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ON NULL 2-TYPE SUBMANIFOLDS OF EUCLIDEAN SPACES

UGUR DURSUN

(Communicated by Pascual LUCAS )

ABSTRACT. Let M™ be an n-dimensional submanifold of the Euclidean space
E"1+2 with non-parallel mean curvature vector and flat normal connection. We
prove that if M is of null 2-type and flat with constant mean curvature, then
the dimension of the first normal space N1(M) of M is one. Then we show
that M is an open portion of an n-dimensional helical cylinder of E**2 if and
only if M is flat and of null 2-type with constant mean curvature.

1. INTRODUCTION

In [2], B.Y. Chen gave a classification of null 2-type surfaces in the Euclidean
space E3 and he proved that they are circular cylinders. Later, in [3], he proved
that a surface M in the Euclidean space E* is of null 2-type with parallel normalized
mean curvature vector if and only if M is an open portion of a circular cylinder in
a hyperplane of E4, and the only null 2-type surfaces of the Euclidean space E*
with constant mean curvature are open portion of helical cylinders which are the
product surfaces of a straight line and a helix.

In [8], S.J. Li showed that a surface M in E™ with parallel normalized mean
curvature vector is of null 2-type if and only if M is an open portion of a circular
cylinder. Also, in [9], S.J. Li proved that for a non-pseudo-umbilical Chen surface
M in E™ with constant mean curvature, if M is of null 2-type, then M is flat and
lies fully in E3, E4, E® or ES of E™ (for the definition of Chen surfaces please see
1, 7).

In [6], A. Ferrandez and P. Lucas proved that Euclidean hypersurfaces of null
2-type and having at most two distinct principal curvatures are locally isometric to
a generalized cylinder.

In [4, 5], the author studied 3-dimensional null 2-type submanifolds of the Eu-
clidean space E°. In [4], he proved that a 3-dimensional submanifold M of the Eu-
clidean space E® having two distinct principal curvatures in the parallel mean cur-
vature direction and having a second fundamental form of a constant square length
is of null 2-type if and only if M is locally isometric to one of E x S? c E* C E®,
E?x S c BE* C E° or ExS'(a)xS'(a). In [5], he showed that for a 3-dimensional

2000 Mathematics Subject Classification. 53C40.
Key words and phrases. Finite type submanifold, Null 2-type submanifold, Mean curvature
vector, Helical cylinder.

20



ON NULL 2-TYPE SUBMANIFOLDS OF EUCLIDEAN SPACES 21

submanifold M of the Euclidean space E® such that M is not of 1-type, if M is of
null 2-type and flat with constant mean curvature and non-parallel mean curvature
vector, then the normal bundle of M is flat. And also, he proves that M is an open
portion of a 3-dimensional helical cylinder of E° if and only if M is of null 2-type
and flat with constant mean curvature and non-parallel mean curvature vector.

Considering the result on the normally flatness of M? in E®, we want to gener-
alize the main result given on the classification of null 2-type submanifolds ([5]) to
an n-dimensional submanifold M™ of the Euclidean space E™12 by assuming the
normally flatness as one of the hypotheses. We prove that for an n-dimensional
normally flat submanifold M of the Euclidean space E™*2 with non-parallel mean
curvature vector, if M is of null 2-type and flat with constant mean curvature, then
dim(N;(M)) = 1 and then we show that M is an open portion of an n-dimensional
helical cylinder of E™*? if and only if M is flat and of null 2-type with constant
mean curvature and non-parallel mean curvature vector. This work generalizes the
results given in [3], [5] and [9] about helical cylinders and null 2-type submanifolds
with non-parallel mean curvature vector.

2. PRELIMINARIES

Let M be an n-dimensional submanifold of an m-dimensional Euclidean space
E™. Denote by A the Laplacian of M associated with the induced metric. A
submanifold M of E™ is said to be of finite type if the position vector x of M in
E™ can be decomposed in the following form:

(21) x:x0+$1+"'+l‘k,
where z( is a constant vector and z7,...,z; are non-constant maps satisfying
Ax; = Nz, i = 1,... k. If all eigenvalues Aq,..., A\ are mutually different, then

the submanifold M is said to be of k-type and if, in particular, one of A1,..., A\g is
zero, the submanifold M is said to be of null k-type.

Let M be an n-dimensional submanifold in an m-dimensional Euclidean space
E™. We denote by h, A, H, V and V', the second fundamental form, the
Weingarten map, the mean curvature vector, the induced Riemannian connection
and the normal connection of the submanifold M in E™, respectively. We choose an
orthonormal local frame {es,...,e,} on M such that ey, ..., e, are tangent to M
and e,y is the direction of H, i.e., the normalized mean curvature vector. Denote
by {w!,...,w™} the dual frame and {wg}, A, B =1,...,m, the connection forms
associated to {eq, ..., emn}. We use the following convention on the range of indices:
1<AB,C,...<m, 1<4,5,k,...<n, n+1<6,v,7,... < m. Denoting by D
the Riemannian connection of E™, we put D, e; = Y w!(er)ej + Y. hP(ei, ex)es
and D, e, = > wi(eg)e; + > wl(er)es. By Cartan’s Lemma, we have

n
B _ B i B _ 1B
wl =Y "hjw’, Bl =h
j=1

Jjio

where hfj are the coefficients of the second fundamental form in the direction eg.
The mean curvature vector H is given by

m

(2.2) H=- Z tr(h?)eg.

n
B=n+1
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n
Using the connection equations V. e; = wa (e;)er, we obtain the equations
k=1
of Gauss and Codazzi relative to the basis {eq, ..., ey}, respectively, as

n

eo(w](en)) — en(w](e) =D { wi(ewl(en) — wi (ex)wi(e)

r=1
(2.3) +w] (e)[wi(ee) —wplen)} + D (hihly — hihiy),
v=n-+1

1<i<j<n, 1<l<k<n

and
5 (%) — ex(h) =S { R [l (e5) — i (en)] + Rl (e;) — Bt (ex)}
r=1
(2.4) + ) (hwhler) — hjwh(e;)),

B=n+1
v=n+1l....m, i=1...,n 1<j<k<n.

Also the Ricci equation is given by
(2.5) (R*(eirej)en, eq) = ([Aey, Ae,I(ei), €5),
where R' is the curvature tensor of the normal bundle.

The first normal space N1 (M) of M at each point p € M in E™ is defined as the
orthogonal complement of the subspace {{ € Tle |As = 0} in the normal space
Tpl M.

The product of a circular helix with nonzero torsion that lies in a 3-dimensional
linear subspace E® of an m-dimensional Euclidean space E™ and a (k — 1)-plane
of E™ is called a k-dimensional helical cylinder in the Euclidean space E™.

3. NULL 2-TYPE SUBMANIFOLDS

If M is a null 2-type submanifold of E™, then we have the following decompo-
sition of the position vector x of M in E™:

(3.1) =21+ 22, Az =0, Arg= Ao,

for some non-constant vectors x; and zo on M where )\ is a non-zero constant.
Since we have Az = —nH, then (3.1) implies

(3.2) AH = )\H.

In the theory of finite type immersions we know that a submanifold M of E™ is of
1-type if and only if either M is a minimal submanifold of E™ or M is a minimal
submanifold of a hypersphere of E™. Also, it is known from a lemma in [3] that for
an n-dimensional submanifold M of a Euclidean space E™, if there is a constant
A # 0 such that AH = AH, then M is either of 1-type or of null 2-type.

We need the following lemma given in [3].

Lemma 3.1. [3] Let M be an n-dimensional submanifold of the Euclidean space
E™ such that M is not of 1-type. Then M is of null 2-type if and only if we have

(3.3) gw? + 2trAgLy =0,
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(3.4) Ao = a—al|Apt1]| —a < Voent1, Voentr >,

(3.5) atr(Ant14p) = 2w5+1(Va) + atr(VwﬁH) —a < Vte,i1,Vies >,
where 3 =n+2,...,m, o> =< H, H >, |A11|]* = tr(Ae,,, Ae,.,) and Va is the
gradient of a

Using Lemma 3.1 we obtain the following.

Lemma 3.2. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space E™2 with non-parallel mean curvature vector such that M is not of
1-type. If M is of null 2-type with constant mean curvature «, then the followings
hold:

(3.6) Wit e)h? =0, i=1,...,n,

(3.7) [Anial? + > (Wit (e)? = A,
i=1

(3.5) (A Anga) = (T 12),

where ||A,41]]? = tr(Ae, . Ae, 1)

Proof. As M is normally flat in E™"*2, we can choose an orthonormal tangent
basis {e1,...,en} such that A, and A, 1o are diagonal, that is, Ag(e;) = hﬁei,
B =n+1,n+2. Since M is assumed not to be of 1-type, then o # 0 and we can
locally choose an orthonormal normal basis {€,11, ent2} on M such that e, 1 = g
which is non-parallel in the normal bundle. Thus Vj ent1 = w;‘_t% (ei)ent2 # 0,
that is, w'T7(e;) # 0 at least for one i € {1,...,n}. Also, Vi epto = wiis(ei)ent1.
Hence < Véenﬂ, Vé€n+2 >=0and < VZeni1, Vienpr >= Z?:l(wz_ﬁ(ei))?
Considering « is a constant, the proof of (3.6), (3.7), and (3.8) follow immediately
from (3.3), (3.4) and (3.5), respectively. O

Theorem 3.1. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space E™F2 with non-parallel mean curvature vector such that M is not
of 1-type. If M is of null 2-type and flat with constant mean curvature, then
dim N (M) = 1.

Proof. Considering the hypotheses of the theorem and Lemma 3.2, we can choose
an orthonormal tangent and normal basis on M as in the proof of Lemma 3.2. We
then have na = A + - + AL B2+ 4+ A2 = 0, w? # 0 and the
Weingarten maps A, 41 and A, 2 are diagonal.

Because of the flatness of M, the equations of Gauss (2.3) become

(3.9) WP 4 WP R =0, 1<i<j<n
and the equations of Codazzi (2.4) become

(3.10) ex(hii™) = —hiwiTs(en),

(3.11) er(hlT?) = =R Wit (er),

where 7 # k.

Since the mean curvature direction is non-parallel, then Vji ent+1 7# 0, that is,

"2(e;) # 0 at least for one i € {1,...,n}. Without lose of generality, suppose

wnJrl
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that ij;f (e1) # 0. As we have the hypotheses of Lemma 3.2, then the equation
(3.6) for i = 1 implies that h7;"* = 0. Hence we get hhy > + -+ + b2 = 0.

We now show that A5 # 0 according to the chosen w'T7(ey) # 0. For k = 1,

when we take the sum of the equations of Codazzi (3.11) on 7 from 2 to n we obtain
er(hgg” 4 hia) = —(hgg e B Wi e).

As W32+ + hE2 = 0 and w15 (eq) # 0 we get

(3.12) hot + -+ =0

and thus h};™" = na which is different from zero as M is not of 1-type. Using
h{;? = 0, from the equations of Gauss (3.9) for i = 1 we get h?flh?;rl = 0 which

gives h;ljﬂ =0for j=2,...,n. Hence 4,41 = diag(na,0,...,0).

Since all h?fl’s are constant, then the equations of Codazzi (3.10) for k = 1
and i = 2,...,n give us h?i”wzg(el) =0, i.e., h?i“ =0fori=2,...,n, as

wr’ﬁr%(el) # 0. Therefore A,,;2 = 0.
As a result, we have 4,11 # 0 and A, 12 = 0 which means that dim Ny (M) = 1.
O

Theorem 3.2. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space E™2 with non-parallel mean curvature vector such that M is not of
1-type. Then, M is an open portion of an n-helical cylinder of E™*2 if and only if
M is of null 2-type and flat with constant mean curvature.

Proof. Let M be a n-dimensional helical cylinder in E™t2. Then, by a suitable
choice of the Euclidean coordinates M takes the following form

x(uy, ..., uy) = (acosuy,asinuy, buy, us, ..., u,)

for some constant a > 0 and b # 0. By a straight forward calculation it is seen that
the Laplacian A of M is given by

192 &Ko
(3.13) A= -3 c=a?+b2

Let us put

x1 = (0,0,buy, ug,...,u,) and x9 = (acosuj,asinug,0,...,0).
Then it is easily seen that
(3.14) Axy =0, Axo= cigxz.

This shows that M is of null 2-type.
Let us put

1
e1 = —(—asinu,acosuy,b,0,0), e =(0,...,0,1,0,...,0), i =2,...,n,
c

. 1 .
ent1 = (—cosuy, —sinuy,0,0,...,0), epy2 = E(—bsmul,bcosul, —a,0,...,0),
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where 71”7 in the vector e; is in the (i + 2)th place. Then, by a straight forward
calculation we obtain

wh=cduy, w=du;, i=2...,n,

(3.15)
a
witt = 0—2(.01, Wit =0, w;""'l = w;L+2 =0,j=2,...,n,
e -
All these show that M is flat, the mean curvature a = |[H| = 3% is constant and
Entl = % is non-parallel. It is also observed that A, ;s = 0 and hence M is

normally flat because of the equation of Ricci (2.5).

Conversely, let M be a flat and null 2-type submanifold of E"*2 with constant
mean curvature and non-parallel mean curvature vector. By Theorem 3.1 we have
dim (N7(M)) = 1. As it is shown in the proof of Theorem 3.1 we can have A, 1 =

diag(na, 0,...,0), Ay2 = 0 and pg = w7 (e1) # 0. Thus, by the equations of
Codazzi (3.11) for ¢ = 1, we obtain wZI?(ek) =0, k=2,...,n. Since we have the

hypotheses of Lemma 3.2, then the equation(3.7) implies that ug = wz_ﬁ (e1) is a
constant. Therefore we have

+1 _ 1 +2 _ +1 _ n+2 T +2 _ 1
(3.16) wi™ =naw", wy° =0, wiT =Wl =0, j=2,...,n, Wyl = pow -

By considering the flatness of M and (3.16), the connection forms wf of M coincide
with the connection forms of the helical cylinder which are given in (3.15). Thus,
as a result of the fundamental theorem of submanifolds, M is locally isometric to
an n-dimensional helical cylinder of E™*2. O

This work generalizes the results given in [3], [5] and [9] about helical cylinders
and null 2-type submanifolds with non-parallel mean curvature vector.

Theorem 3.3. Let M be an n-dimensional submanifold of the Fuclidean space
E"t2 such that M is not of 1-type. Then, M is an open portion of an n-helical
cylinder of E"*2 if and only if M is of null 2-type and flat with dim Ni(M) = 1
and non-parallel mean curvature vector.

Proof. Suppose that M is a null 2-type and flat submanifold of E"*2 with
dim (N;(M)) = 1 and non-parallel mean curvature vector. Then we have w’ = 0
and A, 42 = 0. By a direct computation and with the help of 4,, ;2 = 0, the equation

(3.3) becomes

(3.17) Apt1(Va) = —gaVoz,
that is, Va is an eigenvector of A, with the eigenvalue —fa on U = {p € M :
Va # 0 at p}. If we choose e; parallel to Ve, then A5 = —%, ROt 4
3
htl = %, and e;(a) =0, i=2,...,n.
By the equations of Codazzi (2.4) for j = 1,7 = k and v = n + 1, we have
er(hi*') =0, i=2,...,n. Hence we obtain 22e;(a) = ey (hhy ' +- -+ A1) = 0.

Therefore, Voo =0 on U, i.e., U = ), and « is a constant. Also, as dim Ny (M) =1
it follows from the equation of Ricci (2.5) that normal space is flat. As a result, we
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have all the assumptions of Theorem 3.2 from which M is an open portion of an

n-helical cylinder. The converse is given in the proof of Theorem 3.2. (]
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