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IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN
SUBMANIFOLDS IN QUATERNION SPACE FORMS

SHANGRONG DENG

(Communicated by Bang-Yen CHEN )

Abstract. In this article, we obtain an improved Chen-Ricci inequality and
completely classify Lagrangian submanifolds in quaternion space forms sat-
isfying the equality. Our result is an affirmative answer to Problem 4.6 in
[12].

1. Introduction

Let M be a Riemannian n-manifold and X be a unit vector. We choose an orthonormal
frame {e1, · · · , en} in TxM such that e1 = X. We denote the Ricci curvature at X by

Ric(X) = K12 + · · ·+ K1n,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej .
In [1] B.-Y. Chen proved the following Chen-Ricci inequality on Ricci curvature for any

n-dimensional submanifold in Riemannian manifold of constant sectional curvature c:

Ric(X) ≤ n− 1

4
c +

n2

4
||H||2.

This inequality is not optimal for Lagrangian submanifolds in complex space forms.
Using an optimization technique, Oprea in [10] (also see [11]) proved

Ric(X) ≤ n− 1

4
(c + n||H||2),

which improves the Chen-Ricci inequality for Lagrangian submanifolds in complex space
forms of constant holomorphic sectional curvature c.

In [5] we provided an algebraic proof for the improved Chen-Ricci inequality and com-
pletely characterized Lagrangian submanifolds in complex space forms satisfying the equal-
ity.

In this article, we extend the improved Chen-Ricci inequality to Lagrangian submani-
folds in quaternion space forms. We also provide a detailed affirmative answer to Problem
4.6 in [12], completing the remark 3.2 in [5].

Theorem 3.1 and Corollary 3.2 improve a number of results in [1],[5],[7] and [8] for
Lagrangian submanifolds in quaternion space forms.
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2. Preliminaries

Let M̃n be a 4n-dimensional Riemannian manifold with metric g. M̃n is called quater-
nion Kaehler manifold if there exists a 3-dimensional vector bundle V of tensors of type
(1,1) over M̃n with local basis of almost Hermitian structures I, J and K such that

(a) IJ = −JI = K, JK = −KJ = I, KI = −IK = J, I2 = J2 = K2 = −Id,

(b) for any local cross-section η of V , ∇̃Xη is also a cross-section of V , where X is an

arbitrary vector field on M̃n and ∇̃ the Riemannian connection on M̃n.
In fact, condition (b) is equivalent to the following condition:
(b’) there exist local 1-forms p, q and r such that

∇̃XI = r(X)J − q(X)K

∇̃XJ = −r(X)I + p(X)K

∇̃XK = q(X)I − p(X)J.

Now let X be a unit vector on M̃n. Then X, IX, JX and KX form an orthonormal
frame on M̃n. We denote by Q(X) the 4-plane spanned by them. For any two orthonormal

vectorsX, Y on M̃n, if Q(X) and Q(Y ) are orthogonal, the plane π(X, Y ) spanned by X, Y
is called a totally real plane. Any 2-plane in a Q(X) is called a quaternionic plane. The
sectional curvature of a quaternionic plane π is called the quaternionic sectional curvature
of π. A quaternionic Kaehler manifold is a quaternion space form if its quaternionic
sectional curvature are equal to a constant, say c. We denote such a 4n-dimensional
quaternion space form by M̃n(c).

It is known that a quaternionic Kaehler manifold M̃n is a quaternion space form if and
only if its curvature tensor R̃ is of the following form [6]:

R̃(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y +

+ g(IY, Z)IX − g(IX, Z)IY + 2g(X, IY )IZ

+ g(JY, Z)JX − g(JX, Z)JY + 2g(X, JY )JZ

+ g(KY, Z)KX − g(KX, Z)KY + 2g(X, KY )KZ}
Let f : M → M̃n be an isometric immersion of a Riemannian n-manifold M into a 4n-
dimensional quaternion space form M̃n(c). Then M is called a Lagrangian (or totally

real) submanifold if each 2-plane of M is mapped into a toally real plane in M̃n(c).
From now on we assume that M is a Lagrangian submanifold of a 4n-dimensional

quaternion space form M̃n(c). The formulas of Gauss and Weingarten are given respec-
tively by

(2.1)
∇̃XY = ∇XY + h(X, Y ),

∇̃Xξ = −AξX + DXξ,

for tangent vector fields X and Y and normal vector fields ξ, where D is the normal
connection. The second fundamental form h is related to Aξ by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉 .
The mean curvature vector H of M is defined by

H =
1

n
trace h.

We choose a local orthonormal frame field in M̃n(c):

(2.2)
e1, e2, . . . . . . , en; eI(1) = Ie1, . . . , eI(n) = Ien;

eJ(1) = Je1, . . . , eJ(n) = Jen; eK(1) = Ke1, . . . , eK(n) = Ken,

in such a way that, restricting to M , e1, . . . , en are tangent to M .
We will use the following convention on the range of indices:
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A, B, C, D = 1, . . . , n, I(1), . . . , I(n), J(1), . . . , J(n), K(1), . . . , K(n),

i, j, k, l = 1, . . . , n,

α, β = I(1), . . . , I(n), J(1), . . . , J(n), K(1), . . . , K(n),

φ1 = I, φ2 = J, φ3 = K,

φ1(k) = I(k), φ2(k) = J(k), φ3(k) = K(k),

We set hα
ij = g(h(ei, ej), eα). Then for any given r we have ( see (2.9) in [4] )

(2.3) h
φr(k)
ij = h

φr(j)
ki = h

φr(i)
jk , r = 1, 2, 3.

Chen introduced the concept of Lagrangian H-umbilical submanifolds in [2] to study the
“simplest” Lagrangian submanifolds next to the totally geodesic ones. We can extend the
notion of Lagrangian H-umbilical submanifolds to Lagrangian submanifolds of a quaternion
manifold ([9]). By a Lagrangian H-umbilical submanifold of a quaternion manifold M̃n

we mean a Lagrangian submanifold whose second fundamental form takes the following
simple form:

(2.4)

h(e1, e1) = λ1I(e1) + λ2J(e1) + λ3K(e1)

h(e2, e2) = µ1I(e1) + µ2J(e1) + µ3K(e1),

h(e1, ej) = µ1I(ej) + µ2J(ej) + µ3K(ej),

h(ej , ek) = 0, j 6= k, j, k = 2, . . . , n

for some suitable functions λr and µr, r = 1, 2, 3 with respect to some suitable local
orthonormal frame field.

3. Improved Chen-Ricci inequality

We first take a look at the mean curvature vector H. We set φ1 = I, φ2 = J, φ3 = K
as in the previous section. With the orthonormal frames from (2.2), we have

h(e1, e1) =

K(n)∑

α=I(1)

hα
11eα = h

I(1)
11 eI(1) + · · ·+ h

I(n)
11 eI(n)+

+ h
J(1)
11 eJ(1) + · · ·+ h

J(n)
11 eJ(n)+

+ h
K(1)
11 eK(1) + · · ·+ h

K(n)
11 eK(n)

=

3∑
r=1

n∑

k=1

h
φr(k)
11 eφr(k).

Similarly,

h(ei, ei) =

3∑
r=1

n∑

k=1

h
φr(k)
ii eφr(k).

We set

(3.1) Hj
r =

1

n

n∑

k=1

h
φr(j)
kk , r = 1, 2, 3.

Then
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(3.2)

H =
1

n

n∑
i=1

h(ei, ei)

=
1

n

n∑
i=1

h
I(1)
ii eI(1) + · · ·+ 1

n

n∑
i=1

h
I(n)
ii eI(n)+

+
1

n

n∑
i=1

h
J(1)
ii eJ(1) + · · ·+ 1

n

n∑
i=1

h
J(n)
ii eJ(n)+

+
1

n

n∑
i=1

h
K(1)
ii eK(1) + · · ·+ 1

n

n∑
i=1

h
K(n)
ii eK(n)

= H1
1eI(1) + · · ·+ Hn

1 eI(n)+

+ H1
2eJ(1) + · · ·+ Hn

2 eJ(n)+

+ H1
3eK(1) + · · ·+ Hn

3 eK(n)

=

3∑
r=1

n∑

k=1

Hk
r eφr(k).

With {eI(1), · · · , eK(n)} being orthonormal, we have

(3.3) ||H||2 =

3∑
r=1

n∑

k=1

(Hk
r )

2
.

Theorem 3.1. Let M be a Lagrangian submanifold of real dimension n (n ≥ 2) in a 4n-

dimensional quaternion space form M̃n(c), x a point in M and X a unit tangent vector
in TxM . Then we have

(3.4) Ric(X) ≤ n− 1

4
(c + n||H||2),

where H is the mean curvature vector of M in M̃n(c) and Ric(X) is the Ricci curvature
of M at X.

The equality sign holds for any unit tangent vector at x if and only if either
(i) x is a totally geodesic point or
(ii) n = 2 and x is an H-umbilical point with λr = 3µr, r = 1, 2, 3.

Proof. We fix the point x in M . Let X be any unit tangent vector at x. We choose an
orthonormal frame e1, · · · , en, I(e1), · · · , K(en) such that e1, · · · , en are tangent to M at
x with e1 = X. From Gauss equation we have

R̃(e1, ej , e1, ej) = R(e1, ej , e1, ej)− g(h(e1, e1), h(ej , ej)) + g(h(e1, ej), h(e1, ej))

or

R̃(e1, ej , e1, ej) = R(e1, ej , e1, ej)−
3∑

r=1

n∑

k=1

(h
φr(k)
11 h

φr(k)
jj − (h

φr(k)
1j )2),∀j ∈ 2, n.

Hence we have

(n− 1)
c

4
= Ric(X)−

3∑
r=1

n∑

k=1

n∑
j=2

(h
φr(k)
11 h

φr(k)
jj − (h

φr(k)
1j )2).

Therefore
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(3.5) Ric(X)− (n− 1)
c

4
=

3∑
r=1

n∑

k=1

n∑
j=2

(
h

φr(k)
11 h

φr(k)
jj − (h

φr(k)
1j )2

)

≤
3∑

r=1

n∑

k=1

n∑
j=2

h
φr(k)
11 h

φr(k)
jj −

3∑
r=1

n∑
j=2

(h
φr(1)
1j )2 −

3∑
r=1

n∑
j=2

(h
φr(j)
1j )2.

Using (2.3), we have

Ric(X)− (n− 1)
c

4
≤ (

3∑
r=1

n∑

k=1

n∑
j=2

h
φr(k)
11 h

φr(k)
jj )−

3∑
r=1

n∑
j=2

(h
φr(j)
11 )2 −

3∑
r=1

n∑
j=2

(h
φr(1)
jj )2,

or

(3.6)

Ric(X)− (n− 1)
c

4
≤

3∑
r=1

{
n∑

k=2

(h
φr(k)
11

n∑
j=2

h
φr(k)
jj − (h

φr(j)
11 )

2
)+

+ h
φr(1)
11

n∑
j=2

h
φr(k)
jj −

n∑
j=2

(h
φr(1)
jj )2}.

From Cauchy-Schwarz’s inequality and (3.2), we have

(h
φr(1)
11 − n

2
H1

r )
2

+

n∑
j=2

(h
φr(1)
jj )2 ≥

≥ 1

n
(
1

2
h

φr(1)
11 +

1

2
h

φr(1)
22 + · · ·+ 1

2
hφr(1)

nn )
2

=
n

4
(H1

r )
2
, r = 1, 2, 3,

or equivalently

(3.7)

n∑
j=2

(h
φr(1)
jj )2 − h

φr(1)
11

n∑
j=2

h
φr(1)
jj ≥ n(1− n)

4
(H1

r )
2
, r = 1, 2, 3.

Similarly, by Cauchy-Schwarz’s inequality, we have

(h
φr(k)
11 )2 + (

n

2
Hk

r − h
φr(k)
11 )

2 ≥ n2

8
(Hk

r )
2
, r = 1, 2, 3,

which is equivalent to

(3.8) (h
φr(k)
11 )2 − h

φr(k)
11

n∑
j=2

h
φr(k)
jj ≥ −n2

8
(Hk

r )
2
, r = 1, 2, 3.

From (3.6),(3.7) and (3.8), we have

(3.9)

Ric(X)− n− 1

4
c ≤

3∑
r=1

{n2

8

n∑

k=2

(Hk
r )

2
+

n(n− 1)

4
(H1

r )
2}

≤ n(n− 1)

4

3∑
r=1

{
n∑

k=2

(Hk
r )2 + (H1

r )
2}

=
n(n− 1)

4
||H||2,

which implies (3.4).
Now assume the equality sign of (3.4) holds for any unit tangent vector X at x. In-

equalities in (3.5), (3.7) and (3.8) become equalities. Thus, we have

(3.10) h
φr(1)
jk = 0, ∀j, k ≥ 2, j 6= k, r = 1, 2, 3,
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(3.11) 2h
φr(1)
11 − nH1

r = 2h
φr(1)
22 = · · · = 2hφr(1)

nn , r = 1, 2, 3,

(3.12) 4h
φr(k)
11 = nHk

r , k = 2, · · · , n, r = 1, 2, 3.

Also, by (3.9), we have either
(1) n ≥ 3 and H2

r = H3
r = · · · = Hn

r = 0, r = 1, 2, 3 or
(2) n = 2 .
Case(1) n ≥ 3. We have H2

r = H3
r = · · · = Hn

r = 0, r = 1, 2, 3. From (3.12) we have

h
φr(1)
1j = h

φr(j)
11 =

nHj
r

4
= 0, ∀j ≥ 2, r = 1, 2, 3.

From this and (3.10) and (3.11), (h
φr(1)
jk ) must be diagonal with h

φr(1)
11 = (n + 1)h

φr(1)
22

and h
φr(1)
jj = 1

2
H1

r , ∀j ≥ 2, r = 1, 2, 3.

Now if we compute Ric(e2) as we do for Ric(X) = Ric(e1) in (3.5), from the equality

we get h
φr(k)
2j = h

φr(2)
jk = 0,∀k 6= 2, j 6= 2, k 6= j, r = 1, 2, 3. From the equality and (3.11),

we get

h
φr(2)
11

n + 1
= h

φr(2)
22 = · · · = hφr(2)

nn =
H2

r

2
= 0, r = 1, 2, 3.

Since the equality holds for all unit tangent vector, the argument is also true for matrices

(h
φr(l)
jk ). Now finally h

φr(2)
2j = h

φr(j)
22 =

Hj
r

2
= 0, ∀j ≥ 3, r = 1, 2, 3. Therefore matrix

(h
φr(2)
jk ) has only two possible nonzero entries (i.e. h

φr(2)
12 = h

φr(2)
21 = h

φr(1)
22 =

H1
r

2
, r =

1, 2, 3). Similarly matrix (h
φr(l)
jk ) has only two possible nonzero entries

h
φr(l)
1l = h

φr(l)
l1 = h

φr(1)
ll =

H1
r

2
, ∀l ≥ 3, r = 1, 2, 3.

We now compute Ric(e2) as follows:

R̃(e2, ej , e2, ej) = R(e2, ej , e2, ej)− g(h(e2, e2), h(ej , ej)) + (h(e2, ej), h(e2, ej)),

so we have

(3.13) R̃(e2, ej , e2, ej) = R(e2, ej , e2, ej)−
3∑

r=1

(
H1

r

2
)
2

,∀j ≥ 3.

From

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1)− g(h(e2, e2), h(e1, e1)) + g(h(e2, e1), h(e2, e1)),

we get

(3.14) R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1)− (n + 1)

3∑
r=1

(
H1

r

2

)2

+

3∑
r=1

(
H1

r

2

)2

.

By combining (3.13) and (3.14), we get

Ric(e2)− (n− 1)c

4
= (n+1)

3∑
r=1

(
H1

r

2

)2

−
3∑

r=1

(
H1

r

2

)2

+(n−2)

3∑
r=1

(
H1

r

2

)2

= 2(n−1)

3∑
r=1

(
H1

r

2

)2

.

On the other hand from the equality assumption, we have

Ric(e2)− (n− 1)c

4
=

n(n− 1)

4
||H||2 = n(n− 1)

3∑
r=1

(
H1

r

2

)2

.

Therefore, we have

n(n− 1)

3∑
r=1

(
H1

r

2

)2

= 2(n− 1)

3∑
r=1

(
H1

r

2

)2
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Since n ≥ 3, we have H1
1 = H1

2 = H1
3 = 0 . Therefore, (h

φr(l)
jk ) are all zero (r = 1, 2, 3)

and x is a totally geodesic point.
Case(2) n = 2. From (3.12) we have

h
φr(1)
11 = 3h

φr(1)
22 , h

φr(2)
22 = 3h

φr(2)
11 , r = 1, 2, 3.

Since X can be any unit vector, we may assume that the mean curvature vector is in
Q(X). Then the second fundamental form takes the following form:

h(e1, e1) = 3µ1I(e1) + 3µ2J(e1) + 3µ3K(e1),

h(e2, e2) = µ1I(e1) + µ2J(e1) + µ3K(e1),

h(e1, e2) = µ1I(e2) + µ2J(e2) + µ3K(e2),

for some functions µ1, µ2 and µ3 with respect to some local orthonormal frame field.
It follows from (2.4) that x is an H-umbilical point with λr = 3µr, r = 1, 2, 3.

The converse can be proved by simple computation.
¤

Remark 3.1. Theorem 3.1 is an improvement of a result in [1, page 38] for Lagrangian
submanifolds. Theorem 3.1 is also an extention of a theorem in [5] for Lagrangian sub-
manifolds in quaternion space forms.

Remark 3.2. In quaternion space forms, Theorem 3.1 is an improvement of Corollary 2.1
in [8] for Lagrangian submanifolds .

From Theorem 3.1, we have the following

Corollary 3.2. Let M be a Lagrangian submanifold of real dimension n (n ≥ 2) in a

4n-dimensional quaternion space form M̃n(c). If

Ric(X) =
n− 1

4
(c + n||H||2)

for any unit tangent vector X of M , then either M is a totally geodesic submanifold in
M̃n(c) or n = 2 and M is a Lagrangian H-umbilical submanifold of M̃n(c) with λr =
3µr, r = 1, 2, 3.

Remark 3.3. Corollary 3.2 is an improvement of Theorem 3.1 in [7] for Lagrangian sub-
manifolds in quaternion space forms.

Remark 3.4. Theorem 3.1 and Corollary 3.2 give a complete solution to Problem 4.6 in
[12].
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