EMBEDDING FINITE PROJECTIVE GEOMETRIES INTO FINITE PROJECTIVE PLANES

BARBU C. KESTENBAND
(Communicated by Levent KULA)

Abstract

We show that every finite projective geometry can be embedded in a projective plane of suitable order. Specifically: in $\operatorname{PG}\left(2, q^{n}\right)$, the set of points $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ satisfying the equation $x^{q+1}+x y^{q}+\tau y z^{q}+s z^{q+1}=0$, with $\tau \neq 0$ and $-s$ not a $(q+1)^{t h}$ power, contains $q^{n}+1$ points. If the points $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -s / \tau \\ 1\end{array}\right)$ are removed, the remaining subset is a disjoint union of $q-1$ equicardinal subsets, each of which is isomorphic to $\operatorname{PG}(n-1, q)$.

We will represent the points of a projective plane by column vectors, but in the interest of economy of space we will write $\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ instead of $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. However, when no coordinates are necessary - which happens in a few places in the proof of the Theorem - we will use lower case boldface letters to denote points.
The following symbols will be used:
Q : the subset of the finite field $\operatorname{GF}\left(q^{n}\right)$ comprising the nonvanishing $(q+1)^{\text {th }}$ powers;
$Z Q$: the subset of $\operatorname{GF}\left(q^{n}\right)$ comprising the $(q-1)^{\text {th }}$ powers $(0 \in Z Q)$;
$\Xi(x)=x^{q^{n-1}}+x^{q^{n-2}}+\cdots+x^{q}+x$, over $\operatorname{GF}\left(q^{n}\right)$.

[^0]We shall denote by A, the set of points $\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ satisfying the equation

$$
\begin{equation*}
x^{q+1}+x y^{q}+\tau y z^{q}+s z^{q+1}=0 \tag{1}
\end{equation*}
$$

with $\tau \neq 0$ and $-s \notin Q \cup\{0\}$.
We will also say that a line in the projective plane $\mathrm{PG}\left(2, q^{n}\right)$ is a short secant or a full secant if it intersects the set A at two points or at more than two points, respectively.
Lemma 1. A full secant has $q+1$ points in common with the set A.
Proof. Let $\left(\begin{array}{lll}a & b & c\end{array}\right)^{T},\left(\begin{array}{lll}d & e & f\end{array}\right)^{T},\left(\begin{array}{lll}a+\ell d & b+\ell e & c+\ell f\end{array}\right)^{T} \in A$ for some $\ell \neq 0$. Then, by virtue of (1), we have

$$
\begin{align*}
& a^{q+1}+a b^{q}+\tau b c^{q}+s c^{q+1}=0 \tag{2}\\
& d^{q+1}+d e^{q}+\tau e f^{q}+s f^{q+1}=0 \tag{3}\\
& (a+\ell d)^{q+1}+(a+\ell d)(b+\ell e)^{q}+\tau(b+\ell e)(c+\ell f)^{q}+s(c+\ell f)^{q+1}=0 \tag{4}
\end{align*}
$$

Note that our assumption that $-s \notin Q$ implies $b e \neq 0$ and also $\ell \neq-b / e$.
Upon expanding the left side of equation (4), one obtains an expression which reduces, because of equations (2), (3), to a binomial $\alpha \ell^{q}+\beta \ell$, where α, β, depend upon the values of $a, b, c, d, e, f, \tau, s$. We cannot have $\alpha=\beta=0$, because that would entail that ℓ can be any element of our field, including $-b / e$, which has been ruled out in the preceding paragraph.
If $\alpha=0$ and $\beta \neq 0$ or if $\alpha \neq 0$ and $\beta=0$, we get $\ell=0$, i.e. the line $\left[\begin{array}{lll}\left(\begin{array}{lll}a & b & c\end{array}\right)^{T},\left(\begin{array}{lll}d & e & f\end{array}\right)^{T}\end{array}\right]$ is a short secant. The same thing takes place if $\alpha \beta \neq 0$ and $-\beta / \alpha \notin Z Q$.
If $-\beta / \alpha \in Z Q$, the equation $\alpha \ell^{q}+\beta \ell=0$ yields $q-1$ nonvanishing solutions for ℓ, and the ratio of any two solutions is a member of the $\mathrm{GF}(q)$ subfield. In this case the line in question has $q+1$ points in common with A.

The restriction $-s \notin Q$ precludes the possibility $y=0$ in equation (1). Then $z=0 \Rightarrow$ either $x=0$ or $x=-y$, whereas $x=0 \Rightarrow$ either $z=0$ or $y=-s z / \tau$. Therefore there are exactly three points $\left(\begin{array}{lll}x & y & z\end{array}\right)^{T} \in A$ with $x y z=0$.
Lemma 2. The lines joining the points $\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T}$, ($\left.\begin{array}{llll}0 & -s / \tau & 1\end{array}\right)^{T}$, to any other point in A are short secants.

Proof. The lines $\left[\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T}\right]$ and $\left[\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & -s / \tau & 1\end{array}\right)^{T}\right]$ are short secants, clearly.
The line $\left.\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & -s / \tau & 1\end{array}\right)^{T}\right]$ has equation $\tau x+\tau y+s z=0$. If a point $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T}$ lies on this line, we have $s=-\tau(a+b)$. If $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T} \in A$, we also have $a^{q+1}+a b^{q}+\tau b+s=0$. Substitute here the expression for s that we have just obtained to arrive at $\tau=(a+b)^{q}$. As a consequence, we obtain $s=-(a+b)^{q}(a+b)=-(a+b)^{q+1}$, in conflict with our assumption that $-s \notin Q$. We have thus established that the line $\left.\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & -s / \tau & 1\end{array}\right)^{T}\right]$ is a short secant.

Next consider the lines $\left.\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T}\right],\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T} \in A$. If $\ell \neq 0$ and the point $(a-\ell \quad b+\ell \quad 1)^{T} \in A$, then $(a-\ell)^{q+1}+(a-\ell)(b+\ell)^{q}+\tau(b+\ell)+s=0$. Upon expanding the left side of this equation and using the fact that $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T} \in$ A, i.e. that

$$
\begin{equation*}
a^{q+1}+a b^{q}+\tau b+s=0 \tag{5}
\end{equation*}
$$

we are left with $\tau=(a+b)^{q}$. Substitute this expression for τ into (5) to arrive again at the contradiction $s=-(a+b)^{q+1}$.
Finally, we look at the lines $\left[\left(\begin{array}{lll}0 & -s / \tau & 1\end{array}\right)^{T},\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T}\right],\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T} \in A$. If the point $\left(\begin{array}{lll}a & b-\ell s / \tau & 1+\ell\end{array}\right)^{T} \in A$, we get $a^{q+1}+a(b-\ell s / \tau)^{q}+\tau(b-\ell s / \tau)(1+$ $\left.\ell^{q}\right)+s(1+\ell)^{q+1}=0$.
By virtue of (5) again, this reduces to $\tau b+s=a s^{q} / \tau^{q}$. Upon substituting this expression for $\tau b+s$ into (5), we obtain $\tau a+\tau b+s=0$, whence $\tau a+a s^{q} / \tau^{q}=0$, i.e. $-s^{q} \in Q$, which is equivalent to $-s \in Q$, the same contradiction again.

Lemma 3. The line joining two points $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T},\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T} \in A$, with $a \neq c$, contains $q-1$ more points of A if $c / a \in Z Q$, and does not contain any other point of A otherwise.

Proof. By assumption, equation (5) holds, and also

$$
\begin{equation*}
c^{q+1}+c d^{q}+\tau d+s=0 \tag{6}
\end{equation*}
$$

Assume that the point $\left(\begin{array}{lll}a+\ell c & b+\ell d & 1+\ell\end{array}\right)^{T}, \ell \neq 0$, is also in A :

$$
\begin{equation*}
(a+\ell c)^{q+1}+(a+\ell c)(b+\ell d)^{q}+\tau(b+\ell d)\left(1+\ell^{q}\right)+s(1+\ell)^{q+1}=0 \tag{7}
\end{equation*}
$$

By virtue of (5), (6), this equation reduces to $\left(a c^{q}+a d^{q}+\tau b+s\right) \ell^{q}+\left(a^{q} c+\right.$ $\left.b^{q} c+\tau d+s\right) \ell=0$.
Now substitute into this equation the expressions for $\tau b+s$ and $\tau d+s$ obtained from (5), (6), to arrive at the equation

$$
\begin{equation*}
a(c+d-a-b)^{q} \ell^{q}=c(c+d-a-b)^{q} \ell . \tag{8}
\end{equation*}
$$

We will now show that $c+d-a-b \neq 0$. Assume, contrariwise, that $a+b=c+d$, and subtract equation (6) from (5): $a(a+b)^{q}-c(c+d)^{q}+\tau(b-d)=0$.
If $a+b=c+d$, this equation becomes $(a-c)(a+b)^{q}+\tau(b-d)=0$, whence $(a-c)(a+b)^{q}=\tau(d-b)=\tau(a-c)$. As $a \neq c$ by assumption, we end up with $\tau=(a+b)^{q}$. Equation (5), rewritten as $a(a+b)^{q}+\tau b+s=0$, now becomes $a(a+b)^{q}+b(a+b)^{q}+s=0$, whence $s=-(a+b)^{q+1}$, contradicting our assumption that $-s \notin Q$.
Having established that $a+b \neq c+d$, equation (8) reduces to

$$
\begin{equation*}
\ell^{q-1}=c / a . \tag{9}
\end{equation*}
$$

This shows that $c / a \in Z Q$ and necessity has been demonstrated. The proof for sufficiency is a fairly simple matter and we omit it.

Theorem 1. The subset of A comprising the points $\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ with $x y z \neq 0$ and the point $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$ can be partitioned into $q-1$ subsets, each of which is a projective geometry $P G(n-1, q)$, with collinearity inherited from the projective plane $P G\left(2, q^{n}\right)$.
Every line of the plane which joins two points of A not in the same $P G(n-1, q)$ subset, is a short secant.

Proof. If $x y z \neq 0$, we let $z=1$ and write equation (1) as

$$
\begin{equation*}
y^{q}=-\frac{\tau}{x} y-\frac{x^{q+1}+s}{x} \tag{10}
\end{equation*}
$$

Denote $-\tau / x=\lambda,-\left(x^{q+1}+s\right) / x=\theta$. Then equation (10) becomes

$$
\begin{equation*}
y^{q}=\lambda y+\theta \tag{11}
\end{equation*}
$$

It was shown in [1, Theorem 19] that equation (11) possesses a unique solution for y if $\lambda \notin Z Q$, whereas for $\lambda \in Z Q$ it has q solutions if $\Xi\left(\theta / \omega^{q}\right)=0$ and no solution otherwise, where ω is any one of the $q-1$ elements of $\operatorname{GF}\left(q^{n}\right)$ satisfying $\lambda=\omega^{q-1}$.
We treat first the case $\lambda=-\tau / x \notin Z Q$.
Our field comprises $\left(q^{n}-1\right)(q-2) /(q-1)$ elements that are not members of $Z Q$. Hence, as τ is fixed, there are this many elements x for which $\lambda \notin Z Q$. Each of these x 's leads to a unique value of y from equation (10), thereby producing $\left(q^{n}-1\right)(q-2) /(q-1)$ points $\left(\begin{array}{lll}x & y & 1\end{array}\right)^{T}$ satisfying equation (1). Moreover, these points fall into $q-2$ mutually disjoint subsets $A_{1}, A_{2}, \ldots, A_{q-2}$, where $\left|A_{i}\right|=\left(q^{n}-1\right) /(q-1)$ for all i and such that two points $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T}$, $\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T} \in A$ are in the same subset A_{i} if and only if $c / a \in Z Q$. It follows then from Lemma 3 that all the secants within each A_{i} are full - and they contain $q+1$ points of A_{i}, in virtue of Lemma 1 - while the lines joining two points from different A_{i} 's do not intersect the set $\cup_{i=1}^{q-2} A_{i}$ again.
To prove that the A_{i} 's are projective geometries, consider three noncollinear points $\left(\begin{array}{lll}a & b & 1\end{array}\right)^{T},\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T} \in A_{i}$ for a fixed i. We will show that a line joining a point $\left.\left(\begin{array}{lll}a+\ell c & b+\ell d & 1+\ell\end{array}\right)^{T} \in\left[\begin{array}{lll}a & b & 1\end{array}\right)^{T},\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T}\right], \ell \neq 0$, to a point $\left.(a+m e \quad b+m f 1+m)^{T} \in\left[\begin{array}{lll}a & b & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}\right], m \neq 0$, intersects the line through the points $\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}(& f & 1\end{array}\right)^{T}$ within the same A_{i} subset. By assumption, equations (5), (6), (7), (9), hold, and also

$$
\begin{gather*}
e^{q+1}+e f^{q}+\tau f+s=0 \tag{12}\\
(a+m e)^{q+1}+(a+m e)(b+m f)^{q}+\tau(b+m f)(1+m)^{q}+s(1+m)^{q+1}=0 \tag{13}
\end{gather*}
$$

Equations (5) and (12) reduce equation (13) to

$$
\begin{equation*}
m^{q-1}=e / a \tag{14}
\end{equation*}
$$

It is easy to see that the line joining the points $\left(\begin{array}{lll}a+\ell c & b+\ell d & 1+\ell\end{array}\right)^{T}$ and $(a+m e \quad b+m f 1+m)^{T}$ and the line $\left.\left[\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}\right]$ intersect at
the point $(\ell c-m e \quad \ell d-m f \quad \ell-m)^{T}$. We have to show that this point is in A_{i}, i.e. that it satisfies equation (1):

$$
(\ell c-m e)^{q+1}+(\ell c-m e)(\ell d-m f)^{q}+\tau(\ell d-m f)(\ell-m)^{q}+s(\ell-m)^{q+1}=0
$$

Expand the left side of this equation, then use equations (6), (12), to reduce it to

$$
\ell^{q} m\left(c^{q} e+d^{q} e+\tau f+s\right)+\ell m^{q}\left(c e^{q}+c f^{q}+\tau d+s\right)=0
$$

Substitute here $\tau f+s=-e^{q+1}-e f^{q}$ and $\tau d+s=-c^{q+1}-c d^{q}$, and divide by ℓm :

$$
\ell^{q-1} e(c+d-e-f)^{q}+m^{q-1} c(e+f-c-d)^{q}=0
$$

Use now the expressions for ℓ^{q-1} and m^{q-1} as given by (9) and (14) to arrive at the following obvious identity:

$$
\frac{c}{a} e(c+d-e-f)^{q}+\frac{e}{a} c(e+f-c-d)^{q}=0 .
$$

We have thus established that the A_{i} 's are projective geometries indeed.
We pass now to the case in which $\lambda=-\tau / x \in Z Q$.
For a fixed τ, there are $\left(q^{n}-1\right) /(q-1)$ values of x for which $-\tau / x \in Z Q$. For these elements x, equation (10) may or may not possess solutions for y, as mentioned earlier. If it does have solutions, it has q of them, leading to q points with the same x-coordinate. These points, together with $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, make up a full secant.
As explained above, it follows from [1, Theorem 19] that in order to decide whether equation (10) has solutions, one needs to consider the expression $\Xi\left(\theta / \omega^{q}\right)$, where $\omega^{q-1}=-\tau / x, \theta=-\left(x^{q+1}+s\right) / x$.
We have

$$
\frac{\theta}{\omega^{q}}=-\frac{x^{q+1}+s}{x \omega^{q}}=-\left(\frac{x}{\omega}\right)^{q}+\frac{s}{\tau \omega}=\left(\frac{\tau}{\omega^{q}}\right)^{q}+\frac{s}{\tau \omega}=\left(\frac{\tau^{q+1}}{\tau^{q} \omega^{q}}\right)^{q}+\frac{s}{\tau \omega}
$$

Hence, as Ξ is an additive function and also $\Xi\left(x^{q}\right)=\Xi(x)$ (easy consequences of the definition of Ξ), we have the following implications:

$$
\begin{aligned}
\Xi\left(\frac{\theta}{\omega^{q}}\right)=0 \Rightarrow \Xi\left(\frac{s}{\tau \omega}\right)= & -\Xi\left(\frac{\tau^{q+1}}{\tau^{q} \omega^{q}}\right)^{q}=-\Xi\left(\frac{\tau^{q+1}}{\tau^{q} \omega^{q}}\right)=-\Xi\left(\frac{\tau^{1+1 / q}}{\tau \omega}\right) \Rightarrow \\
& \Xi\left(\frac{s+\tau^{1+1 / q}}{\tau \omega}\right)=0 .
\end{aligned}
$$

It has been shown in [1, Theorem 15] that for any $a \in \operatorname{GF}(q)$, the equation $\Xi(x)=a$ possesses q^{n-1} distinct roots. If $a=0$, one root is clearly 0 , but we cannot accept it, because $s+\tau^{1+1 / q}=0 \Rightarrow-s \in Q$. Therefore we have $q^{n-1}-1$ acceptable solutions for the expression $\left(s+\tau^{1+1 / q}\right) / \tau \omega$. As s and τ are fixed, this yields $q^{n-1}-1$ values for ω.
If ω is one solution, then so is $a \omega$ for all $a \in \operatorname{GF}(q)$, because the definition of Ξ implies $\Xi(a c)=a \cdot \Xi(c)$ for every $a \in \operatorname{GF}(q)$ and any c. Since $a \in \mathrm{GF}(q) \Rightarrow(a \omega)^{q-1}=\omega^{q-1}$, it follows that all the $q-1$ elements $a \omega$, as a ranges through $\operatorname{GF}(q) \backslash\{0\}$, yield the same value for $x=-\tau / \omega^{q-1}$. We have thus arrived at $\left(q^{n-1}-1\right) /(q-1)$ distinct values of x for which equation (10) gives q values of y, for a total of $\left(q^{n}-q\right) /(q-1)$ points. These, together with $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, make up a set B comprising $\left(q^{n}-1\right) /(q-1)$ points.
As each x gives rise to q values of y, we see that in the set B, all the secants
through $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$ are full.
In order to establish that B is a geometry, we have to demonstrate that if a line meets two sides of a triangle whose vertices are in B, it intersects the third side at a point within B as well. If none of the three vertices is $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, the proof is the same as for the A_{i} 's. But in the case in which one vertex is $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$, it is necessary to show that if $\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T} \in B$, then the line joining a point $\left.\left(\begin{array}{lll}c & d+\ell & 1\end{array}\right)^{T} \in\left[\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T}\right], \ell \neq 0$, to a point $\left.\left(\begin{array}{lll}e & f+m & 1\end{array}\right)^{T} \in\left[\begin{array}{lll}\left(\begin{array}{ll}0 & 1\end{array}\right. & 0\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}\right], m \neq 0$, intersects the line $\left.\left[\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}\right]$ within B.
The lines $\left[\left(\begin{array}{lll}c & d+\ell & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f+m & 1\end{array}\right)^{T}\right]$ and $\left.\left[\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}\right]$ meet at the point $(e \ell-c m \quad f \ell-d m \quad \ell-m)^{T}$, and we have to demonstrate that

$$
\begin{equation*}
(e \ell-c m)^{q+1}+(e \ell-c m)(f \ell-d m)^{q}+\tau(f \ell-d m)(\ell-m)^{q}+s(\ell-m)^{q+1}=0 .(\tag{15}
\end{equation*}
$$

As $\left(\begin{array}{lll}c & d+\ell & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f+m & 1\end{array}\right)^{T} \in B \subset A$, we have
$c^{q+1}+c(d+\ell)^{q}+\tau(d+\ell)+s=0 \quad$ and $\quad e^{q+1}+e(f+m)^{q}+\tau(f+m)+s=0$.
Since $\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T},\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T} \in B$ as well, these equations yield $\ell^{q-1}=-\tau / c$ and $m^{q-1}=-\tau / e$.
Upon multiplying out the left side of equation (15) and using the fact that the points $\left(\begin{array}{lll}c & d & 1\end{array}\right)^{T}$ and $\left(\begin{array}{lll}e & f & 1\end{array}\right)^{T}$ are in A, it reduces to $\ell^{q} m\left(c e^{q}+c f^{q}+\tau d+\right.$ $s)+\ell m^{q}\left(c^{q} e+d^{q} e+\tau f+s\right)=0$.
Since $\tau d+s=-c^{q+1}-c d^{q}$ and $\tau f+s=-e^{q+1}-e f^{q}$, we arrive, after dividing by ℓm, at $\ell^{q-1} c(e+f-c-d)^{q}+m^{q-1} e(c+d-e-f)^{q}=0$. But $\ell^{q-1}=-\tau / c$ and $m^{q-1}=-\tau / e$, so that the last equation is an obvious identity.
We pass now to the last paragraph of the theorem: note that for $q=2$ it is vacuous, because in this case there is only one $\operatorname{PG}(n-1,2)$, namely B.
It has been shown earlier in the proof that lines joining two points from different A_{i} 's are short secants. It has also been shown (Lemma 2) that the lines joining the points $\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & -s / \tau & 1\end{array}\right)^{T}$ to any other point in A are short secants. What is left to do is demonstrate that for any $i \in\{1,2, \ldots, q-2\}$, a line $[\mathbf{a}, \mathbf{b}]$ with $\mathbf{a} \in A_{i}$ and $\mathbf{b} \in B$, has no other point in common with A. Assume, to the contrary, that there is another point $\mathbf{c} \in A_{i}$ so that $\operatorname{coll}\left(\mathbf{a}, \mathbf{b}, \mathbf{c}\right.$. Then since A_{i} must comprise $q-1$ more points collinear with a and \mathbf{c}, we obtain a full secant with more than $q+1$ points. This violates Lemma 1.
The same contradiction is arrived at if $\operatorname{coll}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ with $\mathbf{c} \in B$.
If, on the other hand, $\mathbf{c} \in A_{j}, j \neq i$, and $\operatorname{coll}(\mathbf{a}, \mathbf{b}, \mathbf{c})$, then the line $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ would not have any other point within A : we already know that the line $[\mathbf{a}, \mathbf{c}]$ has no other point in common with $\cup_{i=1}^{q-2} A_{i}$, and it cannot in tersect the set B at a point other than \mathbf{b}, either, as that would lead again to a full secant with more than $q+1$ points. Therefore the line $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ would be a three-point full secant. But $3<q+1$ for $q>2$, hence the conclusion of Lemma 1 would be violated again.
Corollary 1. $|A|=q^{n}+1$.
Proof. The set A consists of two points $\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{llll}0 & -s / \tau & 1\end{array}\right)^{T}$, plus the mutually disjoint subsets $A_{1}, A_{2}, \ldots, A_{q-2}, B$, each of which has cardinality ($q^{n}-$
1)/ $(q-1)$.

The conclusion follows readily.
Example 1. Let w be a primitive root of the finite field $\operatorname{GF}\left(2^{4}\right)$, where $w^{4}=w+1$ over $\operatorname{GF}(2)$. In the projective plane $\operatorname{PG}\left(2,2^{4}\right)$, consider the 17 points satisfying the equation $x^{3}+x y^{2}+y z^{2}+w z^{3}=0$:
$\left.\left.\begin{array}{|ccccccc|}\hline & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) & \left(\begin{array}{l}0 \\ w \\ 1\end{array}\right) & \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) & \left(\begin{array}{c}w \\ w \\ 1\end{array}\right) & \left(\begin{array}{c}w \\ w^{7} \\ 1\end{array}\right) & \left(\begin{array}{c}w^{4} \\ w^{10} \\ 1\end{array}\right) & \left.\begin{array}{c}w^{4} \\ w^{14} \\ 1\end{array}\right)\end{array} \begin{array}{c}w^{6} \\ w^{4} \\ 1\end{array}\right) \quad \begin{array}{c}w^{6} \\ w^{14} \\ 1\end{array}\right)$.
$\left.\begin{array}{|cccccc|}\hline 8 & 9 & 10 & 11 & 12 & 13 \\ \hline\left(\begin{array}{c}w^{11} \\ w^{5} \\ 1\end{array}\right) & \left(\begin{array}{c}w^{11} \\ w^{8} \\ 1\end{array}\right) & \left(\begin{array}{c}w^{12} \\ w^{14} \\ 1\end{array}\right) & \left(\begin{array}{c}w^{12} \\ 1 \\ 1\end{array}\right) & \left(\begin{array}{c}w^{13} \\ w^{9} \\ 1\end{array}\right) & \left.\begin{array}{c}w^{13} \\ w^{11} \\ 1\end{array}\right)\end{array} \begin{array}{c}1 \\ \binom{6}{1}\end{array} \begin{array}{c}1 \\ w^{13} \\ 1\end{array}\right)$.

The 15 numbered points make up a projective geometry $\mathrm{PG}(3,2)$. Its 35 lines are:
(1 23), (1 45), (1 67), (1 89), (1 1011), (1 12 13), (1 1415), (2 415), (2 514), (269), (278), (21013), (21112), (3414), (3515), (368), (379), (31012), (31113), (4610), (4711), (4812), (4913), (5611), (5710), (5813), (5912), (61214), $(61315),(71215),(71314),(81014),(81115),(91015),(91114)$.

References

[1] B.C. Kestenband, The correlations of finite Desarguesian planes, Part I: Generalities. J. Geom. 77 (2003), 61-101.

Department of Mathematics, New York Institute of Technology, Old Westbury, Ny 11568, USA

E-mail address: bkestenb@nyit.edu

[^0]: 2000 Mathematics Subject Classification. 51E15.
 Key words and phrases. full secant, short secant.

