδη
i is globally defined and

satisfies

(3.3) ω0(ξ) = 1 , ω0(Xa) = 0 , ω0 = d
′′v(lnG)

for all a = 1, ..., n− 1, Xa given by (2.4) and G = F 2 is the fundamental function.

Proof. In U ∩ U ′ ̸= ϕ we have

ω
′

0 = t
′

j
δη

′j =
∂zi

∂z
′j
ti
∂z

′j

∂zk
δηk = tiδη

i = ω0
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We also have δηi(ξ) = ηi, for all i = 1, ..., n, and taking into account the first
relation of (2.8) it results

ω0(ξ) = 1 , ω0(Xa) = tiδη
i(

.

∂a −taξ) = tiδ
i
a − tatiη

i = 0

where δia denotes the Kronecker symbols. By conjugation in the relation (2.13) it
results also ω0(Xn) = 0.

Now, we have

d
′′v(lnG) =

.

∂k (lnG)δηk =
Gk

G
δηk = tkδη

k = ω0

which ends the proof. �

We notice that the equality ω0 = d
′′v(lnG) shows that ω0 is an d

′′v -exact vertical
(0, 0, 0, 1) -form and the conjugated complex Liouville distribution is defined by the
equation ω0 = 0.

In the following, we will consider Ωs
v(M̃) := A0,0,0,s(M̃) ⊂ Ap,q,r,s(M̃) the sub-

space of all vertical forms of (0, 0, 0, s) type on M̃ .

Definition 3.1. A vertical (0, 0, 0, s) -form φ ∈ Ωs
v(M̃) is called a v(s1, s2) -form

iff for any vertical vector fields X1, ..., Xs ∈ Γ(V
′′
(M̃)) we have φ(X1, ..., Xs) ̸= 0

only if s1 arguments are in Γ(L
′′
(M̃)) and s2 arguments are in Γ({ξ}).

Since {ξ} is a line distribution, we can talk only about v(s1, s2) -forms with

s2 ∈ {0, 1}. We will denote the space of v(s1, s2) -forms by Ωs1,s2
v (M̃). By the

above definition, we have the equivalence

(3.4) φ ∈ Ωs−1,1
v (M̃) ⇔ φ(X1, ..., Xs) = 0 , ∀X1, ..., Xs ∈ Γ(L

′′
(M̃))

Proposition 3.2. Let φ be a nonzero vertical (0, 0, 0, s) -form on M̃ . The following
assertions are true

(i) φ ∈ Ωs,0
v (M̃) iff iξφ = 0, where iX denotes the interior product.

(ii) The vertical (0, 0, 0, s− 1) -form iξφ is a v(s− 1, 0) -form.

(iii) φ ∈ Ωs−1,1
v (M̃) implies iξφ ̸= 0.

(iv) If there is a v(s− 1, 0) -form α such that φ = ω0 ∧ α then φ ∈ Ωs−1,1
v (M̃).

Proof. (i) Let φ ∈ Ωs,0
v (M̃), hence φ(X1, ..., Xs) ̸= 0 only if all the arguments

are in Γ(L
′′
(M̃)). So iξφ is a (0, 0, 0, s − 1) -form and (iξφ)(X1, ..., Xs−1) =

φ(ξ,X1, ..., Xs−1) = 0 for every vertical vector fields X1, ..., Xs−1. So, iξφ = 0.

Conversely, if φ is a (0, 0, 0, s) -form such that iξφ = 0, then φ(X1, ..., Xs) = 0

since there is an index i ∈ {1, ..., s} such that Xi = ξ. Hence φ does not vanish

only on L
′′
(M̃), and by definition it is a v(s, 0) -form.

(ii) We have iξiξφ = 0 and taking into account (i), it results that iξφ ∈
Ωs−1,0

v (M̃).
(iii) If φ is a nonzero v(s−1, 1) -form, then φ(X1, ..., Xs) ̸= 0 only if exactly one

of the arguments is from the line distribution ξ. Then (iξφ)(X1, ..., Xs−1) ̸= 0 for

some vertical vector fields X1, ..., Xs−1 ∈ Γ(L
′′
(M̃)).
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(iv) Let α be a form like in hypothesis and X1, ..., Xs, s arbitrary vertical vector

fields from Γ(L
′′
(M̃)). Then

φ(X1, ..., Xs) = (ω0 ∧ α)(X1, ..., Xs) =
∑
σ∈Ss

ε(σ)ω0(Xσ(1))α(Xσ(2), ..., Xσ(s))

But, ω0 vanishes on L
′′
(M̃) and for the all arguments X1, ..., Xs ∈ Γ(L

′′
(M̃)) the

all terms of the above sum vanish. Then by (3.4), we have φ ∈ Ωs−1,1
v (M̃). �

Proposition 3.3. For any vertical (0, 0, 0, s) -form φ there are φ1 ∈ Ωs,0
v (M̃) and

φ2 ∈ Ωs−1,1
v (M̃) such that φ = φ1 + φ2, uniquely.

Proof. Let φ be a nonzero vertical (0, 0, 0, s) -form. If iξφ = 0, then by Proposition

3.2., we have φ ∈ Ωs,0
v (M̃). So φ = φ+ 0.

If iξφ ̸= 0, then let φ2 be the vertical (0, 0, 0, s) -form given by ω0 ∧ iξφ. By

Proposition 3.2. (iv), it results φ2 is a v(s − 1, 1) -form. Moreover, putting φ1 =
φ− φ2, we have

iξφ1 = iξφ− iξ(ω0 ∧ iξφ) = iξφ− ω0(ξ)iξφ = 0

since ω0(ξ) = 1. So, φ1 is a v(s, 0) -form and φ1, φ2 are unique defined by φ.
Obviously φ = φ1 + φ2. �

We have to remark that only the zero form can be simultaneous a v(s, 0) - and
a v(s− 1, 1) -form, respectively. The above Proposition leads to the decomposition

(3.5) Ωs
v(M̃) = Ωs,0

v (M̃)⊕ Ωs−1,1
v (M̃)

A consequence of the Propositions 3.2. and 3.3. is

Proposition 3.4. Let φ be a (0, 0, 0, s) -form. We have the equivalence

(3.6) φ ∈ Ωs−1,1
v (M̃) ⇔ ∃α ∈ Ωs−1,0

v (M̃) , φ = ω0 ∧ α
Moreover, the form α is uniquely determined.

Taking into account the characterization given in Proposition 3.2. (i) and the
relation (3.6), it follows

Proposition 3.5. We have the following facts

(i) If φ ∈ Ωs,0
v (M̃) and ψ ∈ Ωt,0

v (M̃), then φ ∧ ψ ∈ Ωs+t,0
v (M̃).

(ii) If φ ∈ Ωs,1
v (M̃) and ψ ∈ Ωt,0

v (M̃), then φ ∧ ψ ∈ Ωs+t,1
v (M̃).

(iii) If φ ∈ Ωs,1
v (M̃) and ψ ∈ Ωt,1

v (M̃), then φ ∧ ψ = 0.

Example 3.1. (i) ω0 ∈ Ω0,1
v (M̃) since there is the v(0, 0) -form, the constant 1

function on M̃ , such that ω0 = ω0 · 1.
(ii) θi = δηi − ηiω0 ∈ Ω1,0

v (M̃), for each i = 1, ..., n. Indeed

θi(ξ) = δηi(ξ)− ω0(ξ)η
i = 0

so iξθ
i = 0. We have to remark that the vertical (0, 0, 0, 1) -forms {θi}, i = 1, ..., n

are linear dependent, since
∑
tiθ

i = 0.

(iii) iξ(θ
i ∧ θj)(X) = θi(ξ)θj(X) − θj(ξ)θi(X) = 0, for any vertical vector field

X ∈ Γ(V
′′
(M̃)), hence θi ∧ θj ∈ Ω2,0

v (M̃).
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Proposition 3.6. The conjugated vertical differential operator d
′′v has the follow-

ing property: for any v(s− 1, 1) -form φ, d
′′vφ is a v(s, 1) -form.

Proof. Let φ be a v(s−1, 1) -form. By (3.6), there is a v(s−1, 0) -form α such that
φ = ω0 ∧ α. By Proposition 3.3. we have also that α = iξφ. Taking into account

that ω0 is an d
′′v -exact form, it follows

d
′′vφ = d

′′v(ω0 ∧ α) = −ω0 ∧ d
′′vα = −ω0 ∧ β1 − ω0 ∧ β2

where β1 and β2 are the v(s, 0)- and v(s− 1, 1) -forms, respectively, components of

the (0, 0, 0, s) -form d
′′vα. By (3.6) we have β2 = ω0 ∧ γ with γ ∈ Ωs−1,0

v (M̃), so

d
′′vφ = −ω0 ∧ β1. Then d

′′vφ ∈ Ωs,1
v (M̃). �

We can write

(3.7) d
′′v(Ωs−1,1

v (M̃)) ⊂ Ωs,1
v (M̃)

Now, we can consider p1 and p2 the projections of the module Ωs
v(M̃) on its

direct sumands from the relation (3.5), namely

(3.8) p1 : Ωs
v(M̃) → Ωs,0

v (M̃) , p1φ = φ− ω0 ∧ iξφ

(3.9) p2 : Ωs
v(M̃) → Ωs−1,1

v (M̃) , p2φ = ω0 ∧ iξφ

for any φ ∈ Ωs
v(M̃).

For an arbitrary (0, 0, 0, s) -form φ, we have d
′′vφ = d

′′v(p1φ) + d
′′v(p2φ). The

relation (3.5) shows that d
′′v(p2φ) is a v(s, 1) -form, hence p1d

′′v(p2φ) = 0. It
results

(3.10) p1d
′′vφ = p1d

′′v(p1φ) , p2d
′′vφ = p2d

′′v(p1φ) + p2d
′′v(p2φ)

The above relations prove that

(3.11) d
′′v(Ωs,0

v (M̃)) ⊂ Ωs+1,0
v (M̃)⊕ Ωs,1

v (M̃)

which allows to define the following operators:

(3.12) d
′′v
1,0 : Ωs,0

v (M̃) → Ωs+1,0
v (M̃) , d

′′v
1,0φ = p1d

′′vφ

(3.13) d
′′v
0,1 : Ωs,0

v (M̃) → Ωs,1
v (M̃) , d

′′v
0,1φ = p2d

′′vφ

so that

(3.14) d
′′v|

Ωs,0
v (M̃)

= d
′′v
1,0 + d

′′v
0,1

Proposition 3.7. The operator d
′′v
1,0 satisfies

(i) d
′′v
1,0(φ ∧ ψ) = d

′′v
1,0φ ∧ ψ + (−1)sφ ∧ d′′v

1,0ψ , ∀φ ∈ Ωs,0
v (M̃) , ψ ∈ Ωt,0

v (M̃).

(ii) (d
′′v
1,0)

2 = 0.

Proof. (i) Let φ ∈ Ωs,0
v (M̃) and ψ ∈ Ωt,0

v (M̃). According to [12], we have

d
′′v(φ ∧ ψ) = d

′′vφ ∧ ψ + (−1)sφ ∧ d
′′vψ

and by (3.14) it follows

d
′′v
1,0(φ∧ψ)+ d

′′v
0,1(φ∧ψ) = d

′′v
1,0φ∧ψ+ d

′′v
0,1φ∧ψ+(−1)sφ∧ d

′′v
1,0ψ+(−1)sφ∧ d

′′v
0,1ψ

By equating the v(s+ t+1, 0) components in the both members of above relation,
we get the desired result.
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(ii) Let φ be a v(s, 0) -form. By (3.8) and (3.12) we have that d
′′v
1,0φ = d

′′vφ−ω0∧
iξ(d

′′vφ). Thus, using (d
′′v)2 = 0, d

′′vω0 = 0 and iξω0 = 1, by direct calculations,
one gets

(d
′′v
1,0)

2φ = d
′′v
1,0(d

′′vφ)− d
′′v
1,0(ω0 ∧ iξ(d

′′vφ))

= −d
′′v(ω0 ∧ iξ(d

′′vφ)) + ω0 ∧ iξ(d
′′v(ω0 ∧ iξ(d

′′vφ)))

= ω0 ∧ d
′′v(iξ(d

′′vφ)) + ω0 ∧ iξ(−ω0 ∧ d
′′v(iξ(d

′′vφ)))

= ω0 ∧ d
′′v(iξ(d

′′vφ))− ω0 ∧ d
′′v(iξ(d

′′vφ)) = 0

�

Example 3.2. (i) For a (0, 0, 0, 1) -form φ, we have p1φ = φ− φ(ξ)ω0 and p2φ =
φ(ξ)ω0.

(ii) Let f ∈ F(M̃) and d
′′vf =

.

∂k (f)δηk its conjugated vertical derivative.
Locally, we have

d
′′v
0,1f = p2d

′′vf = (d
′′vf)(ξ)ω0 = ξ(f)ω0

and

d
′′v
1,0f = p1d

′′vf = d
′′vf − (d

′′vf)(ξ)ω0 =
.

∂k (f)δηk − ηk
.

∂k (f)ω0 =
.

∂k (f)θk

where θk are the v(1, 0) -forms given in Example 3.1. Moreover, taking into account

the relation (2.4) and the fact
∑
tiθ

i = 0, it results that locally

(3.15) d
′′v
1,0f = (Xif)θ

i

We have

d
′′v
1,0η

k = (Xiη
k)θi = δk

i
θi − tiξ(η

k)θi = θk − (tiθ
i)ηk = θk

so the v(1, 0) -forms θk are exactly the d
′′v
1,0 -derivatives of the local coordinates ηk,

for all k = 1, ..., n.
(iii) The v(2, 0) -forms d

′′v
1,0η

k ∧ d′′v
1,0η

j are d
′′v
1,0 -closed, for all j, k = 1, ..., n.

Let us consider an arbitrary (0, 0, 0, 1) -form on M̃ . It is locally given in U by

φ = φiδη
i, with φi ∈ F(U) such that in U ∩ U ′ ̸= ϕ we have φ

′

j
= ∂zi

∂z
′j φi. By the

Proposition 3.2., φ is a v(1, 0) -form on M̃ iff iξφ = 0 which is equivalent locally

with φiη
i = 0. Then, locally we have

φ = φiδη
i = φi(d

′′v
1,0η

i + ηiω0) = φid
′′v
1,0η

i + (φiη
i)ω0 = φid

′′v
1,0η

i

Conversely, the expression locally given by φid
′′v
1,0η

i, with the functions φi satisfying

φ
′

j
= ∂zi

∂z
′j φi is a v(1, 0) -form because d

′′v
1,0η

i(ξ) = 0, for all i = 1, ..., n.

4. A d
′′v
1,0 -cohomology

In [12] a classical theory of de Rham cohomology is developed for the conjugated

vertical differential d
′′v. The sequence

O → Φ0 i→ F0
v

d
′′v

→ F1
v

d
′′v

→ F2
v

d
′′v

→ ...
d
′′v

→ ...,
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is a fine resolution for the sheaf Φ0 of germs of d
′′v-closed functions on M̃ , where

Fs
v are the sheaves of germs of vertical (0,0,0,s)-forms. It is proved a de Rham type

theorem for the v -cohomology groups of the complex Finsler manifold:

Hs(M̃,Φ0) ≈ Zs
v(M̃)/Bs

v(M̃)

where Zs
v(M̃) is the space of d

′′v -closed (0, 0, 0, s) -forms and Bs
v(M̃) is the space

of d
′′v -exact (0, 0, 0, s) -forms globally defined on M̃ .

In this section we define new cohomology groups on M̃ and we study the relations

between these groups and Hs(M̃,Φ0).

Definition 4.1. We say that a v(s, 0) -form φ is d
′′v
1,0 -closed if d

′′v
1,0φ = 0 and it is

called d
′′v
1,0 -exact if φ = d

′′v
1,0ψ for some ψ ∈ Ωs−1,0

v (M̃).

An important property of the operator d
′′v
1,0 is a Grothendieck-Dolbeault type

lemma, namely

Theorem 4.1. Let φ ∈ Ωs,0
v (U) be a d

′′v
1,0 -closed form and s ≥ 1. Then there exists

ψ ∈ Ωs−1,0
v (U

′
), U

′ ⊂ U and such that φ = d
′′v
1,0ψ on U

′
.

Proof. Let φ ∈ Ωs,0
v (U) such that d

′′v
1,0φ = 0. Then

d
′′vφ = d

′′v
1,0φ+ d

′′v
0,1φ = d

′′v
0,1φ = ω0 ∧ iξ(d

′′vφ)

so d
′′vφ = 0 (modulo terms containing ω0).

Hence on the space ω0 = 0 we have that φ is d
′′v -closed. But the operator

d
′′v satisfies a Grothendieck-Dolbeault type lemma (see [12]), so there exists a

(0, 0, 0, s− 1) -form τ defined on U
′ ⊂ U such that

(4.1) φ = d
′′vτ + λ ∧ ω0 , λ ∈ Ωs−1

v (U
′
)

Following the Proposition 3.3. we have that τ = τ1 + ω0 ∧ iξτ , with τ1 = p1τ ∈
Ωs−1,0

v (U
′
). Now, the relation (4.1) become

φ = d
′′vτ1 − ω0 ∧ d

′′viξτ + λ ∧ ω0

Here φ ∈ Ωs,0
v (U

′
), ω0 ∧ (λ + d

′′viξτ) ∈ Ωs−1,1
v (U

′
) and d

′′vτ1 = d
′′v
1,0τ1 + d

′′v
0,1τ1 ∈

Ωs,0
v (U

′
)⊕ Ωs−1,1

v (U
′
). It results φ = d

′′v
1,0τ1 on U

′
. �

Let Φv be the sheaf of germs of functions on M̃ which satisfies d
′′v
1,0f = 0 and

Fs,0
v be the sheaf of germs of v(s, 0) -forms on M̃ . We denote by i : Φv → F0,0

v

be the natural inclusion. The sheaves Fs,0
v are fine and taking into account the

Theorem 4.1., it follows that the sequence of sheaves

0 −→ Φv
i−→ F0,0

v

d
′′v
1,0−→ F1,0

v

d
′′v
1,0−→ ...

d
′′v
1,0−→ Fs,0

v

d
′′v
1,0−→ ...

is a fine resolution of Φv and we denote by Hs(M̃,Φv) the cohomology groups of

M̃ with the coefficients in the sheaf Φv. Then, we obtain a de Rham type theorem,
namely

Theorem 4.2. The v -cohomology groups with respect to the operator d
′′v
1,0 of v(s, 0)

-forms on a complex Finsler manifold are given by

(4.2) Hs(M̃,Φv) ≈ Zs,0
v (M̃)/Bs,0

v (M̃)
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where Zs,0
v (M̃) is the space of d

′′v
1,0 -closed v(s, 0) -forms and Bs,0

v (M̃) is the space

of d
′′v
1,0 -exact v(s, 0) -forms globally defined on M̃ .

By (3.7), the de Rham complex

O → F0,0
v (M̃)

d
′′v

→ Ω1
v(M̃)

d
′′v

→ Ω2
v(M̃)

d
′′v

→ ...
d
′′v

→ Ωs
v(M̃)

d
′′v

→ ...,

admits the subcomplex

O → Φv(M̃)
d
′′v

→ Ω0,1
v (M̃)

d
′′v

→ Ω1,1
v (M̃)

d
′′v

→ ...
d
′′v

→ Ωs,1
v (M̃)

d
′′v

→ ...,

We denote by Zs,1
v (M̃) and Bs,1

v (M̃) the spaces of the d
′′v-closed and d

′′v-exacts
v(s, 1)-forms, respectively, and let

Hs,1
v (M̃) = Zs,1

v (M̃)/Bs,1
v (M̃).(4.3)

be the s-cohomology group of the last complex.

Theorem 4.3. The cohomology groups Hs,1
v (M̃) and Hs(M̃,Φv) are isomorphic.

Proof. By Proposition 3.4 we can define the map

ζ : Zs,1
v (M̃) → Zs,0

v (M̃), ζ(φ) = α

for α ∈ Ωs,0
v (M̃) such that φ = α ∧ ω0. It is a well-defined map since the equality

0 = d
′′vφ = d

′′vα ∧ ω0 = d
′′v
1,0α ∧ ω0 + d

′′v
0,1α ∧ ω0 = d

′′v
1,0α ∧ ω0

implies d
′′v
1,0α = 0. Moreover, ζ is a bijective morphism of groups and ζ(Bs,1

v (M̃)) =

Bs,0
v (M̃). Indeed, for φ ∈ Bs,1

v (M̃), there is θ ∈ Ωs−1,1
v (M̃) such that φ = d

′′vθ. By

(3.6), there are α ∈ Ωs,0
v (M̃), β ∈ Ωs−1,0

v (M̃) such that φ = α∧ ω0 and θ = β ∧ ω0.
Then, we have

α ∧ ω0 = d
′′v(β ∧ ω0) = d

′′v
1,0β ∧ ω0

It follows α ∈ Bs,0
v (M̃). Conversely, α = d

′′v
1,0β implies α∧ω0 = d

′′v(β ∧ω0). We

obtain that ζ∗ : Hs,1
v (M̃) → Zs,0

v (M̃)/Bs,0
v (M̃), ζ∗([φ]) = [ζ(φ)], for φ ∈ Zs,1

v (M̃),
is bijective. �

Finally, we remark that the projection p1 from (3.8) induces the morphism

p
′

1 : Zs
v(M̃) → Zs,0

v (M̃)

Indeed, taking into account the Propositions 3.3. and 3.6. and the relations

(3.7) and (3.14), we obtain for φ ∈ Zs
v(M̃):

0 = d
′′vφ = d

′′v(φ1 + φ2) = d
′′v
1,0φ1 + d

′′v
0,1φ1 + d

′′vφ2

which implies d
′′v
1,0φ1 = 0 since d

′′v
1,0φ1 ∈ Ωs+1,0

v (M̃) and d
′′v
0,1φ1 + d

′′vφ2 ∈ Ωs,1
v (M̃).

Moreover, for every d
′′v-exact form φ = d

′′vθ, with θ ∈ Ωs−1
v (M̃), we have by

Proposition 3.3. that

φ = φ1 + φ2 = d
′′v(θ1 + θ2) = d

′′v
1,0θ1 + d

′′v
0,1θ1 + d

′′vθ2

Equating the v(s, 0)-components we obtain φ1 = d
′′v
1,0θ1.

So, the morphism p
′

1 satifies p
′

1(B
s
v(M̃)) = Bs,0

v (M̃). Hence p
′

1 induces a mor-
phism of cohomology groups

p∗1 : Zs
v(M̃)/Bs

v(M̃) → Zs,0
v (M̃)/Bs,0

v (M̃)



162 ADELINA MANEA AND CRISTIAN IDA

which is not always injective.
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