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IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN
SUBMANIFOLDS IN QUATERNION SPACE FORMS
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ABSTRACT. In this article, we obtain an improved Chen-Ricci inequality and
completely classify Lagrangian submanifolds in quaternion space forms sat-
isfying the equality. Our result is an affirmative answer to Problem 4.6 in
[12].

1. INTRODUCTION

Let M be a Riemannian n-manifold and X be a unit vector. We choose an orthonormal
frame {ei1,- - ,en} in T M such that e; = X. We denote the Ricci curvature at X by

Ric(X) = Kia + -+ + Kin,

where K;; denotes the sectional curvature of the 2-plane section spanned by e, e;.
In [1] B.-Y. Chen proved the following Chen-Ricci inequality on Ricci curvature for any
n-dimensional submanifold in Riemannian manifold of constant sectional curvature c:
2
Rie(X) < "= Lot ™)),
4 4
This inequality is not optimal for Lagrangian submanifolds in complex space forms.
Using an optimization technique, Oprea in [10] (also see [11]) proved

Ric(X) < "= (c+n||H|]),

which improves the Chen-Ricci inequality for Lagrangian submanifolds in complex space
forms of constant holomorphic sectional curvature c.

In [5] we provided an algebraic proof for the improved Chen-Ricci inequality and com-
pletely characterized Lagrangian submanifolds in complex space forms satisfying the equal-
ity.

In this article, we extend the improved Chen-Ricci inequality to Lagrangian submani-
folds in quaternion space forms. We also provide a detailed affirmative answer to Problem
4.6 in [12], completing the remark 3.2 in [5].

Theorem 3.1 and Corollary 3.2 improve a number of results in [1],[5],[7] and [8] for
Lagrangian submanifolds in quaternion space forms.
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2. PRELIMINARIES

Let M" be a 4n-dimensional Riemannian manifold with metric g. M™ is called quater-
nion Kaehler manifold if there exists a 3-dimensional vector bundle V' of tensors of type
(1,1) over M™ with local basis of almost Hermitian structures I, J and K such that

() IJ=—-JI=K, JK=-KJ=1I, KI=-IK=J, I’=J>=K?=-Id,

(b) for any local cross-section n of V, Vxn is also a cross-section of V, where X is an
arbitrary vector field on M™ and V the Riemannian connection on M™.

In fact, condition (b) is equivalent to the following condition:

(b”) there exist local 1-forms p, ¢ and r such that

VxI = r(X)J —q(X)K
VxJ = —r(X)I +p(X)K
VxK = q(X)I —p(X)J.

Now let X be a unit vector on M™. Then X, IX,JX and KX form an orthonormal
frame on M". We denote by Q(X) the 4-plane spanned by them. For any two orthonormal
vectorsX,Y on M", if Q(X) and Q(Y") are orthogonal, the plane 7(X,Y") spanned by X,Y
is called a totally real plane. Any 2-plane in a Q(X) is called a quaternionic plane. The
sectional curvature of a quaternionic plane 7 is called the quaternionic sectional curvature
of m. A quaternionic Kaehler manifold is a quaternion space form if its quaternionic
sectional curvature are equal to a constant, say c. We denote such a 4n-dimensional
quaternion space form by M"(c).

It is known that a quaternionic Kaehler manifold M™ is a quaternion space form if and
only if its curvature tensor R is of the following form [6]:

R(X,Y)Z =Z{g(Y. 2)X = g(X, Z)Y +

+9(IY,Z2)IX —g(IX,2)IY +29(X,IY)IZ

+9(JY,2)JX —g(JX,Z2)JY +29(X,JY)JZ

+9(KY,Z)KX — g(KX,Z)KY +29(X,KY)KZ}
Let f : M — M™ be an isometric immersion of a Riemannian n-manifold M into a 4n-
dimensional quaternion space form M"(c). Then M is called a Lagrangian (or totally
real) submanifold if each 2-plane of M is mapped into a toally real plane in M"(c).

From now on we assume that M is a Lagrangian submanifold of a 4n-dimensional

quaternion space form M "(c). The formulas of Gauss and Weingarten are given respec-
tively by

VxY =VxY +h(X,Y),
Vx€&=—AcX + Dx¢,

for tangent vector fields X and Y and normal vector fields &, where D is the normal
connection. The second fundamental form h is related to A¢ by

<h(X7Y)v§> = <A€X7 Y> .

The mean curvature vector H of M is defined by

(2.1)

H = 1 trace h.
n
We choose a local orthonormal frame field in M™(c):
€1,€2, . .... S €n; erry = lei, ... erm) = Ien;
(2.2) ey = Jei, ..., egm) = Jen; exq) = Keu,...,exmn) = Ken,
in such a way that, restricting to M, ey, ..., e, are tangent to M.

We will use the following convention on the range of indices:
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AB,C,D=1,... .0, I(1),....1(n), J(1), ..., J(n), K(1),..., K(n),
ik l=1,...m,

0, B =I(1),....1(n), J(1),...,J(n), K(1),..., K(n),

p1=1, p2=1J, 3= K,

¢1(k) = I(k), ¢2(k) = J(k), ¢3(k) = K(k),

We set h{; = g(h(ei,e;),ea). Then for any given r we have ( see (2.9) in [4] )

(2.3)

R = pir D = pr 9 =1,2,3.
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Chen introduced the concept of Lagrangian H-umbilical submanifolds in [2] to study the
“simplest” Lagrangian submanifolds next to the totally geodesic ones. We can extend the
notion of Lagrangian H-umbilical submanifolds to Lagrangian submanifolds of a quaternion
manifold ([9]). By a Lagrangian H-umbilical submanifold of a quaternion manifold M™
we mean a Lagrangian submanifold whose second fundamental form takes the following

simple form:
h(el, 61) = )\1[(61) + AQJ(61) + )\3K(61)
(2.4) h(ez, e2) = pal(er) + paJ(e1) + psk(e),
' h(ex,e;) = pal(e;) + p2J(e;) + psK(e;),
h(6.776k)207 j#k’ j?k:2""7n
for some suitable functions A, and p,,7 = 1,2,3 with respect to some suitable local

orthonormal frame field.

3. IMPROVED CHEN-RICCI INEQUALITY

We first take a look at the mean curvature vector H. We set ¢1 = I, ¢2 = J, ¢p3 = K
as in the previous section. With the orthonormal frames from (2.2), we have

h(el,el) = Z h?lea = h{§1)6](1> + -+ hﬁ")el(n)—i—
a=I(1)
+ h{1(1)6J<1) + -+ h{l(n)61<n)+

n

¢r(k
= Z h11( )e¢r(k)'

r=1k=1
Similarly,
3 n
hlee) =Y > hirPey
r=1k=1
We set
L 6r()
3.1 HI = =N"p2 =123
(3.1) r= ; kk T >

Then
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H= %zj: h(ei, e;)

= Z h, <1)61(1) + o+ = Z hI(n)EI(n)-F

n

1 n
+ *Zh;{;(l)ej(l) + 4= ZhJ( >6J(n)+

=1
(3.2) n % ;hfj‘”em) Loq 1 th( ex(n)
= Hiejq)+- -+ Hierm+
+ Hyegay + -+ Hyesmy+
+ HéeK(l) + -+ Hiexm)

With {er)," - ,ex(n)} being orthonormal, we have

(3.3) =12 =303 by

Theorem 3.1. Let M be a Lagrangian submanifold of real dimension n (n > 2) in a 4n-
dimensional quaternion space form M"™(c), x a point in M and X a unit tangent vector
in T M. Then we have

(3.4 Rie(X) < " e+l HIP),
where H is the mean curvature vector of M in M™(c) and Ric(X) is the Ricci curvature
of M at X.

The equality sign holds for any unit tangent vector at x if and only if either

(i) x is a totally geodesic point or

(ii) » = 2 and z is an H-umbilical point with A, = 3ur,r =1,2,3.

Proof. We fix the point z in M. Let X be any unit tangent vector at z. We choose an
orthonormal frame ei1,- - ,en,I(e1), -+, K(en) such that e1,--- , e, are tangent to M at
r with e; = X. From Gauss equation we have

R(e1,¢e5,e1,¢5) = R(e1,e5,e1,¢5) — g(h(er, e1), hlej, e5)) + g(h(er, e5), hler, e5))

or
3 n

R(e1,ej,e1,e;) = R(e1, 5, e1,¢€;) Z z h‘bf(k)hf;(k) - (h‘f;(k))Q),Vj € 2,n.

r=1k=1

Hence we have

(K ~(k ~(k
(37 MRS = (35 0)?).

hE

(n—1)4—ch Z

r=1

™
Il
i

<.
Il
N

Therefore
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Using (2.3), we have

Rie(X) —(n =17 < (33"

or

n

B0y f:f: porG)y2 ii per)?

r=1j=2 r=1j=2

g
Il
-
£
Il
=
<.
Il
N

3 n
. C ” - G 2
RZC(X) — (TL — 1)1 < E { (h‘fl (k) E h’?j (k) _ (hfl (])) )+
k=2 j=2

- (K -
RS =S

Jj=2 Jj=2

From Cauchy-Schwarz’s inequality and (3.2), we have

(hr® _ ﬁ Zhwl
2
> (i 4 oh D ek ShE D) =R, r=12.3,
or equivalently
a2 o ()N o) o UL=n) e
(3.7) j;(hjj )" — hig ]Z::thj ZT(HT)7 r=12,3.

Similarly, by Cauchy-Schwarz’s inequality, we have

5 2
(7™ + (GHY =BT ®) > T (', r=1,2.3,
which is equivalent to
n 2
r(k r(k r(k n ky2
(3:8) (BT )2 = hiy ™ 3o nS Y = =) r=1,23.

which implies (3.4).
Now assume the equality sign of (3.4) holds for any unit tangent vector X at z. In-
equalities in (3.5), (3.7) and (3.8) become equalities. Thus, we have

(3.10) WM =0, Vik>2 j£k =123,
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(3.11) 2n¢rM —nHr =2p%r M = .. = 2p®r M =123,
(3.12) 4p0r ™ —pHF k=2, n, r=1,23.
Also, by (3.9), we have either
(OVn>3and H2=H:=..-=H'=0, r=1,2,3 or
2)n=2.
Case(1) n > 3. Wehave H2 = H} = ... = H" =0, r=1,2,3. From (3.12) we have
) HI
n W =i = T =0, vj 2 2, 1 =1,2,3.

From this and (3.10) and (3.11), (hf,’g(l)) must be diagonal with hf{‘(l) =(n+ 1)h§§(1)
and h9rY = 10} vj>2 r=1,23.

Now if we compute Ric(ez) as we do for Ric(X) = Ric(e1) in (3.5), from the equality
we get hyr ™ = hir® = 0,Vk £2,j # 2,k # j,r = 1,2,3. From the equality and (3.11),
we get

(2
hir @ H;
n+1 2
Since the equality holds for all unit tangent vector, the argument is also true for matrices

(h?]:(l)). Now finally hg;(?') = hfg(j) = H77] =0,V5 > 3,r = 1,2,3. Therefore matrix

=hir® = .. =per® = =0, r=1,23.

1
(hf,;"(?)) has only two possible nonzero entries (i.e. hf’;(” = hgf@) = hi;‘” = %,r =
1,2, 3). Similarly matrix (hj.’g(l)) has only two possible nonzero entries

Hl

(1 or (1 ¢ (1
hu():hu():hzz():?: vi>3,r=12,3.

We now compute Ric(ez) as follows:

R(e2,ej,e2,e;) = R(ez,e5,e2,¢;5) — g(h(ez, e2), h(ej, e5)) + (h(e2, e;), h(ez, e5)),
so we have
Hl

2
P> 3.
5 ) Viz3

3
(3.13) Rez,ej,e2,¢5) = R(ez, e5,e2,¢5) = >

r=1

From

R(ez,e1,e2,e1) = R(ez, e1,ea,e1) — g(h(ez, e2), h(e1,e1)) + g(h(ez, e1), h(ez, e1)),

we get

B Hl 2 3 Hl 2
(3.14) R(ez,e1,e2,e1) = R(ez,e1,e2,e1) — (n+ l)z::1 ( 5 ) —&—; (7) .

By combining (3.13) and (3.14), we get

Ric(e2)7@ _ (nﬂ)i (};1)223: (}5)2+(n2)i (11;1)2 = Q(nfl)i (Iél

r=1 r=1 r=1 r=1

) 2
On the other hand from the equality assumption, we have

Rie(es) — P = MO =D e — -1y Y (H’" ) ~

Therefore, we have
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Since n > 3, we have Hf = Hi = Hi = 0 . Therefore, (hﬁ'(l)) are all zero (r = 1,2,3)
and x is a totally geodesic point.
Case(2) n = 2. From (3.12) we have
her ™ =3hgs M, hyr® =3h7?, r=1,2,3.

Since X can be any unit vector, we may assume that the mean curvature vector is in
Q(X). Then the second fundamental form takes the following form:

h(e1,e1) = 3pal(er) + 3uzJ(e1) + 3usK(er),

h(ez, e2) = pal(er) + paJ(e1) + psK(e),

h(e1,e2) = pal(ez) + paJ(e2) + psk(e2),
for some functions 1, pu2 and ps with respect to some local orthonormal frame field.
It follows from (2.4) that = is an H-umbilical point with A, = 3u,,r =1,2,3.

The converse can be proved by simple computation.
O

Remark 3.1. Theorem 3.1 is an improvement of a result in [1, page 38] for Lagrangian
submanifolds. Theorem 3.1 is also an extention of a theorem in [5] for Lagrangian sub-
manifolds in quaternion space forms.

Remark 3.2. In quaternion space forms, Theorem 3.1 is an improvement of Corollary 2.1
in [8] for Lagrangian submanifolds .

From Theorem 3.1, we have the following

Corollary 3.2. Let M be a Lagrangian submanifold of real dimension n (n > 2) in a
4n-dimensional quaternion space form M"(c). If

n—1

Ric(X) = (c+nllH|)

for any unit tangent vector X of M, then either M is a totally geodesic submanifold in
M"(c) or n = 2 and M 1is a Lagrangian H-umbilical submanifold of M™(c) with A\, =
3pe,r = 1,2, 3.

Remark 3.3. Corollary 3.2 is an improvement of Theorem 3.1 in [7] for Lagrangian sub-
manifolds in quaternion space forms.

Remark 3.4. Theorem 3.1 and Corollary 3.2 give a complete solution to Problem 4.6 in
[12].
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