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Abstract. We show that every finite projective geometry can be embedded
in a projective plane of suitable order. Specifically: in PG(2, qn), the set of

points




x
y
z


 satisfying the equation xq+1+xyq +τyzq +szq+1 = 0, with τ 6= 0

and −s not a (q + 1)th power, contains qn + 1 points. If the points



−1
1
0




and




0
−s/τ

1


 are removed, the remaining subset is a disjoint union of q − 1

equicardinal subsets, each of which is isomorphic to PG(n− 1, q).

We will represent the points of a projective plane by column vectors, but in the

interest of economy of space we will write
(
x y z

)T instead of




x
y
z


. However,

when no coordinates are necessary - which happens in a few places in the proof of
the Theorem - we will use lower case boldface letters to denote points.
The following symbols will be used:

Q: the subset of the finite field GF(qn) comprising the nonvanishing
(q + 1)th powers;
ZQ: the subset of GF(qn) comprising the (q − 1)th powers (0 ∈ ZQ);
Ξ(x) = xqn−1

+ xqn−2
+ · · ·+ xq + x, over GF(qn).
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We shall denote by A, the set of points
(
x y z

)T satisfying the equation

xq+1 + xyq + τyzq + szq+1 = 0 , (1)

with τ 6= 0 and −s /∈ Q ∪ {0}.
We will also say that a line in the projective plane PG(2, qn) is a short secant or
a full secant if it intersects the set A at two points or at more than two points,
respectively.

Lemma 1. A full secant has q + 1 points in common with the set A.

Proof. Let
(
a b c

)T ,
(
d e f

)T ,
(
a + `d b + `e c + `f

)T ∈ A for some
` 6= 0. Then, by virtue of (1), we have

aq+1 + abq + τbcq + scq+1 = 0 , (2)

dq+1 + deq + τefq + sfq+1 = 0 , (3)

(a + `d)q+1 + (a + `d)(b + `e)q + τ(b + `e)(c + `f)q + s(c + `f)q+1 = 0 . (4)

Note that our assumption that −s /∈ Q implies be 6= 0 and also ` 6= −b/e.
Upon expanding the left side of equation (4), one obtains an expression which re-
duces, because of equations (2), (3), to a binomial α`q + β`, where α, β, depend
upon the values of a,b,c,d,e,f ,τ ,s. We cannot have α = β = 0, because that would
entail that ` can be any element of our field, including −b/e, which has been ruled
out in the preceding paragraph.
If α = 0 and β 6= 0 or if α 6= 0 and β = 0, we get ` = 0, i.e. the line
[
(
a b c

)T
,
(
d e f

)T ] is a short secant. The same thing takes place if αβ 6= 0
and −β/α /∈ ZQ.
If −β/α ∈ ZQ, the equation α`q + β` = 0 yields q− 1 nonvanishing solutions for
`, and the ratio of any two solutions is a member of the GF(q) subfield. In this
case the line in question has q + 1 points in common with A. ¤

The restriction −s /∈ Q precludes the possibility y = 0 in equation (1). Then
z = 0 ⇒ either x = 0 or x = −y, whereas x = 0 ⇒ either z = 0 or y = −sz/τ .
Therefore there are exactly three points

(
x y z

)T ∈ A with xyz = 0.

Lemma 2. The lines joining the points
(−1 1 0

)T ,
(
0 −s/τ 1

)T , to any
other point in A are short secants.

Proof. The lines [
(
0 1 0

)T
,
(−1 1 0

)T ] and [
(
0 1 0

)T
,
(
0 −s/τ 1

)T ]
are short secants, clearly.
The line [

(−1 1 0
)T

,
(
0 −s/τ 1

)T ] has equation τx + τy + sz = 0. If a

point
(
a b 1

)T lies on this line, we have s = −τ(a + b). If
(
a b 1

)T ∈ A,
we also have aq+1 + abq + τb + s = 0. Substitute here the expression for s that
we have just obtained to arrive at τ = (a + b)q. As a consequence, we obtain
s = −(a + b)q(a + b) = −(a + b)q+1, in conflict with our assumption that −s /∈ Q.
We have thus established that the line [

(−1 1 0
)T

,
(
0 −s/τ 1

)T ] is a short
secant.
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Next consider the lines [
(−1 1 0

)T
,
(
a b 1

)T ],
(
a b 1

)T ∈ A. If ` 6= 0 and

the point
(
a− ` b + ` 1

)T ∈ A, then (a−`)q+1+(a−`)(b+`)q +τ(b+`)+s = 0.

Upon expanding the left side of this equation and using the fact that
(
a b 1

)T ∈
A, i.e. that

aq+1 + abq + τb + s = 0, (5)

we are left with τ = (a + b)q. Substitute this expression for τ into (5) to ar-
rive again at the contradiction s = −(a + b)q+1.
Finally, we look at the lines [

(
0 −s/τ 1

)T
,
(
a b 1

)T ],
(
a b 1

)T ∈ A. If

the point
(
a b− `s/τ 1 + `

)T ∈ A, we get aq+1 +a(b− `s/τ)q + τ(b− `s/τ)(1+
`q) + s(1 + `)q+1 = 0.
By virtue of (5) again, this reduces to τb + s = asq/τ q. Upon substituting this
expression for τb+ s into (5), we obtain τa+ τb+ s = 0, whence τa+asq/τ q = 0,
i.e. −sq ∈ Q, which is equivalent to −s ∈ Q, the same contradiction again. ¤

Lemma 3. The line joining two points
(
a b 1

)T
,
(
c d 1

)T ∈ A, with a 6= c,
contains q − 1 more points of A if c/a ∈ ZQ, and does not contain any other
point of A otherwise.

Proof. By assumption, equation (5) holds, and also

cq+1 + cdq + τd + s = 0. (6)

Assume that the point
(
a + `c b + `d 1 + `

)T , ` 6= 0, is also in A:

(a + `c)q+1 + (a + `c)(b + `d)q + τ(b + `d)(1 + `q) + s(1 + `)q+1 = 0. (7)

By virtue of (5), (6), this equation reduces to (acq + adq + τb + s)`q + (aqc +
bqc + τd + s)` = 0.
Now substitute into this equation the expressions for τb + s and τd + s obtained
from (5), (6), to arrive at the equation

a(c + d− a− b)q`q = c(c + d− a− b)q`. (8)

We will now show that c+ d− a− b 6= 0. Assume, contrariwise, that a+ b = c+ d,
and subtract equation (6) from (5): a(a + b)q − c(c + d)q + τ(b− d) = 0.
If a + b = c + d, this equation becomes (a − c)(a + b)q + τ(b − d) = 0, whence
(a − c)(a + b)q = τ(d − b) = τ(a − c). As a 6= c by assumption, we end up with
τ = (a + b)q. Equation (5), rewritten as a(a + b)q + τb + s = 0, now becomes
a(a+b)q +b(a+b)q +s = 0, whence s = −(a+b)q+1, contradicting our assumption
that −s /∈ Q.
Having established that a + b 6= c + d, equation (8) reduces to

`q−1 = c/a. (9)

This shows that c/a ∈ ZQ and necessity has been demonstrated.
The proof for sufficiency is a fairly simple matter and we omit it. ¤
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Theorem 1. The subset of A comprising the points
(
x y z

)T with xyz 6= 0

and the point
(
0 1 0

)T can be partitioned into q − 1 subsets, each of which is
a projective geometry PG(n − 1, q), with collinearity inherited from the projective
plane PG(2, qn).
Every line of the plane which joins two points of A not in the same PG(n − 1, q)
subset, is a short secant.

Proof. If xyz 6= 0, we let z = 1 and write equation (1) as

yq = −τ

x
y − xq+1 + s

x
. (10)

Denote −τ/x = λ, −(xq+1 + s)/x = θ. Then equation (10) becomes

yq = λy + θ. (11)

It was shown in [1, Theorem 19] that equation (11) possesses a unique solution
for y if λ /∈ ZQ, whereas for λ ∈ ZQ it has q solutions if Ξ(θ/ωq) = 0 and no
solution otherwise, where ω is any one of the q− 1 elements of GF(qn) satisfying
λ = ωq−1.
We treat first the case λ = −τ/x /∈ ZQ.
Our field comprises (qn − 1)(q − 2)/(q − 1) elements that are not members of
ZQ. Hence, as τ is fixed, there are this many elements x for which λ /∈ ZQ.
Each of these x’s leads to a unique value of y from equation (10), thereby pro-
ducing (qn − 1)(q − 2)/(q − 1) points

(
x y 1

)T satisfying equation (1). More-
over, these points fall into q − 2 mutually disjoint subsets A1, A2, . . ., Aq−2,
where |Ai| = (qn − 1)/(q − 1) for all i and such that two points

(
a b 1

)T ,(
c d 1

)T ∈ A are in the same subset Ai if and only if c/a ∈ ZQ. It follows
then from Lemma 3 that all the secants within each Ai are full - and they contain
q + 1 points of Ai, in virtue of Lemma 1 - while the lines joining two points from
different Ai’s do not intersect the set ∪q−2

i=1 Ai again.
To prove that the Ai’s are projective geometries, consider three noncollinear points(
a b 1

)T ,
(
c d 1

)T ,
(
e f 1

)T ∈ Ai for a fixed i. We will show that a line

joining a point
(
a + `c b + `d 1 + `

)T ∈ [
(
a b 1

)T
,
(
c d 1

)T ], ` 6= 0, to a

point
(
a + me b + mf 1 + m

)T ∈ [
(
a b 1

)T
,
(
e f 1

)T ], m 6= 0, intersects

the line through the points
(
c d 1

)T ,
(
e f 1

)T within the same Ai subset.
By assumption, equations (5), (6), (7), (9), hold, and also

eq+1 + efq + τf + s = 0, (12)

(a + me)q+1 + (a + me)(b + mf)q + τ(b + mf)(1 + m)q + s(1 + m)q+1 = 0. (13)

Equations (5) and (12) reduce equation (13) to

mq−1 = e/a. (14)
It is easy to see that the line joining the points

(
a + `c b + `d 1 + `

)T and(
a + me b + mf 1 + m

)T and the line [
(
c d 1

)T
,
(
e f 1

)T ] intersect at
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the point
(
`c−me `d−mf `−m

)T . We have to show that this point is in Ai,
i.e. that it satisfies equation (1):

(`c−me)q+1 + (`c−me)(`d−mf)q + τ(`d−mf)(`−m)q + s(`−m)q+1 = 0.

Expand the left side of this equation, then use equations (6), (12), to reduce it to

`qm(cqe + dqe + τf + s) + `mq(ceq + cfq + τd + s) = 0.

Substitute here τf + s = −eq+1 − efq and τd + s = −cq+1 − cdq, and divide by
`m:

`q−1e(c + d− e− f)q + mq−1c(e + f − c− d)q = 0.

Use now the expressions for `q−1 and mq−1 as given by (9) and (14) to arrive at
the following obvious identity:

c

a
e(c + d− e− f)q +

e

a
c(e + f − c− d)q = 0.

We have thus established that the Ai’s are projective geometries indeed.
We pass now to the case in which λ = −τ/x ∈ ZQ.
For a fixed τ , there are (qn − 1)/(q − 1) values of x for which −τ/x ∈ ZQ.
For these elements x, equation (10) may or may not possess solutions for y, as
mentioned earlier. If it does have solutions, it has q of them, leading to q points
with the same x-coordinate. These points, together with

(
0 1 0

)T , make up a
full secant.
As explained above, it follows from [1, Theorem 19] that in order to decide whether
equation (10) has solutions, one needs to consider the expression Ξ(θ/ωq), where
ωq−1 = −τ/x, θ = −(xq+1 + s)/x.
We have

θ

ωq
= −xq+1 + s

xωq
= −

(x

ω

)q

+
s

τω
=

( τ

ωq

)q

+
s

τω
=

(
τ q+1

τ qωq

)q

+
s

τω
.

Hence, as Ξ is an additive function and also Ξ(xq) = Ξ(x) (easy consequences of
the definition of Ξ), we have the following implications:

Ξ
(

θ

ωq

)
= 0 ⇒ Ξ

( s

τω

)
= −Ξ

(
τ q+1

τ qωq

)q

= −Ξ
(

τ q+1

τ qωq

)
= −Ξ

(
τ1+1/q

τω

)
⇒

Ξ
(

s + τ1+1/q

τω

)
= 0.

It has been shown in [1, Theorem 15] that for any a ∈GF(q), the equation Ξ(x) = a
possesses qn−1 distinct roots. If a = 0, one root is clearly 0, but we cannot accept
it, because s + τ1+1/q = 0 ⇒ −s ∈ Q. Therefore we have qn−1 − 1 acceptable
solutions for the expression

(
s + τ1+1/q

)
/τω. As s and τ are fixed, this yields

qn−1 − 1 values for ω.
If ω is one solution, then so is aω for all a ∈GF(q), because the definition of Ξ implies
Ξ(ac) = a ·Ξ(c) for every a ∈GF(q) and any c. Since a ∈GF(q) ⇒ (aω)q−1 = ωq−1,
it follows that all the q − 1 elements aω, as a ranges through GF(q) \ {0}, yield
the same value for x = −τ/ωq−1. We have thus arrived at (qn−1 − 1)/(q − 1)
distinct values of x for which equation (10) gives q values of y, for a total of
(qn − q)/(q − 1) points. These, together with

(
0 1 0

)T , make up a set B
comprising (qn − 1)/(q − 1) points.
As each x gives rise to q values of y, we see that in the set B, all the secants
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through
(
0 1 0

)T are full.
In order to establish that B is a geometry, we have to demonstrate that if a
line meets two sides of a triangle whose vertices are in B, it intersects the third
side at a point within B as well. If none of the three vertices is

(
0 1 0

)T ,
the proof is the same as for the Ai’s. But in the case in which one vertex is(
0 1 0

)T , it is necessary to show that if
(
c d 1

)T ,
(
e f 1

)T ∈ B, then

the line joining a point
(
c d + ` 1

)T ∈ [
(
0 1 0

)T
,
(
c d 1

)T ], ` 6= 0, to

a point
(
e f + m 1

)T ∈ [
(
0 1 0

)T
,
(
e f 1

)T ], m 6= 0, intersects the line

[
(
c d 1

)T
,
(
e f 1

)T ] within B.

The lines [
(
c d + ` 1

)T
,
(
e f + m 1

)T ] and [
(
c d 1

)T
,
(
e f 1

)T ] meet

at the point
(
e`− cm f`− dm `−m

)T , and we have to demonstrate that

(e`− cm)q+1 +(e`− cm)(f`− dm)q + τ(f`− dm)(`−m)q + s(`−m)q+1 = 0.(15)

As
(
c d + ` 1

)T ,
(
e f + m 1

)T ∈ B ⊂ A, we have

cq+1 +c(d+ `)q +τ(d+ `)+s = 0 and eq+1 +e(f +m)q +τ(f +m)+s = 0.

Since
(
c d 1

)T
,
(
e f 1

)T ∈ B as well, these equations yield `q−1 = −τ/c

and mq−1 = −τ/e.
Upon multiplying out the left side of equation (15) and using the fact that the
points

(
c d 1

)T and
(
e f 1

)T are in A, it reduces to `qm(ceq + cfq + τd +
s) + `mq(cqe + dqe + τf + s) = 0.
Since τd + s = −cq+1 − cdq and τf + s = −eq+1 − efq, we arrive, after dividing
by `m, at `q−1c(e + f − c − d)q + mq−1e(c + d − e − f)q = 0. But `q−1 = −τ/c
and mq−1 = −τ/e, so that the last equation is an obvious identity.
We pass now to the last paragraph of the theorem: note that for q = 2 it is vacuous,
because in this case there is only one PG(n− 1, 2), namely B.
It has been shown earlier in the proof that lines joining two points from different
Ai’s are short secants. It has also been shown (Lemma 2) that the lines joining
the points

(−1 1 0
)T

,
(
0 −s/τ 1

)T to any other point in A are short secants.
What is left to do is demonstrate that for any i ∈ {1, 2, . . . , q−2}, a line [a,b] with
a ∈ Ai and b ∈ B, has no other point in common with A. Assume, to the contrary,
that there is another point c ∈ Ai so that coll(a,b, c. Then since Ai must comprise
q − 1 more points collinear with a and c, we obtain a full secant with more than
q + 1 points. This violates Lemma 1.
The same contradiction is arrived at if coll(a,b, c) with c ∈ B.
If, on the other hand, c ∈ Aj , j 6= i, and coll(a,b, c), then the line [a,b, c] would
not have any other point within A: we already know that the line [a, c] has no
other point in common with ∪q−2

i=1 Ai, and it cannot in tersect the set B at a point
other than b, either, as that would lead again to a full secant with more than q +1
points. Therefore the line [a,b, c] would be a three-point full secant. But 3 < q +1
for q > 2, hence the conclusion of Lemma 1 would be violated again. ¤
Corollary 1. |A| = qn + 1.

Proof. The set A consists of two points
(−1 1 0

)T
,
(
0 −s/τ 1

)T , plus the
mutually disjoint subsets A1, A2, . . . , Aq−2, B, each of which has cardinality (qn −



EMBEDDING FINITE PROJECTIVE GEOMETRIES 33

1)/(q − 1).
The conclusion follows readily. ¤
Example 1. Let w be a primitive root of the finite field GF(24), where w4 = w+1
over GF(2). In the projective plane PG(2, 24), consider the 17 points satisfying the
equation x3 + xy2 + yz2 + wz3 = 0:

1 2 3 4 5 6 7


1
1
0







0
w
1







0
1
0







w
w
1







w
w7

1







w4

w10

1







w4

w14

1







w6

w4

1







w6

w14

1




8 9 10 11 12 13 14 15


w11

w5

1







w11

w8

1







w12

w14

1







w12

1
1







w13

w9

1







w13

w11

1







1
w6

1







1
w13

1




The 15 numbered points make up a projective geometry PG(3, 2). Its 35 lines
are:
(1 2 3), (1 4 5), (1 6 7), (1 8 9), (1 10 11), (1 12 13), (1 14 15), (2 4 15), (2 5 14),
(2 6 9), (2 7 8), (2 10 13), (2 11 12), (3 4 14), (3 5 15), (3 6 8), (3 7 9), (3 10 12),
(3 11 13), (4 6 10), (4 7 11), (4 8 12), (4 9 13), (5 6 11), (5 7 10), (5 8 13), (5 9 12),
(6 12 14), (6 13 15), (7 12 15), (7 13 14), (8 10 14), (8 11 15), (9 10 15), (9 11 14).
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