INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 2 NO. 2 PP. 27-33 (2009) ©IEJG

EMBEDDING FINITE PROJECTIVE GEOMETRIES INTO FINITE PROJECTIVE PLANES

BARBU C. KESTENBAND

(Communicated by Levent KULA)

ABSTRACT. We show that every finite projective geometry can be embedded in a projective plane of suitable order. Specifically: in $\operatorname{PG}(2,q^n)$, the set of points $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ satisfying the equation $x^{q+1} + xy^q + \tau yz^q + sz^{q+1} = 0$, with $\tau \neq 0$ and -s not a $(q+1)^{th}$ power, contains $q^n + 1$ points. If the points $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -s/\tau \\ 1 \end{pmatrix}$ are removed, the remaining subset is a disjoint union of q-1equicardinal subsets, each of which is isomorphic to $\operatorname{PG}(n-1,q)$.

We will represent the points of a projective plane by column vectors, but in the interest of economy of space we will write $\begin{pmatrix} x & y & z \end{pmatrix}^T$ instead of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$. However, when no coordinates are necessary - which happens in a few places in the proof of the Theorem - we will use lower case boldface letters to denote points. The following symbols will be used:

Q: the subset of the finite field $\operatorname{GF}(q^n)$ comprising the nonvanishing $(q+1)^{th}$ powers; ZQ: the subset of $\operatorname{GF}(q^n)$ comprising the $(q-1)^{th}$ powers $(0 \in ZQ)$; $\Xi(x) = x^{q^{n-1}} + x^{q^{n-2}} + \dots + x^q + x$, over $\operatorname{GF}(q^n)$.

²⁰⁰⁰ Mathematics Subject Classification. 51E15. Key words and phrases. full secant, short secant.

We shall denote by A, the set of points $\begin{pmatrix} x & y & z \end{pmatrix}^T$ satisfying the equation

$$x^{q+1} + xy^q + \tau yz^q + sz^{q+1} = 0, (1)$$

with $\tau \neq 0$ and $-s \notin Q \cup \{0\}$.

We will also say that a line in the projective plane $PG(2, q^n)$ is a short secant or a full secant if it intersects the set A at two points or at more than two points, respectively.

Lemma 1. A full secant has q+1 points in common with the set A.

Proof. Let $\begin{pmatrix} a & b & c \end{pmatrix}^T$, $\begin{pmatrix} d & e & f \end{pmatrix}^T$, $\begin{pmatrix} a + \ell d & b + \ell e & c + \ell f \end{pmatrix}^T \in A$ for some $\ell \neq 0$. Then, by virtue of (1), we have

$$a^{q+1} + ab^q + \tau bc^q + sc^{q+1} = 0, (2)$$

$$d^{q+1} + de^q + \tau e f^q + s f^{q+1} = 0, (3)$$

$$(a+\ell d)^{q+1} + (a+\ell d)(b+\ell e)^q + \tau(b+\ell e)(c+\ell f)^q + s(c+\ell f)^{q+1} = 0.$$
(4)

Note that our assumption that $-s \notin Q$ implies $be \neq 0$ and also $\ell \neq -b/e$.

Upon expanding the left side of equation (4), one obtains an expression which reduces, because of equations (2), (3), to a binomial $\alpha \ell^q + \beta \ell$, where α , β , depend upon the values of $a, b, c, d, e, f, \tau, s$. We cannot have $\alpha = \beta = 0$, because that would entail that ℓ can be any element of our field, including -b/e, which has been ruled out in the preceding paragraph.

If $\alpha = 0$ and $\beta \neq 0$ or if $\alpha \neq 0$ and $\beta = 0$, we get $\ell = 0$, i.e. the line $[(a \ b \ c)^T, (d \ e \ f)^T]$ is a short secant. The same thing takes place if $\alpha\beta \neq 0$ and $-\beta/\alpha \notin ZQ$.

If $-\beta/\alpha \in ZQ$, the equation $\alpha \ell^q + \beta \ell = 0$ yields q-1 nonvanishing solutions for ℓ , and the ratio of any two solutions is a member of the GF(q) subfield. In this case the line in question has q+1 points in common with A.

The restriction $-s \notin Q$ precludes the possibility y = 0 in equation (1). Then $z = 0 \Rightarrow$ either x = 0 or x = -y, whereas $x = 0 \Rightarrow$ either z = 0 or $y = -sz/\tau$. Therefore there are exactly three points $\begin{pmatrix} x & y & z \end{pmatrix}^T \in A$ with xyz = 0.

Lemma 2. The lines joining the points $\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & -s/\tau & 1 \end{pmatrix}^T$, to any other point in A are short secants.

Proof. The lines $[\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T]$ and $[\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} 0 & -s/\tau & 1 \end{pmatrix}^T]$

are short secants, clearly. The line $[(-1 \ 1 \ 0)^T, (0 \ -s/\tau \ 1)^T]$ has equation $\tau x + \tau y + sz = 0$. If a point $\begin{pmatrix} a & b & 1 \end{pmatrix}^T$ lies on this line, we have $s = -\tau(a+b)$. If $\begin{pmatrix} a & b & 1 \end{pmatrix}^T \in A$, we also have $a^{q+1} + ab^q + \tau b + s = 0$. Substitute here the expression for s that we have just obtained to arrive at $\tau = (a+b)^q$. As a consequence, we obtain $s = -(a+b)^q(a+b) = -(a+b)^{q+1}$, in conflict with our assumption that $-s \notin Q$. We have thus established that the line $[(-1 \ 1 \ 0)^T, (0 \ -s/\tau \ 1)^T]$ is a short secant.

28

Next consider the lines $\begin{bmatrix} \begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} a & b & 1 \end{pmatrix}^T \end{bmatrix}$, $\begin{pmatrix} a & b & 1 \end{pmatrix}^T \in A$. If $\ell \neq 0$ and the point $\begin{pmatrix} a - \ell & b + \ell & 1 \end{pmatrix}^T \in A$, then $(a - \ell)^{q+1} + (a - \ell)(b + \ell)^q + \tau(b + \ell) + s = 0$. Upon expanding the left side of this equation and using the fact that $\begin{pmatrix} a & b & 1 \end{pmatrix}^T \in A$, i.e. that

$$a^{q+1} + ab^q + \tau b + s = 0, (5)$$

we are left with $\tau = (a+b)^q$. Substitute this expression for τ into (5) to arrive again at the contradiction $s = -(a+b)^{q+1}$.

Finally, we look at the lines $[(0 - s/\tau \ 1)^T, (a \ b \ 1)^T], (a \ b \ 1)^T \in A$. If the point $(a \ b - \ell s/\tau \ 1 + \ell)^T \in A$, we get $a^{q+1} + a(b - \ell s/\tau)^q + \tau(b - \ell s/\tau)(1 + \ell^q) + s(1 + \ell)^{q+1} = 0$.

By virtue of (5) again, this reduces to $\tau b + s = as^q/\tau^q$. Upon substituting this expression for $\tau b + s$ into (5), we obtain $\tau a + \tau b + s = 0$, whence $\tau a + as^q/\tau^q = 0$, i.e. $-s^q \in Q$, which is equivalent to $-s \in Q$, the same contradiction again. \Box

Lemma 3. The line joining two points $\begin{pmatrix} a & b & 1 \end{pmatrix}^T$, $\begin{pmatrix} c & d & 1 \end{pmatrix}^T \in A$, with $a \neq c$, contains q-1 more points of A if $c/a \in ZQ$, and does not contain any other point of A otherwise.

Proof. By assumption, equation (5) holds, and also

$$c^{q+1} + cd^q + \tau d + s = 0. (6)$$

Assume that the point $\begin{pmatrix} a + \ell c & b + \ell d & 1 + \ell \end{pmatrix}^T$, $\ell \neq 0$, is also in A:

$$(a+\ell c)^{q+1} + (a+\ell c)(b+\ell d)^q + \tau (b+\ell d)(1+\ell^q) + s(1+\ell)^{q+1} = 0.$$
(7)

By virtue of (5), (6), this equation reduces to $(ac^q + ad^q + \tau b + s)\ell^q + (a^q c + b^q c + \tau d + s)\ell = 0.$

Now substitute into this equation the expressions for $\tau b + s$ and $\tau d + s$ obtained from (5), (6), to arrive at the equation

$$a(c+d-a-b)^{q}\ell^{q} = c(c+d-a-b)^{q}\ell.$$
(8)

We will now show that $c+d-a-b \neq 0$. Assume, contrariwise, that a+b=c+d, and subtract equation (6) from (5): $a(a+b)^q - c(c+d)^q + \tau(b-d) = 0$.

If a + b = c + d, this equation becomes $(a - c)(a + b)^q + \tau(b - d) = 0$, whence $(a - c)(a + b)^q = \tau(d - b) = \tau(a - c)$. As $a \neq c$ by assumption, we end up with $\tau = (a + b)^q$. Equation (5), rewritten as $a(a + b)^q + \tau b + s = 0$, now becomes $a(a+b)^q + b(a+b)^q + s = 0$, whence $s = -(a+b)^{q+1}$, contradicting our assumption that $-s \notin Q$.

Having established that $a + b \neq c + d$, equation (8) reduces to

$$\ell^{q-1} = c/a. \tag{9}$$

This shows that $c/a \in ZQ$ and necessity has been demonstrated. The proof for sufficiency is a fairly simple matter and we omit it. \Box **Theorem 1.** The subset of A comprising the points $\begin{pmatrix} x & y & z \end{pmatrix}^T$ with $xyz \neq 0$ and the point $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$ can be partitioned into q-1 subsets, each of which is a projective geometry PG(n-1,q), with collinearity inherited from the projective plane $PG(2,q^n)$.

Every line of the plane which joins two points of A not in the same PG(n-1,q) subset, is a short secant.

Proof. If $xyz \neq 0$, we let z = 1 and write equation (1) as

$$y^{q} = -\frac{\tau}{x}y - \frac{x^{q+1} + s}{x}.$$
 (10)

Denote $-\tau/x = \lambda$, $-(x^{q+1} + s)/x = \theta$. Then equation (10) becomes

$$y^q = \lambda y + \theta. \tag{11}$$

It was shown in [1, Theorem 19] that equation (11) possesses a unique solution for y if $\lambda \notin ZQ$, whereas for $\lambda \in ZQ$ it has q solutions if $\Xi(\theta/\omega^q) = 0$ and no solution otherwise, where ω is any one of the q-1 elements of $\operatorname{GF}(q^n)$ satisfying $\lambda = \omega^{q-1}$.

We treat first the case $\lambda = -\tau/x \notin ZQ$.

Our field comprises $(q^n - 1)(q - 2)/(q - 1)$ elements that are not members of ZQ. Hence, as τ is fixed, there are this many elements x for which $\lambda \notin ZQ$. Each of these x's leads to a unique value of y from equation (10), thereby producing $(q^n - 1)(q - 2)/(q - 1)$ points $\begin{pmatrix} x & y & 1 \end{pmatrix}^T$ satisfying equation (1). Moreover, these points fall into q - 2 mutually disjoint subsets $A_1, A_2, \ldots, A_{q-2}$, where $|A_i| = (q^n - 1)/(q - 1)$ for all i and such that two points $\begin{pmatrix} a & b & 1 \end{pmatrix}^T$, $\begin{pmatrix} c & d & 1 \end{pmatrix}^T \in A$ are in the same subset A_i if and only if $c/a \in ZQ$. It follows then from Lemma 3 that all the secants within each A_i are full - and they contain q + 1 points of A_i , in virtue of Lemma 1 - while the lines joining two points from different A_i 's do not intersect the set $\bigcup_{i=1}^{q-2} A_i$ again.

q+1 points of A_i , in virtue of Lemma 1 - while the lines joining two points from different A_i 's do not intersect the set $\bigcup_{i=1}^{q-2} A_i$ again. To prove that the A_i 's are projective geometries, consider three noncollinear points $(a \ b \ 1)^T$, $(c \ d \ 1)^T$, $(e \ f \ 1)^T \in A_i$ for a fixed *i*. We will show that a line joining a point $(a + \ell c \ b + \ell d \ 1 + \ell)^T \in [(a \ b \ 1)^T, (c \ d \ 1)^T], \ \ell \neq 0$, to a point $(a + me \ b + mf \ 1 + m)^T \in [(a \ b \ 1)^T, (e \ f \ 1)^T], \ m \neq 0$, intersects the line through the points $(c \ d \ 1)^T, (e \ f \ 1)^T$ within the same A_i subset. By assumption, equations (5), (6), (7), (9), hold, and also

$$e^{q+1} + ef^q + \tau f + s = 0, (12)$$

$$(a+me)^{q+1} + (a+me)(b+mf)^q + \tau(b+mf)(1+m)^q + s(1+m)^{q+1} = 0.$$
(13)

Equations (5) and (12) reduce equation (13) to

$$m^{q-1} = e/a. \tag{14}$$

It is easy to see that the line joining the points $(a + \ell c \ b + \ell d \ 1 + \ell)^T$ and $(a + me \ b + mf \ 1 + m)^T$ and the line $[(c \ d \ 1)^T, (e \ f \ 1)^T]$ intersect at

30

the point $(\ell c - me \ \ell d - mf \ \ell - m)^T$. We have to show that this point is in A_i , i.e. that it satisfies equation (1):

$$(\ell c - me)^{q+1} + (\ell c - me)(\ell d - mf)^q + \tau(\ell d - mf)(\ell - m)^q + s(\ell - m)^{q+1} = 0.$$

Expand the left side of this equation, then use equations (6), (12), to reduce it to

$$\ell^{q}m(c^{q}e + d^{q}e + \tau f + s) + \ell m^{q}(ce^{q} + cf^{q} + \tau d + s) = 0$$

Substitute here $\tau f + s = -e^{q+1} - ef^q$ and $\tau d + s = -c^{q+1} - cd^q$, and divide by ℓm :

$$\ell^{q-1}e(c+d-e-f)^q + m^{q-1}c(e+f-c-d)^q = 0.$$

Use now the expressions for ℓ^{q-1} and m^{q-1} as given by (9) and (14) to arrive at the following obvious identity:

$$\frac{c}{a}e(c+d-e-f)^{q} + \frac{e}{a}c(e+f-c-d)^{q} = 0.$$

We have thus established that the A_i 's are projective geometries indeed.

We pass now to the case in which $\lambda = -\tau/x \in ZQ$.

For a fixed τ , there are $(q^n - 1)/(q - 1)$ values of x for which $-\tau/x \in ZQ$. For these elements x, equation (10) may or may not possess solutions for y, as mentioned earlier. If it does have solutions, it has q of them, leading to q points with the same x-coordinate. These points, together with $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, make up a full secant.

As explained above, it follows from [1, Theorem 19] that in order to decide whether equation (10) has solutions, one needs to consider the expression $\Xi(\theta/\omega^q)$, where $\omega^{q-1} = -\tau/x, \ \theta = -(x^{q+1} + s)/x.$ We have

$$\frac{\theta}{1} = -\frac{x^{q+1} + s}{1} = -\left(\frac{x}{1}\right)^q + \frac{s}{1} = \left(\frac{\tau}{1}\right)^q + \frac{s}{1}$$

$$\frac{\theta}{\omega^q} = -\frac{x^{q+1}+s}{x\omega^q} = -\left(\frac{x}{\omega}\right)^q + \frac{s}{\tau\omega} = \left(\frac{\tau}{\omega^q}\right)^q + \frac{s}{\tau\omega} = \left(\frac{\tau^{q+1}}{\tau^q\omega^q}\right)^q + \frac{s}{\tau\omega}.$$

11 0

Hence, as Ξ is an additive function and also $\Xi(x^q) = \Xi(x)$ (easy consequences of the definition of Ξ), we have the following implications:

$$\begin{split} \Xi\left(\frac{\theta}{\omega^q}\right) &= 0 \Rightarrow \Xi\left(\frac{s}{\tau\omega}\right) = -\Xi\left(\frac{\tau^{q+1}}{\tau^q\omega^q}\right)^q = -\Xi\left(\frac{\tau^{q+1}}{\tau^q\omega^q}\right) = -\Xi\left(\frac{\tau^{1+1/q}}{\tau\omega}\right) \Rightarrow \\ \Xi\left(\frac{s+\tau^{1+1/q}}{\tau\omega}\right) &= 0. \end{split}$$

It has been shown in [1, Theorem 15] that for any $a \in GF(q)$, the equation $\Xi(x) = a$ possesses q^{n-1} distinct roots. If a = 0, one root is clearly 0, but we cannot accept it, because $s + \tau^{1+1/q} = 0 \Rightarrow -s \in Q$. Therefore we have $q^{n-1} - 1$ acceptable solutions for the expression $(s + \tau^{1+1/q})/\tau\omega$. As s and τ are fixed, this yields $q^{n-1}-1$ values for ω .

If ω is one solution, then so is $a\omega$ for all $a \in GF(a)$, because the definition of Ξ implies $\Xi(ac) = a \cdot \Xi(c)$ for every $a \in GF(q)$ and any c. Since $a \in GF(q) \Rightarrow (a\omega)^{q-1} = \omega^{q-1}$, it follows that all the q-1 elements $a\omega$, as a ranges through $GF(q) \setminus \{0\}$, yield the same value for $x = -\tau/\omega^{q-1}$. We have thus arrived at $(q^{n-1}-1)/(q-1)$ distinct values of x for which equation (10) gives q values of y, for a total of $(q^n - q)/(q - 1)$ points. These, together with $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, make up a set B comprising $(q^n - 1)/(q - 1)$ points.

As each x gives rise to q values of y, we see that in the set B, all the secants

through $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$ are full.

In order to establish that B is a geometry, we have to demonstrate that if a line meets two sides of a triangle whose vertices are in B, it intersects the third side at a point within B as well. If none of the three vertices is $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, side at a point within *B* as well. If none of the three vertices is $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, the proof is the same as for the A_i 's. But in the case in which one vertex is $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T$, it is necessary to show that if $\begin{pmatrix} c & d & 1 \end{pmatrix}^T$, $\begin{pmatrix} e & f & 1 \end{pmatrix}^T \in B$, then the line joining a point $\begin{pmatrix} c & d+\ell & 1 \end{pmatrix}^T \in [\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} c & d & 1 \end{pmatrix}^T], \ \ell \neq 0$, to a point $\begin{pmatrix} e & f+m & 1 \end{pmatrix}^T \in [\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}^T, \begin{pmatrix} e & f & 1 \end{pmatrix}^T], \ m \neq 0$, intersects the line $[\begin{pmatrix} c & d & 1 \end{pmatrix}^T, \begin{pmatrix} e & f & 1 \end{pmatrix}^T]$ within *B*.

The lines $\begin{bmatrix} c & d+\ell & 1 \end{bmatrix}^{T}$, $\begin{pmatrix} e & f+m & 1 \end{pmatrix}^{T}$ and $\begin{bmatrix} c & d & 1 \end{bmatrix}^{T}$, $\begin{pmatrix} e & f & 1 \end{pmatrix}^{T}$ meet at the point $(\ell - cm - \ell - dm - \ell - m)^T$, and we have to demonstrate that

$$(e\ell - cm)^{q+1} + (e\ell - cm)(f\ell - dm)^q + \tau(f\ell - dm)(\ell - m)^q + s(\ell - m)^{q+1} = 0.(15)$$

As $\begin{pmatrix} c & d+\ell & 1 \end{pmatrix}^T$, $\begin{pmatrix} e & f+m & 1 \end{pmatrix}^T \in B \subset A$, we have $c^{q+1} + c(d+\ell)^q + \tau(d+\ell) + s = 0$ and $e^{q+1} + e(f+m)^q + \tau(f+m) + s = 0.$ Since $\begin{pmatrix} c & d & 1 \end{pmatrix}^T$, $\begin{pmatrix} e & f & 1 \end{pmatrix}^T \in B$ as well, these equations yield $\ell^{q-1} = -\tau/c$ and $m^{q-1} = -\tau/e$.

Upon multiplying out the left side of equation (15) and using the fact that the points $\begin{pmatrix} c & d & 1 \end{pmatrix}^T$ and $\begin{pmatrix} e & f & 1 \end{pmatrix}^T$ are in A, it reduces to $\ell^q m(ce^q + cf^q + \tau d + s) + \ell m^q (c^q e + d^q e + \tau f + s) = 0$. Since $\tau d + s = -c^{q+1} - cd^q$ and $\tau f + s = -e^{q+1} - ef^q$, we arrive, after dividing

by ℓm , at $\ell^{q-1}c(e+f-c-d)^q + m^{q-1}e(c+d-e-f)^q = 0$. But $\ell^{q-1} = -\tau/c$ and $m^{q-1} = -\tau/e$, so that the last equation is an obvious identity.

We pass now to the last paragraph of the theorem: note that for q = 2 it is vacuous, because in this case there is only one PG(n-1,2), namely B.

It has been shown earlier in the proof that lines joining two points from different A_i 's are short secants. It has also been shown (Lemma 2) that the lines joining the points $\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & -s/\tau & 1 \end{pmatrix}^T$ to any other point in A are short secants. What is left to do is demonstrate that for any $i \in \{1, 2, \ldots, q-2\}$, a line $[\mathbf{a}, \mathbf{b}]$ with $\mathbf{a} \in A_i$ and $\mathbf{b} \in B$, has no other point in common with A. Assume, to the contrary, that there is another point $\mathbf{c} \in A_i$ so that $\operatorname{coll}(\mathbf{a}, \mathbf{b}, \mathbf{c})$. Then since A_i must comprise q-1 more points collinear with **a** and **c**, we obtain a full secant with more than q+1 points. This violates Lemma 1.

The same contradiction is arrived at if $coll(\mathbf{a}, \mathbf{b}, \mathbf{c})$ with $\mathbf{c} \in B$.

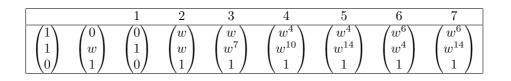
If, on the other hand, $\mathbf{c} \in A_j, j \neq i$, and $\operatorname{coll}(\mathbf{a}, \mathbf{b}, \mathbf{c})$, then the line $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ would not have any other point within A: we already know that the line $[\mathbf{a}, \mathbf{c}]$ has no other point in common with $\bigcup_{i=1}^{q-2} A_i$, and it cannot in tersect the set B at a point other than **b**, either, as that would lead again to a full secant with more than q+1points. Therefore the line $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$ would be a three-point full secant. But 3 < q+1for q > 2, hence the conclusion of Lemma 1 would be violated again. \square

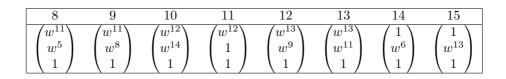
Corollary 1. $|A| = q^n + 1$.

Proof. The set A consists of two points $\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 0 & -s/\tau & 1 \end{pmatrix}^T$, plus the mutually disjoint subsets $A_1, A_2, \ldots, A_{q-2}, B$, each of which has cardinality $(q^n - q^n)$

1)/(q-1). The conclusion follows readily.

Example 1. Let w be a primitive root of the finite field $GF(2^4)$, where $w^4 = w + 1$ over GF(2). In the projective plane $PG(2, 2^4)$, consider the 17 points satisfying the equation $x^3 + xy^2 + yz^2 + wz^3 = 0$:





The 15 numbered points make up a projective geometry PG(3, 2). Its 35 lines are:

 $(1\ 2\ 3),\ (1\ 4\ 5),\ (1\ 6\ 7),\ (1\ 8\ 9),\ (1\ 10\ 11),\ (1\ 12\ 13),\ (1\ 14\ 15),\ (2\ 4\ 15),\ (2\ 5\ 14),\ (2\ 6\ 9),\ (2\ 7\ 8),\ (2\ 10\ 13),\ (2\ 11\ 12),\ (3\ 4\ 14),\ (3\ 5\ 15),\ (3\ 6\ 8),\ (3\ 7\ 9),\ (3\ 10\ 12),\ (3\ 11\ 13),\ (4\ 6\ 10),\ (4\ 7\ 11),\ (4\ 8\ 12),\ (4\ 9\ 13),\ (5\ 6\ 11),\ (5\ 7\ 10),\ (5\ 8\ 13),\ (5\ 9\ 12),\ (6\ 12\ 14),\ (6\ 13\ 15),\ (7\ 12\ 15),\ (7\ 13\ 14),\ (8\ 10\ 14),\ (8\ 11\ 15),\ (9\ 10\ 15),\ (9\ 11\ 14).$

References

 B.C. Kestenband, The correlations of finite Desarguesian planes, Part I: Generalities. J. Geom. 77 (2003), 61-101.

Department of Mathematics, New York Institute of Technology, Old Westbury, NY 11568, USA

E-mail address: bkestenb@nyit.edu