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GRAY TENSORS ON LIGHTLIKE HYPERSURFACES

C. ATINDOGBE, L. BERARD BERGERY, AND J. TOSSA

(Communicated by Krishan L. DUGGAL)

Abstract. This paper introduces Gray-tensors on lightlike hypersurfaces Mn+1

of signature (0, n), (n ≥ 1) and investigates on their basic properties in connec-
tion with their null geometry. In particular, we show that there is an interplay
between existence of Gray-tensors of certain type and lightlike warped product
structures. As a physical relevance, we show that there exists such a tensor on
both globally Killing horizons (GKH) and totally geodesic lightlike triple warped
product hypersurfaces.

1. Introduction

Natural linear conditions generalizing Einstein metric equation are discussed in [4]
and illustrated by interesting examples. Among such generalizations are A-manifolds
(introduced by A. Gray [9]), that is, Riemannian manifolds (M, g) whose Ricci ten-
sor r satisfies ∇r(X, X, X) = 0 for all X ∈ Γ(TM), where ∇ is the Levi-Civita
connection of the metric g. Examples of compact manifolds of this type, other than
Einstein or locally products, are compact quotients of naturally reductive homoge-
neous Riemannian manifolds and nilmanifolds covered by the generalized Heisenberg
group of A. Kaplan (see [4] and references therein). Also, W. Jelonek in [10] gives
explicit examples of compact non-homogeneous proper complete A-manifolds, and an
example of locally non-homogeneous proper complete one.

A natural generalization of A-manifolds condition is, in considering on the Rie-
mannian manifold (M, g), a symmetric (0, 2) tensor φ (or equivalently, since g is
non-degenerate, a symmetric tensor S ∈ End(TM)) satisfying the additional condi-
tion ∇φ(X,X, X) = 0. Such tensors are considered and studied in [10, 11, 12] and
called A-tensors (or Killing tensor for φ). In particular, a description of compact
Einstein-Weyl manifolds is given in [12] in terms of these tensors.

Since any semi-Riemannian manifold has lightlike spaces and taking into account
the interesting applications in non-degenerate case, namely the intensive interplay of
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Gray tensors in studying Einstein Weyl structures, warped products, D’Atri spaces
Killing tensors . . . ([10] - [12]), we reasonably expect a role of Gray tensors in consider-
ing geometry of lightlike manifolds. The present paper focus on lightlike hypersurfaces
and connect their null geometry to existence and the geometric properties of these
tensors. In forthcoming papers we expect establish applications and interplay with
Relativistic fluids in space -times with appropriate metric symmetries.

As it is well known, contrary to timelike and spacelike hypersurfaces, the geometry
of a lightlike hypersurface M is different and rather difficult since the normal bundle
and the tangent bundle have non-zero intersection. At each point x ∈ M , a straight
line orthogonal to M lies in TxM and the family of these straight lines does not
determine a normalization of M and consequently an affine connection on M . To
overcome this difficulty, a theory on the differential geometry of lightlike hypersurfaces
developed by Duggal and Bejancu [3] introduces a non-degenerate screen distribution
and construct the corresponding lightlike transversal vector bundle. This enables to
define an induced linear connection (depending on the screen distribution, and hence
is not unique in general). On the other hand, it is important to notice that the second
fundamental form is independent from the choice of the screen distribution.

We outline in section 2 basic informations on normalizations[3] and pseudo-inversion
of degenerate metrics [1]. Our approach in studying Gray-tensors comes from an
adaptation of techniques in [10, 11] to the case of lightlike hypersurfaces. A known
important result on lightlike hypersurfaces (Theorem 2.1 below) states that the in-
duced connection is independent from the screen distribution if and only if the lightlike
hypersurface is totally geodesic. Equivalently, the induced connection is torsion-free
and metric. In this respect, we introduce in section 3, Gray-tensor (Definition 3.1) on
totally geodesic lightlike hypersurfaces endowed with a specific given screen distribu-
tion S(TM) where ∇ is then the induced connection on (M, g) in (M, g). Thereafter,
we show a technical result on its characterization (Proposition 3.1). Sections 4 and 5
are concerned with a simple and elementary example followed by some explicit con-
structions of such tensors. In section 6, we study some geometric properties of these
tensors and in section 7 we establish for a totally geodesic screen distribution, neces-
sary and sufficient condition for eigenspace distributions of Gray-tensors with exactly
three eigenspaces to be integrable (Theorem 7.1). Section 8 is devoted to the special
case of totally umbilical screen foliation. In section 9 we establish a sufficient con-
dition for Gray-tensors to be isotropic. Finally, we show in section 10 that there is
an interplay between existence of Gray-tensors of certain type and lightlike warped
product structure.

2. Preliminaries

Let M be a hypersurface of an (n + 2)-dimensional pseudo-Riemannian manifold
(M, g) of index 0 < ν < n+2. In the classical theory of nondegenerate hypersurfaces,
the normal bundle has trivial intersection {0} with the tangent bundle and plays an
important role in the introduction of main geometric objects. In case of lightlike
(degenerate, null) hypersurfaces, the situation is totally different. The normal bundle
TM⊥ is a rank-one distribution on M : TM⊥ ⊂ TM and it coincides with the so
called radical distribution RadTM = TM ∩ TM⊥. Hence, the induced metric tensor
field g is degenerate and has rank n. The following characterisation is proved in [3].
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Proposition 2.1. Let (M, g) be a hypersurface of an (n + 2)-dimensional pseudo-
Riemannian manifold (M, g). Then the following assertions are equivalent.

(i) M is a lightlike hypersurface of M .
(ii) g has constant rank n on M .
(iii) TM⊥ = ∪x∈MTxM⊥ is a distribution on M .

A complementary bundle of TM⊥ in TM is a rank n nondegenerate distribution
on M . It is called a screen distribution on M and is often denoted by S(TM). A
lightlike hypersurface endowed with a specific screen distribution is denoted by the
triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the following result has
an important role in studying the geometry of a lightlike hypersurface.

Proposition 2.2. ([3]) Let (M, g, S(TM)) be a lightlike hypersurface of (M, g)
with a given screen distribution S(TM). Then there exists a unique rank 1 vector
subbundle tr(TM) of TM |M , such that for any non-zero section ξ of TM⊥ on a
coordinate neighbourhood U ⊂ M , there exists a unique section N of tr(TM) on U
satisfying

(2.1) g(N, ξ) = 1

and

(2.2) g(N,N) = g(N, W ) = 0, ∀ W ∈ Γ(S(TM)|U ).

Here and in the sequel we denote by Γ(E) the F(M)-module of smooth sections of
a vector bundle E over M , F(M) being the algebra of smooth functions on M . Also,
by ⊥ and ⊕ we denote the orthogonal and non-orthogonal direct sum of two vector
bundles. By proposition 2.2 we may write down the following decompositions.

(2.3) TM = S(TM) ⊥ TM⊥,

(2.4) TM |M = TM ⊕ tr(TM)

and

(2.5) TM |M = S(TM) ⊥ (TM⊥ ⊕ tr(TM)).

As it is well known, we have the following:

Definition 2.1. Let (M, g, S(TM)) be a lightlike hypersurface of (M, g) with a
given screen distribution S(TM). The induced connection, say ∇, on M is defined by

(2.6) ∇XY = Q(∇XY ),

where ∇ denotes the Levi-civita connection on (M, g) and Q is the projection onto
TM with respect to the decomposition (2.4).

Remark 2.1. Notice that the induced connection ∇ on M depends on both g and
the specific given screen distribution S(TM) on M .

The projections Q and I −Q give rise to the Gauss an Weingarten formulae in the
form

(2.7) ∇XY = ∇XY + h(X,Y ) ∀X, Y ∈ Γ(TM),
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(2.8) ∇XV = −AV X +∇t
XV ∀X ∈ Γ(TM), ∀ V ∈ Γ(tr(TM)).

Here, ∇XY and AV X belong to Γ(TM). Hence
• h is a Γ(tr(TM))-valued symmetric F(M)-bilinear form on Γ(TM),
• AV is an F(M)-linear operator on Γ(TM), and
• ∇t is a linear connection on the lightlike transversal vector bundle tr(TM).
Let P denote the projection morphism of Γ(TM) onto Γ(S(TM)) with respect to

the decomposition (2.3). We have

(2.9) ∇XPY =
?

∇X PY + h∗(X, PY ) ∀X, Y ∈ Γ(TM),

(2.10) ∇XU = − ?

AU X +∇∗tXU ∀X ∈ Γ(TM), ∀ U ∈ Γ(TM⊥).

Here
?

∇X PY and
?

AU X belong to Γ(S(TM)),
?

∇ and ∇∗t are linear connections
on S(TM) and TM⊥, respectively. Hence
• h∗ is a Γ(TM⊥)-valued F(M)-bilinear form on Γ(TM)× Γ(S(TM)), and

• ?

AU is a Γ(S(TM))-valued F(M)-linear operator on Γ(TM).
They are the second fundamental form and the shape operator of the screen distribu-
tion, respectively.

Equivalently, consider a normalizing pair {ξ, N} as in proposition 2.2. Then, (2.7)
and (2.8) take the form

(2.11) ∇XY = ∇XY + B(X, Y )N ∀X, Y ∈ Γ(TM |U ),

and

(2.12) ∇XN = −ANX + τ(X)N ∀X ∈ Γ(TM |U ),

where we put locally on U ,

(2.13) B(X, Y ) = g(h(X, Y ), ξ),

(2.14) τ(X) = g(∇t
XN, ξ).

It is important to stress the fact that the local second fundamental form B in (2.13)
does not depend on the choice of the screen distribution.

We also define (locally) on U the following:

(2.15) C(X, PY ) = g(h∗(X, PY ), N),

(2.16) ϕ(X) = −g(∇?t
Xξ, N).

Thus, one has for X ∈ Γ(TM)

(2.17) ∇XPY =
?

∇X PY + C(X,PY )ξ,

(2.18) ∇Xξ = − ?

Aξ X + ϕ(X)ξ.

It is straighforward to verify that for X,Y ∈ Γ(TM),

(2.19) B(X, ξ) = 0,
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(2.20) B(X, Y ) = g(
?

Aξ X, Y ),

(2.21)
?

Aξ ξ = 0.

The linear connection
?

∇ in (2.9) is a metric connection on S(TM) and we have for
all tangent vector fields X, Y and Z in TM

(2.22) (∇Xg) (Y, Z) = B(X, Y )η(Z) + B(X,Z)η(Y ),

where η is a 1-form defined by

(2.23) η(·) = g(N, ·).
The induced connection ∇ is torsion-free, but not necessarily g-metric. Also, on

the geodesibility of M the following is known.

Theorem 2.1. ([3, p.88]) Let (M, g, S(TM)) be a lightlike hypersurface of a
pseudo-Riemannian manifold (M, g). Then the following assertions are equivalent:

(i) M is totally geodesic.
(ii) h (or equivalently B) vanishes identically on M .

(iii)
?

AU vanishes identically on M , for any U ∈ Γ(TM⊥)
(iv) The connection ∇ induced by ∇ on M is torsion-free and metric.
(v) TM⊥ is a parallel distribution with respect to ∇.
(vi) TM⊥ is a Killing distribution on M .

It turns out that if (M, g) is not totally geodesic, there is no connection that is, at
the same time, torsion-free and g-metric.

Now, recall that a large class of differential operators in differential geometry is
intrinsically defined by means of the dual metric g∗ on the dual bundle Γ(T ∗M) of
1-forms on M . If the metric g is nondegenerate, the tensor field g∗ is nothing else
than the inverse of g. We outline here (equivalent) construction in case the metric g
is degenerate and refer the reader to [1] for more details.

Let (M, g, S(TM)) be a lightlike hypersurface and {ξ,N} be a pair of (null-) vectors
chosen as in Proposition 2.2. Consider the one-form η as in (2.23). For all X ∈
Γ(TM),

X = PX + η(X)ξ
and η(X) = 0 if and only if X ∈ Γ(S(TM)). Now, we define [ by

[ : Γ(TM) −→ Γ(T ∗M)

X 7−→ X[

such that

(2.24) X[ = g( X , · ) + η(X)η( · ).

Clearly, such [ is an isomorphism of Γ(TM) onto Γ(T ∗M), and can be used to
generalize the usual nondegenerate theory. In the nondegenerate case, Γ(S(TM))
coincides with Γ(TM), and as a consequence the 1-form η vanishes identically and
the projection morphism P becomes the identity map on Γ(TM). We let ] denote
the inverse of the isomorphism [ given by (2.24). For X ∈ Γ(TM) (resp. ω ∈ T ∗M),
X[ (resp. ω]) is called the dual 1-form of X (resp. the dual vector field of ω) with
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respect to the degenerate metric g. It follows from (2.24) that if ω is a 1-form on M ,
we have for X ∈ Γ(TM)

(2.25) ω(X) = g(ω], X) + ω(ξ)η(X).

Now we introduce the so-called associated nondegenerate metric g̃ to the degenerate
metric g as follows. For X, Y ∈ Γ(TM), define g̃ by

(2.26) g̃(X, Y ) = X[(Y ).

Clearly, g̃ is a non degenerate metric on M and plays an important role in defining the
usual differential operators gradient, divergence, Laplacian with respect to degenerate
metric g on lightlike hypersurfaces. Also, observe that g̃ coincides with g if the latter is
nondegenerate. The (0, 2) tensor field g[ · , · ], inverse of g̃ is called the pseudo-inverse
of g.

From now on, unless otherwise stated, the ambient manifold (M, g) has a Lorentzian
signature so that all lighlike hypersurfaces considered are of signature (0, n). In par-
ticular, it follows that any screen distribution is Riemannian.

As it is well known (theorem 2.1), only totally geodesic lightlike hypersurfaces have
their induced connection which is metric and torsion-free. In the next section and the
remainder of the text, only such lightlike hypersurfaces will be in consideration. We
also assume that the null vector field ξ is globally defined on M . Respective metrics
will be denoted 〈·, ·〉 if no ambiguity occurs.

3. Gray-tensors

Definition 3.1. Let (M, g, S(TM)) be a totally geodesic lightlike hypersurface of
(M, g), ∇ the induced (Levi-Civita) connection on M . By Gray-tensor on (M, g, S(TM)),
we mean a screen preserving element S ∈ End(TM) for which

(a) 〈SX, Y 〉 = 〈X, SY 〉 for all X, Y in Γ(TM),
(b) X[(∇S(X, X)) = 0 for all X in Γ(TM),

hold, where [ denotes the duality isomorphism between TM and TM? with respect to
the degenerate metric tensor g and the screen distribution S(TM).

It should be noticed that screen preserving means P and S commute. One also
write S ∈ G(∇) if S is a Gray-tensor. A Gray-tensor is called isotropic if it is
Rad(TM)-valued, otherwise, it is called a proper Gray-tensor.

Killing tensors on M are symmetric (0, 2)-tensors, say φ such that

φ(X, Y ) = 〈SX, Y 〉, ∀ X, Y ∈ Γ(TM)

for some Gray-tensor S. Observe that φ is a degenerate (0, 2)-tensor since at each
u ∈ M its nullity space ηφ|u ⊃ RadTM |u, i.e

φ(X, ξ) = φ(ξ, X) = 0, ∀ X ∈ TM, ∀ξ ∈ Γ(RadTM).

It also satisfies

∇φ(X, X,X) = 〈∇S(X, X), X〉, ∀ X ∈ Γ(TM).

Since ∇ is a metric connection, we have

∇Xξ = ϕ(X)ξ, ∀ X ∈ Γ(TM),
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for some global 1-form ϕ on M . The following proposition is equivalent to the Rie-
mannian case [10].

Proposition 3.1. Let (M, g, S(TM)) be a totally geodesic lightlike hypersurface,
S a symmetric (1, 1)tensor and φ(X, Y ) = 〈SX, Y 〉 for all X in TM . The following
assertions are equivalent.

(a) S ∈ G(∇).
(b) For every geodesic γ on (M, g), the real valued function t 7−→ φ(γ′(t), γ′(t))

is constant on domγ and, if γ is a null geodesic, S(γ′(t)) is parallel along γ.
(c) Σcyclic∇Xφ(Y, Z) = −Σcyclicη(X)η(∇S(Y, Z)).

Proof. The equivalence (a) and (c) is immediate using the definition of [ and the
bipolarization of relation (b) in definition 3.1. Let us show the equivalence (a) and
(b). Assume (a) and consider γ a geodesic on M . We have

d

dt
φ(γ′(t), γ′(t)) = ∇γ′(t)φ(γ′(t), γ′(t)).

We distinguish two cases: γ is a null geodesic or not.
If γ is a non null geodesic, from (3) we have

d

dt
φ(γ′(t), γ′(t)) = ∇γ′(t)φ(γ′(t), γ′(t)).

= γ′(t)[(∇S(γ′(t), γ′(t))) = 0,

i.e φ is constant on domγ.
If γ is a null geodesic, it follows definition of φ that it vanishes identically on domγ.

In addition, γ′(t) is proportional to ξ for all t in domγ. Thus, there exists a nowhere
vanishing function t → λ0(t) on domγ such that

(3.1) ∇S(γ′(t), γ′(t)) = (λ0(t))2∇S(ξ, ξ) ∈ Γ(RadTM |γ).

Using (b) in definition 3.1, we have η(∇S(γ′(t), γ′(t))) = 0 ∀t ∈ domγ. This together
with (3.1) lead to ∇S(γ′(t), γ′(t)) = 0 ∀t ∈ domγ. Finally, since γ is a geodesic, we
have ∇γ′(t)S(γ′(t)) = 0, and (b) is proved.

Conversely, assume (b) holds and let X ∈ Tx0M , x0 ∈ M . Consider γ a geodesic
satisfying initial conditions γ(0) = x0 and γ′(0) = X. One has

X[(∇S(X,X)) = ∇γ′(t)φ(γ′(t), γ′(t))|t=0 + η(γ′(t))η(∇S(γ′(t), γ′(t)))|t=0 = 0,

i.e (a) is proved and the proof is complete.¤
Remark 3.1.

(a) Observe that for X, Y and Z in S(TM), relation (c) in proposition 3.1 reduces
to

(3.2) ∇Xφ(Y, Z) +∇Y φ(Z, X) +∇Zφ(X,Y ) = 0.

(b) Since M has signature (0, n), n = dimM − 1, the Gray-tensor S induces by
restriction on the nondegenerate (Riemannian) screen distribution S(TM), a

A-tensor S′ with respect to the (unique) Levi-Civita connection
?

∇ induced
by ∇ on S(TM). Indeed, S′ ∈ End(S(TM)) by screen preserving of S and
it is known [10] that in this case, (3.2) is equivalent to being A-tensor for S′.
So, the Gray-tensor S splits as

(3.3) S = S′ ◦ P + η(·)S ξ.
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One can show that, if σ is a Riemannian A-tensor on S(TM) and if in addition
the screen distribution is totally geodesic in M , then, for λ0 ∈ C∞(M) , the
(1, 1)-tensor defined on M by

(3.4) S = σ ◦ P + λ0η(·)ξ
is a Gray-tensor on M , provided ξ · λ0 = 0.

4. An elementary example

Let us recall that a semi-Riemannian manifold (M, g) is a A- manifold if for ev-
ery geodesic γ on (M, g), the real valued function t −→ Ric(γ′(t), γ′(t)) is constant
on domγ; where Ric is the (0, 2) Ricci tensor on (M, g) [13], [10]. Now consider a
Lorentzian Einstein A- manifold (M, g) whose Riemann curvature satisfies the ambi-
ent holonomy condition R(ξ, ·) ∈ T ?M ⊗ T ?M ⊗ S(TM) where ξ is a characteristic
Killing vector field on a lightlike hypersurface (M, g, S(TM)). Observe that with this
holonomy condition, the screen distribution S(TM) is not necessarily totally geodesic
. It is for example the case when we consider a normalization satisfying τ = 0, C 6= 0
with C being a Codazzi tensor on M . In this case the induced Ricci curvature Ric
on (M, g) reduces to

(4.1) Ric(X,Y ) = Ric(X,Y ) = Λg(X, Y ),

for all tangent vector fields X and Y [2], where the last equality holds with the Einstein
condition on (M, g), Λ being a constant. Let S denote a S(TM)- valued symmetric
tensor such that Ric(X,Y ) = g(SX, Y ). Such a S is then given by SX = ΛPX where
P denotes the projection morphism of TM onto S(TM). Obviously, we have Sξ = 0.
Now, let γ denote a geodesic in M (and hence in M since M is totally geodesic in
M). Taking into account 4.1, we have

d

dt
Ric(γ′(t), γ′(t)) =

d

dt
Ric(γ′(t), γ′(t)) = 0,

since (M, g) is a A-manifold. Thus the function t −→ Ric(γ′(t), γ′(t)) is constant
on domγ. Suppose now that γ is a null geodesic. We have necessarily for each
t ∈ domγ, γ′(t) = λξγ(t) as M has signature (0, n). Then S(γ′(t)) = 0 and (trivially)
∇γ′(t)S(γ′(t)) = 0, that is S(γ′(t)) is parallel along γ. Finally, using item (b) in
Proposition 3.1, we conclude that the Ricci endomorphism given by SX = ΛPX is a
Gray tensor on M .

5. Some Constructions.

Let (N, gN ) and (F, gF ) be a lightlike and a Riemannian manifold of dimension n
and m respectively. Let π : N ×F −→ N and % : N ×F −→ F denote the projection
maps given by π(x, y) = x and %(x, y) = y for (x, y) ∈ N × F , respectively, where
the projection π on N is done with respect to a nondegenerate screen distribution
S(TN). The product manifold M = N × F , endowed with the degenerate metric
defined by

(5.1) g(X,Y ) = gN (π?X,π?Y ) + f(π(x, y))gF (%?X, %?Y ),

for all X, Y tangent to M , where ? is the symbol of the tangent map and f : N −→ R?
+

is some positive smooth function on N is called a lightlike warped product and denoted
M = (N ×f F, g).
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Remark 5.1. In [7], this warped product is called of class A. The class B one is
concerned with two lightlike factors.

(a) Let M = L×M1 ×f M2 be a totally geodesic lightlike triple warped product
hypersurface, with f a smooth positive function on M1, L a (one dimensional)
global null curve, (Mi, gi) Riemannian manifolds (i = 1, 2). Since M is totally
geodesic, it is possible to use a normalization for which the 1-form τ (or
equivalently ϕ) vanishes identically. Let ∇i (i = 1, 2) denote the Levi-Civita
connection on (Mi, gi). We have

g = g1 + (fπ1(x))2g2,

and the induced connection ∇ on M is given for X, Y tangent to M ′ =
M1 ×f M2 by

∇XY = ∇1
X1

Y1 +∇2
X2

Y2 + [X1(ψ)Y2 + Y1(ψ)X2 − g(X2, Y2)gradψ]
+C(X,Y )ξ,

where π1 denotes the projection on the factor M1 of M , X = (X1, 0) +
(0, X2) = (X1, X2), Y = (Y1, 0) + (0, Y2) = (Y1, Y2) on M1 ×M2, ∇i

Xi
Yi|p ∈

TpMi with the vector (∇1
X1

Y1|p, 0q) ∈ T(p,q)M1 × M2 etc., ψ = ln f and
gradψ its gradient with respect to g, and C the second fundamental form of
the screen distribution S(TM) = TM1 ⊕ TM2. Note that for X ∈ Γ(TM),
due to [ξ, X] = 0, we have

∇ξX = ∇Xξ = −τ(X)ξ = 0.

Now, assume that S(TM) is totally geodesic in M (and hence in the ambient
space M ⊃ M) and define a (1, 1) tensor on M by




S(ξ) = µξ, µ ∈ R

S(X) = 0, X ∈ D1 = TM1

S(X) = λX, λ = Cf2, C ∈ R?.

S is a well defined (1, 1) tensor on M that preserves the screen distribution
and is obviously symmetric. Let X = η(X)ξ + X1 + X2 ∈ TM . Our aim is
to show that X[(∇S(X, X)) = 0. We have SX = µη(X)ξ + λX2 and direct
computation gives

∇X(SX) = −λg(X2, Y2)gradψ + 3Cf2X1(ψ)X2 + λ∇2
X2

X2.

Also,
S(∇XX) = λ

[
2X1(ψ)X2 +∇2

X2
X2

]
.

Then,

(5.2) ∇X(SX)− S(∇XX) = λ [−g(X2, X2)gradψ + X1(ψ)X2] .

Therefore

X[(∇S(X,X)) = X[(∇X(SX)− S(∇XX))

= η(X)ξ[[∇X(SX)− S(∇XX)]
+(X1 + X2)[[∇X(SX)− S(∇XX)]
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= η(X)η[∇X(SX)− S(∇XX)]
+(X1 + X2)[[∇X(SX)− S(∇XX)].

Since by (5.2), ∇X(SX)− S(∇XX) is Γ(S(TM))-valued, we have

η[∇X(SX)− S(∇XX) = 0].

But the second term is

(X1 + X2)[[∇X(SX)− S(∇XX)] = λ(X1 + X2)[[−g(X2, X2)gradψ
+X1(ψ)X2]

= λ[−〈X1, gradψ〉〈X2, X2〉
+X1(ψ)〈X2, X2〉] = 0.

Thus, X[(∇S(X, X)) = 0 and S defines a Gray-tensor on (M, g, S(TM)).
(b) Killing horizons. Let (M, g) be a lightlike hypersurface of a pseudo-Riemannian

manifold (M, g) and G a continuous k-parameters group of isometry acting
on (M, g). By local isometry horizon (LIH in short) with respect to G it is
meant a lightlike hypersurface that is invariant under G and for which each
null geodesic is a trajectory of the group. In case G is 1-parameter, the LIH
is said to be a Killing horizon. It turns out that a Killing horizon is a lightlike
hypersurface whose null tangent vector can be normalized to coincide with
a Killing vector field [5]. Taking into account theorem 2.1, Killing horizons
are totally geodesic in (M, g). By global hypersurface in a Killing horizon
M we mean a topological hypersurface which is crossed (orthogonally and)
exactly once by any null geodesic trajectory of M . A Killing horizon admit-
ting such a hypersurface will be called a globally Killing horizon (GKH). On
the latter, it is possible to construct a special screen distribution as follows.
Let (ϕt)t∈I⊂R be the 1-parameter group with respect to which M is a Killing
horizon, and H a global hypersurface in M . By definition of H it follows that
for each p ∈ M , there exists a unique (t, q) ∈ I × H such that p = ϕt(q).
We set S(TpM) = ϕt?q(TqH). Clearly, such a S(TM) defines an integrable
screen distribution on M , we denote S(TM, ϕt,H). Recall that throughout
the text, the ambient manifold (M, g) has Lorentzian signature so that global
hypersurfaces are Riemannian. Also, the normalized null tangent vector on
the Killing horizon will be denoted ξ. Consider now a globally Killing horizon
for which local geodesic symmetries preserve a global hypersurface, say H,
and volume of its regions. The Ricci endomorphism (or the Ricci tensor) of
such a H is an A-tensor [9], say σ. Now define on (M, g, S(TM,ϕt, H)) a
(1, 1)-tensor by

(5.3) SX = µη(X)ξ + σ(PX), µ ∈ R,

where P denote the projection morphism of the bundle TM onto the screen
distribution S(TM,ϕt,H) with respect to the decomposition (2.3). Clearly,
such a S is g-symmetric, and preserves S(TM, ϕt,H). Also, observe that since
local geodesic symmetries preserve H, the screen distribution S(TM, ϕt,H)
is totally geodesic in M . Finally, using (b) in remark 3.1, it follows that S is
a Gray-tensor on M .
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6. Some Facts

Fact 6.1. Any Gray-tensor on (M, g, S(TM)) is diagonalizable.

Proof. First, observe that the global null vector ξ is an eigenvector field of S. Since
〈Sξ, X〉 = 〈ξ, SX〉 = 0 for all X in Γ(TM), it follows Sξ ∈ Γ(RadTM) and there
exists a smooth function λ0 such that Sξ = λ0ξ. Since S(TM) is Riemannian, we
know that the restriction S′ is diagonalizable and the same is for S using (3.3).¤

Now, define the integer-valued function

x → ES(x) = Card{distinct eigenvalues of Sx}
and set

MS = {x ∈ M : ES is constant in a neighbourhood of x}
The set MS is open and dense in M . On each component U of MS , the dimension,
say pα, of the eigenspace Dα = Ker(S − λαI) associated to the eigenfunction λα is
constant. From now on, we assume all manifolds connected unless otherwise stated
and M = MS . Also, note that

TM =
k∑
α

Dα

with D0 = RadTM = span{ξ}. We use the following range of indices: 0 ≤ α ≤ k
and 1 ≤ i ≤ k. We have the following technical result.

Fact 6.2. Let S denote a Gray-tensor on (M, g, S(TM)), and λ0, λ1, · · · , λk in
C∞(M) be eigenfunctions of S. Then,

∀ X ∈ Γ(Di),∇S(X, X) = −1
2
〈X, X〉∇gλi

+
[
1
2
〈X,X〉η(∇gλi) + (λi − λ0)C(X, X)

]
ξ,(6.1)

and

Dα ⊂ Kerdλα 0 ≤ α ≤ k.(6.2)

If i 6= j, X ∈ Γ(Di) and Y ∈ Γ(Dj) then

〈∇XX, Y 〉 =
1
2

Y · λi

λj − λi
〈X,X〉.(6.3)

If X ∈ Γ(D0) or Y ∈ Γ(D0)

〈∇XX, Y 〉 = 0.(6.4)

Proof. For X ∈ Γ(Di) and Y ∈ Γ(TM)we have

(6.5) ∇S(Y, X) = (Y · λi)X + (λiI − S)∇Y X.

Then,

〈∇S(Y, X), X〉 = (Y · λi)〈X, X〉+ 〈(λiI − S)∇Y X, X〉
= (Y · λi)〈X, X〉+ 〈∇Y X,λiX − λiX〉
= (Y · λi)〈X, X〉

that is

(6.6) 〈∇S(Y,X), X〉 = (Y · λi)〈X, X〉.
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Therefore, taking Y = X leads to

0 = 〈∇S(X, X), X〉 = (X · λi)〈X, X〉 1 ≤ i ≤ k.

Since X ∈ Γ(Di) ⊂ Γ(S(TM)) (Riemannian), we have 〈X, X〉 6= 0 and X ·λi = 0, 1 ≤
i ≤ k, that is Di ⊂ Kerdλi, 1 ≤ i ≤ k. Also, integrable curves of ξ are null geodesics.
Then ∇S(ξ, ξ) = 0 = (ξ · λ0)ξ and (ξ · λ0) = 0. Thus, D0 ⊂ Kerdλ0 and (6.2) is
proved. From (6.5) and (6.2) it follows that

(6.7) ∇S(X, X) = (λiI − S)∇XY X.

Observe that for X,Y and Z in Γ(S(TM)), (3.2) is equivalent to

〈∇S(X,Y ), Z〉+ 〈∇S(Y, Z), X〉+ 〈∇S(Z, X), Y 〉 = 0.

Also, (〈∇S(X, Y ), X〉 = 〈∇S(X, X), Y 〉. Hence 2〈∇S(X, X), Y 〉 + 〈∇S(Y,X), X〉 =
0. Taking into account (6.6) yields 2〈∇S(X,X), Y 〉+ (Y · λi)〈X, X〉 = 0, i.e

(6.8) 〈2∇S(X, X) + 〈X, X〉∇gλi, Y 〉 = 0 ∀Y ∈ Γ(S(TM)).

Then, since (6.8) holds trivially for Y ∈ Γ(RadTM),

(6.9) 〈2∇S(X,X) + 〈X,X〉∇gλi, Y 〉 = 0 ∀Y ∈ Γ(TM).

Thus,
2∇S(X, X) + 〈X,X〉∇gλi ∈ RadTM = Span{ξ}.

It follows that

(6.10) ∇S(X,X) = −1
2
〈X, X〉∇gλi + q(X)ξ, ∀Y ∈ Γ(TM),

where q(X) is a quadratic function in X. From (6.10), we have

(6.11) η(∇S(X,X)) = −1
2
〈X, X〉η(∇gλi) + q(X).

Now, using (3.3), we derive for X ∈ Γ(Di),

(6.12) ∇S(X,X)) =
?

∇ S′(X, X) + (λi − λ0)C(X,X)ξ,

and

(6.13) η (∇S(X, X)) = (λi − λ0)C(X, X).

Thus, combining (6.11) and (6.13) lead to

(6.14) q(X) =
1
2
〈X, X〉η(∇gλi) + (λi − λ0)C(X,X).

Substitute in (6.10) to get the announced relation in (6.1).
For X ∈ Γ(Di), Y ∈ Γ(Dj) with i 6= j,

〈∇S(X, X), Y 〉 = 〈(λiI − S)∇XX,Y 〉
= 〈∇XX, (λi − λj)Y 〉.

Thus, by (6.1),

−1
2
〈X,X〉〈∇gλi, Y 〉 = (λi − λj)〈∇XX,Y 〉.

and
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〈∇XX, Y 〉 =
1
2
〈X,X〉 Y · λi

λj − λi
〈X, X〉.

Finally, it is clear that if X ∈ Γ(D0) or Y ∈ Γ(D0), one has 〈∇XX, Y 〉 = 0, and the
proof is complete.¤

Corollary 6.1. The following assertions are equivalent.
(a) ∀ X ∈ Γ(Di),∇XX ∈ Γ(Di).
(b) ∀ X,Y ∈ Γ(Di),∇XY +∇Y X ∈ Γ(Di).
(c) ∀ X ∈ Γ(Di),∇S(X,X) = 0.
(d) ∀ X,Y ∈ Γ(Di),∇S(X,Y ) +∇S(Y,X) = 0.
(e) ∇gλi is D0-valued vector field and ∀ X ∈ Γ(Di), C(X, X) = 0, 1 ≤ i ≤ k.

Proof. The equivalences (a) ⇐⇒ (b) and (c) ⇐⇒ (d) are obvious as polarizations.
Let us show (a) ⇐⇒ (c). We have

∇XX ∈ Γ(Di)
(6.7)
=⇒ ∇S(X,X) = 0.

Conversely, if for all X in Γ(Di), ∇S(X, X) = 0, then by (6.7), (λiI − S)∇XX = 0,
i.e ∇XX ∈ Γ(Di), thus (a) ⇐⇒ (c). Finally, using (6.1) we obtain

∇S(X, X) = 0 ⇐⇒ −1
2
〈X, X〉P∇gλi + (λi − λ0)C(X, X)ξ = 0,

which is equivalent to P∇gλi = 0 and C(X, X) = 0, i.e (e).¤
Note that D0 is of rank one, then it is integrable. Also, for X, Y in Γ(Di), we have

∇S(X, Y )−∇S(Y, X) = (λiI − S)([X,Y ])

so that Di is integrable if and only if ∀ X, Y in Γ(Di), ∇S(X,Y ) − ∇S(Y, X).
Moreover, we obtain the following.

Fact 6.3. If ∇gλi is D0-valued and for all X ∈ Γ(Di), C(X, X) = 0, then the
following assertions are equivalent on M .

(a) Di is integrable.
(b) For all X, Y in Γ(Di), ∇S(X,Y ) = 0.
(c) Di is autoparallel.

Proof. For the first equivalence, we shall prove (a) =⇒ (b) and observe that (b) =⇒
(a) is obvious. Assume that (a) holds. From corollary 6.1(valid since (e) holds
by hypothesis), ∇S(X, Y ) + ∇S(Y, X) = 0 and integrability implies ∇S(X, Y ) =
∇S(Y, X). Thus, ∇S(X, Y ) = 0 and (a) =⇒ (b). Finally, from ∇XY +∇Y X ∈ Γ(Di)
and ∇XY −∇Y X = [X, Y ] ∈ Γ(Di) we obtain the equivalence (a) ⇐⇒ (c) .¤

7. Gray-tensors with exactly three eigenspaces

We consider and investigate some geometric properties of Gray-tensors with exactly
three eigenspaces D0 = Ker(λ0I−S), Dα = Ker(αI−S) and Dβ = Ker(βI−S) with
S(TM) = Dα ⊕Dβ . In Riemannian setting, a classical theorem due to Jelonek [10]
states that, for a A-tensor with exactly two eigenvalues λ, µ and a constant trace,
the eigenvalues are necessarily constant, and the eigenspace distributions are both
integrable if and only if the A-tensor is parallel. The following is a lightlike version
of this result with three eigenvalues.
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Theorem 7.1. Let S be a Gray-tensor on (M, g, S(TM)) with exactly three eigen-
functions λ0 = cte, α, β and a constant trace. Then ∇gα and ∇gβ are D0 = RadTM -
valued. In addition, If S(TM) is totally geodesic then the distributions Dα and Dβ

are both integrable if and only if ∇S vanishes on S(TM)× S(TM).

Proof. Since S is smooth, x → p(x) = dimDα(x) and x → q(x) = dimDβ(x) are
discrete differentiable functions on MS = M , so they are constant functions we denote
by p and q respectively. From

λ0 + pα + qβ = trS = cte

we derive

(7.1) p∇gα + q∇gβ = 0, (∇gλ0 = 0).

Observe that 〈∇gα,∇gβ〉 = 0. Then from (7.1) we obtain p〈∇gα,∇gα〉 = 0 and
q〈∇gβ,∇gβ〉 = 0. Hence ∇gα and ∇gβ are RadTM-valued since p and q are non
zero.

Assume Dα is integrable and consider X, V ∈ Γ(Dα) and Y ∈ Γ(Dβ). We have

〈∇S(V, Y ), X〉 = 〈∇V (SY )− S(∇V Y ), X〉
= −β〈Y,∇V X〉 − α〈∇V Y, X〉
= −β〈Y,∇V X〉+ α〈∇V X,Y 〉
= (α− β)〈∇V X,Y 〉.

But the last term vanishes since Dα is autoparallel from (b) in Fact 6.3. Thus, we
obtain for all X, V in Dα, Y in Dβ ,

(7.2) 〈∇S(V, Y ), X〉 = 0.

Now, let U in Dβ . Since C(X, Y ) = 0 we have

(7.3) ∇S(X, Y ) = (βI − S)∇XY ∈ S(TM).

Hence

(7.4) 〈∇S(X,Y ), U〉 = 〈(βI − S)∇XY, U〉 = 〈∇XY, (βI − S)U〉 = 0.

Similar computation assuming Dβ integrable leads to

(7.5) 〈∇S(Y, X), U〉 = 0,

and

(7.6) 〈∇S(Y, X), V 〉 = 0,

for all Y , U in Γ(Dβ) and X, V in Γ(Dα). Thus, By (7.2),(7.4)-(7.6) and (b) in
Fact 6.3 ∇S vanishes on S(TM)× S(TM).

The converse is immediate from Fact 6.3.¤

8. Totally umbilical screen foliation

In general a distribution D ⊂ TM is called umbilical if there exist a vector field
ς ∈ χ(M) such that

(8.1) ∇XX = p(∇XX) + 〈X, X〉ς,
for every local section X ∈ Γ(D), where p denotes the “orthogonal” projection p :
TM −→ D. In case D is integrable, then it is called totally umbilical. The vector
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field ς in the definition is called the mean curvature vector of the distribution D. In
particular, the screen distribution S(TM) is totally umbilical if on any coordinate
neighbourhood U ⊂ M there exists a smooth function ρ such that

(8.2) C(X, PY ) = ρ g(X,Y ).

Now, we state the following

Proposition 8.1. Let S be a Gray-tensor on (M, g, S(TM)) where the screen
distribution is totally umbilical. Then all the eigenspace distributions Dα = Ker(αI−
S) are umbilical.

Proof. Note that TM = D0 ⊕
∑k

i=1 Di with D0 = RadTM . Since ∇ξξ ∈ D0, it is
obvious that D0 is umbilical. Also, for X ∈ Γ(Di),

(8.3) ∇XX =
?

∇X X + C(X, X)ξ =
?

∇X X + ρg(X,X)ξ.

Let pi : TM −→ Di denote the projection morphism onto Di, we write

∇XX = pi(∇XX) + hi(X, X).

It follows that for Y ∈ S(TM),

〈∇XX, Y 〉 = 〈pi(∇XX), Y 〉+ 〈hi(X,X), Y 〉,
that is

〈hi(X, X), Y 〉 =
k∑

j=1
j 6=i

〈∇XX, PjY 〉

(6.3)
=

1
2
〈X, X〉

k∑
j=1
j 6=i

〈∇gλi, PjY 〉
λj − λi

= −1
2
〈X, X〉

k∑
j=1
j 6=i

〈 ∇
gλi

λi − λj
, PjY 〉

(6.2)
= −1

2
〈X, X〉

k∑
j=1
j 6=i

〈Pj∇g ln |λi − λj |, Y 〉.

Hence, the S(TM) component of hi(X, X) is

(8.4) ξi = −1
2
〈X,X〉

k∑
j=1
j 6=i

Pj(∇g ln |λi − λj |).

Then, from (8.3) we have

(8.5) hi(X, X) = 〈X, X〉(ξi + ρξ).

Hence Di is umbilical (1 ≤ i ≤ k), with ςi = ξi + ρξ as mean curvature vector field.¤
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9. Almost product foliation

By integrable almost product structure it is meant a sequence (D0, · · · , Dk) of
distributions for which all the distributions Dα1 ⊕Dα2 ⊕ · · · ⊕Dαp

are integrable for
any 0 ≤ α1 ≤ · · · ≤ αp ≤ k and p ∈ {0, 1, · · · , k}. A distribution Di (1 ≤ i ≤ k)
is called D0-almost autoparallel (resp. D0-almost parallel) if for any X, Y in Γ(Di),
∇XY ∈ Γ(D0 ⊕Di) (resp. ∀X ∈ Γ(TM),∀Y ∈ Γ(Di), ∇XY ∈ Γ(D0 ⊕Di)).

The following result deals with quasi isotropy of S. More precisely, we have

Theorem 9.1. Let S be a Gray-tensor on (M, g, S(TM)) with eigenfunctions
λ0, λ1, · · · , λk. Assume ∇gλ0, ∇gλ1, . . . , ∇gλk are RadTM = D0- valued and the
Dα = Ker(λαI − S) define an integrable almost product structure on M . Then,
∇S|S(TM)×TM ∈ Γ(D0).

Proof. First, note that for X ∈ S(TM), ∇S(X, ξ) = (X · λ0)ξ ∈ D0. Now, for
X ∈ Γ(Di), we have from (6.1) and ∇gλi ∈ Γ(0),

(9.1) ∇S(X, X) = (λi − λ0) C(X, X) ξ ∈ Γ(D0).

Integrability of each Di leads to ∇S(X,Y ) = ∇S(Y,X) for X and Y in Di. Also,
the integrability of the almost product structure implies S(TM) is integrable and
consequently C is symmetric on S(TM)× S(TM). So, for X, Y ∈ Γ(Di), we obtain
by bipolarization of (9.1),

(9.2) ∇S(X, Y ) = (λi − λ0) C(X, Y ) ξ ∈ Γ(D0).

If X ∈ Γ(Di) , Y ∈ Γ(Dj), i 6= j, we have from (6.3) and ∇gλi ∈ Γ(D0),

〈∇XX, Y 〉 =
1
2
〈∇gλi, Y 〉
λj − λi

〈X,X〉 = 0,

Thus, ∇XX ∈ D0 ⊕Di if X ∈ Γ(Di). It follows that

∇XY +∇Y X ∈ D0 ⊕Di, for X and Y ∈ Γ(Di).

Since Di is integrable, ∇XY −∇Y X ∈ Γ(Di) ⊂ Γ(D0 ⊕Di). Hence, for X and Y in
Γ(Di),

(9.3) ∇XY ∈ Γ(D0 ⊕Di),

and each Di is D0-almost autoparallel.
Let i, j, l be pairwise different numbers and X ∈ Γ(Di), Y ∈ Γ(Dj) and Z ∈ Γ(Dl).

By Koszul formula and integrability of the almost product structure, it follows that

2〈∇XY, Z〉 = X · 〈Y, Z〉+ Y · 〈X,Z〉 − Z · 〈X, Y 〉
+〈[X, Y ], Z〉+ 〈[Z,X], Y 〉 − 〈[Y, Z], X〉 = 0.

Hence, for X ∈ Γ(Di), Y ∈ Γ(Dj), (i 6= j),

(9.4) ∇XY ∈ Γ(D0 ⊕Di ⊕Dj).

Also, consider X, Z ∈ Γ(Di), Y ∈ Γ(Dj), (i 6= j), we have

0 = 〈Z, Y 〉 ⇒ 0 = 〈∇XZ, Y 〉+ 〈Z,∇XY 〉 (9.3)
= 〈Z,∇XY 〉.

Then, using (9.4) we derive

(9.5) ∇XY ∈ Γ(D0 ⊕Dj), for X ∈ Γ(Di), Y ∈ Γ(Dj), (i 6= j).



GRAY TENSORS ON LIGHTLIKE HYPERSURFACES 17

Consequently, from (9.3) and (9.5), it follows

(9.6) ∇XY ∈ Γ(D0 ⊕Di), for X ∈ Γ(S(TM)) and Y ∈ Γ(Di).

Finally, we have from (6.5) and (9.5) that for X ∈ Γ(S(TM)), Y ∈ Γ(Dj),

∇S(X, Y ) = 〈∇gλj , X〉Y + (λjI − S)∇XY

= (λjI − S)(η(∇XY )ξ + pj(∇XY ))

= (λj − λ0) η(∇XY )ξ

= (λj − λ0) C(X, Y )ξ ∈ Γ(D0),(9.7)

which completes the proof.¤

Remark 9.1. It follows that, under hypothesis of theorem 9.1, we have by (9.7),

(9.8) ∇S(X,Y ) = (λj − λ0) C(X, Y )ξ,

for X ∈ Γ(S(TM)) and Y ∈ Γ(Dj).

Corollary 9.1. Let S be a Gray-tensor on (M, g, S(TM)) with constant eigen-
functions (λ0, λ1, · · · , λk) ∈ Rk+1 and integrable almost product structure given by its
eigenspace distributions Dα = Ker(λαI − S). Then S is an isotropic Gray-tensor.

Proof. From theorem 9.1, it suffices to show that ∇S(ξ, X) ∈ Γ(D0) for X in Γ(TM).
But since D0 ⊕Di is integrable, ∇ξX ∈ Γ(D0 ⊕Di) for X ∈ Γ(Di). Thus,

∇S(ξ,X) = (ξ · λi)X + (λi − λ0)p0(∇ξX)

= (λi − λ0)p0(∇ξX) ∈ Γ(D0).¤

Corollary 9.2. Let S be a Gray-tensor on (M, g, S(TM)) with eigenfunctions
(λ0, λ1, · · · , λk). Assume that ∇gλ0,∇gλ1, · · · , ∇gλk are RadTM = D0-valued and
the Dα = Ker(λαI−S) define an integrable almost product structure on M . If leaves
of the screen distribution are totally geodesic in M , then ∇S = 0 on S(TM)×S(TM).

Proof. The foliation determined by the screen distribution is totally geodesic if and
only if C = 0. Then our claim follows (9.8) in remark 9.1.¤

10. Gray-tensors and lightlike warped product

Lightlike warped products are introduced in [7], and used in [8] to study the prob-
lem of finding globally null manifolds with constant scalar curvature. The following
result shows that there is an interplay between existence of Gray-tensors of certain
type and lightlike warped product structure. In some sense it represents a more
general converse to example (a) in section 5.

Theorem 10.1. Let (M, g) be a Killing horizon with a complete simply connected
Riemannian global hypersurface, say H, S a Gray-tensor on (M, g, S(TM, ϕt,H))
with k+1 eigenfunctions λ0 , λ1, . . . , λk and eigendistributions D0 = Ker(S−λ0I) =
RadTM , Di = Ker(S − λiI), i = 1, . . . , k. If

(a) λ1 = µ = constant,
(b) The almost product structure (D0, D1, . . . , Dk) is integrable,



18 C. ATINDOGBE, L. BERARD BERGERY, AND J. TOSSA

(c) ⊕j>1
j 6=i

Dj ⊂ Kerdλi, i = 1, . . . , k,

then,
M = L×M1 ×f2 M2 × · · · ,×fk

Mk,

where L is a one-dimensional integral curve of the global null (radical) vector field on
M and Mi (1 ≤ i ≤ k) are leaves of Di and f2

i = |λi − µ|, (2 ≤ i ≤ k) are smooth
positive functions on the factor M1.

Proof. First of all, let us recall that any codimension-one foliation which admits an
orthogonal Killing field must be totally geodesic (see [6] for instance). As (M, g) is
a Killing horizon, the characteristic orthogonal line bundle (or radical distribution)
is a Killing distribution (Theorem 2.1). Thus, S(TM,ϕt,H) defines a codimension-
one foliation in M which admits an orthogonal Killing field, say ξ. Hence, leaves of
S(TM, ϕt,H) are totally geodesic in M . It follows that M is a product manifold
L×M ′ where L is a one-dimensional integral curve of the global null (radical) vector
field ξ on M and M ′ a leaf of S(TM,ϕt,H). Let g′ denote the Riemannian metric
induced on M ′ and π : L ×M ′ −→ M ′ the natural projection map onto M ′. Then
the lightlike hypersurface (M, g) is isometric to (L×M ′, g = π?g′). Now, by item (b)
in remark 3.1, S induces by restriction an A-tensor S′ on the leal M ′ with respect to
the Levi-Civita connection

?

∇ it inherits from M and λ1, . . . , λk are eigenfunctions of
S′, with eigendistributions Di, i = 1, . . . , k. In particular, as λ1 = µ = constant and

⊕j>1
j 6=i

Dj ⊂ Kerdλi, i = 1, . . . , k,

the final result follows [11]. Indeed, since in addition to the above facts, H (and hence
M ′) is a complete (and simply connected) Riemannian hypersurface of M , we have

(M ′, g′) = M1 ×f2 M2 × · · · ×fk
Mk,

where TMi = Di and fi =
√
|λi − µ|, 2 ≤ i ≤ k. Then,

M = L×M1 ×f2 M2 × · · · ×fk
Mk

is a multiply warped product manifold where f2, . . . , fk are smooth positive functions
on the factor M1 of the lightlike product manifold L×M1.¤
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