PROJECTIVE EQUIVALENCE OF QUADRICS IN KLINGENBERG PROJECTIVE SPACES OVER A SPECIAL LOCAL RING

MAREK JUKL AND VÁCLAV SNÁŠEL
(Communicated by Josef MIKEŠ)

Abstract

This article is devoted to the projective equivalence of quadrics in Klingenberg projective spaces over a special type of local ring. Signature of quadrics is introduced by a suitable way (as a generalization of this one for quadrics in projective spaces over fields) and projective equivalence criterion is found.

1. Introduction

W. Klingenberg [2] has introduced certain incidence structure which may be considered as a generalization of projective spaces (over fields). This structure was later denominated by his name. F. Machala [1] studied Klingenberg projective spaces over a local ring.

One special type of local ring is used in this article, namely plural algebra of finite order which may be taken as a natural generalization of the s.c. dual numbers. It is used for example in mathematical statistics or dynamics of solid body.

The free finite dimensional modules over special local rings were studied by author and the results may be used for description of Klingenberg projective spaces over plural algebras.

Definition 1.1. A plural algebra over a field T of order m is any linear algebra \mathbf{A} on T having as a vector space over T a basis

$$
\left\{1, \eta, \eta^{2}, \ldots, \eta^{m-1}\right\}, \text { with } \eta^{m}=0
$$

In the case $T=\mathbb{R}$ we use the notion real plural algebra or plural numbers.
Throughout this paper we will denote by \mathbf{A} denote the real plural algebra of order m.

[^0]Remark 1.1. Any element β of \mathbf{A} has the unique expression in the form

$$
\beta=\sum_{i=0}^{m-1} b_{i} \eta^{i} .
$$

We get a system of homomorphisms p_{0}, \ldots, p_{m-1} of \mathbf{A} onto \mathbb{R} which are naturally given for all $k=0, \ldots, m-1$ by

$$
p_{k}(\beta)=b_{k} .
$$

Remark 1.2. Every plural algebra \mathbf{A} is a local ring with the maximal ideal $\eta \mathbf{A}$. The ideals $\eta^{j} \mathbf{A}, 1 \leq j \leq m$, are just all ideals of \mathbf{A}.

Remark 1.3. Let \mathbf{M} be a free finite dimensional module over \mathbf{A}. It is well known that since \mathbf{A} is a local ring all bases of \mathbf{M} have the same number of elements and from every system of generators of \mathbf{M} we may select a basis of \mathbf{M}.

Moreover in our case the module \mathbf{M} has the following qualities (proved by the author in [3]):
(1) Any linearly independent system can be completed to a basis of \mathbf{M}.
(2) A submodule of \mathbf{M} is a free module if and only if it is a direct summand of M.

Free finite dimensional modules over a local ring \mathbf{R} are called \mathbf{R}-spaces (see e.g. [5]) and their direct summands \mathbf{R}-subspaces.

Now, we may formulated the remark 2. by the following way:
(3) A-subspaces of \mathbf{A}-space \mathbf{M} are just all free submodules of \mathbf{M}.

For \mathbf{A}-subspaces of \mathbf{M} it holds (proved in [3]):
(4) Let K, L be \mathbf{A}-subspaces of the \mathbf{A}-space \mathbf{M}. Then $K+L$ is an \mathbf{A}-subspace if and only if $K \cap L$ is an A-subspace. In this case the dimensions of A-subspaces fulfil the following relation:

$$
\operatorname{dim}(K+L)+\operatorname{dim}(K \cap L)=\operatorname{dim} K+\operatorname{dim} L .
$$

It follows from this remarks that the following lemma holds.
Lemma 1.1. Let \mathbf{M} be an \mathbf{A}-space and let $\overline{\mathbf{M}}$ be a vector space $\mathbf{M} / \eta \mathbf{M}$. Then elements $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ form a linearly independent system in \mathbf{M} if and only if cosets $\overline{\mathbf{u}}_{1}, \ldots, \overline{\mathbf{u}}_{k}$ form a linearly independent system in $\overline{\mathbf{M}}$.

According to [1] we define:
Definition 1.2. Let \mathbf{R} be a local ring with the maximal ideal r. Let us denote $\mathbf{M}=\mathbf{R}^{n+1}, \overline{\mathbf{M}}=\mathbf{M} / r \mathbf{M}, \overline{\mathbf{R}}=\mathbf{R} / r$, and let μ be a natural homomorphism $\mathbf{M} \rightarrow \overline{\mathbf{M}}$. Then the incidence structure P_{R} such that
(1) the points are just all submodules $[\mathbf{x}]$ of \mathbf{M} such that $\mu(\mathbf{x})$ is a non-zero element of $\overline{\mathrm{M}}$,
(2) the lines are just all submodules $[\mathbf{x}, \mathbf{y}]$ of \mathbf{M} such that $[\mu(\mathbf{x}), \mu(\mathbf{y})]$ is a 2-dimensional subspace of $\overline{\mathbf{M}}$,
(3) the incidence relation is the inclusion,
is called n-dimensional coordinate projective Klingenberg space over the ring \mathbf{R}.
If $X=[\mathbf{x}]$ is a point of P_{R}, then \mathbf{x} will be called an arithmetic representative of X .

We obtain from Definition 1.2, Lemma 1.1 and Remark 1.3 the following description of Klingenberg projective spaces in our case. We may see that for the case $m=0$ (where m is the order of plural algebra \mathbf{A}) Klingenberg projective space becomes "usual" projective space (over a field).

Corollary 1.1.

(1) The points of the Klingenberg space P_{A} are just all 1-dimensional \mathbf{A}-subspaces of \mathbf{M}. The k-dimensional subspaces of the Klingenberg space P_{A} are just all $(k+1)$-dimensional \mathbf{A}-subspaces of $\mathbf{M}, 1 \leq k \leq n-1$,
(2) $X=[\mathbf{x}]$ is a point of P_{A} if and only if $\mathbf{x} \in \mathbf{M}-\eta \mathbf{M}$.

2. Projective equivalence of quadrics in Klingenberg projective SPACES

Definition 2.1. Let an automorphism f of the \mathbf{A}-space \mathbf{M} be given ${ }^{1}$. Then the mapping $C_{f}: P_{A} \rightarrow P_{A}$ defined by

$$
\forall X=[\mathbf{x}] \in P_{A}: C_{f}(X)=[f(\mathbf{x})]
$$

is called a collineation in Klingenberg projective space P_{A} (induced by the automorphism f).
Remark 2.1. Without troubles we may prove that two automorphisms f, g of the A-space \mathbf{M} induce the same collineation in P_{A} (i.e. $C_{f}=C_{g}$) iff there exists a unit $\alpha \in \mathbf{A}-\eta \mathbf{A}$ with $g=\alpha f$.

Definition 2.2. Let a quadratic form φ_{2} on \mathbf{M} be given. Then the set $Q_{\varphi_{2}}$ defined by

$$
Q_{\varphi_{2}}=\left\{X=[\mathbf{x}] \in P_{A} ; \mathbf{x} \notin \eta \mathbf{M} \wedge \varphi_{2}(\mathbf{x})=0\right\}
$$

is called a quadric in P_{A} (determined by the quadratic form φ_{2}).
Now let us introduce the notion of equivalence of quadrics by a very natural way:
Definition 2.3. Quadrics Q and Q^{\prime} on P_{A} will be called projectively equivalent if there exists a collineation C in P_{A} such that

$$
Q^{\prime}=C(Q)
$$

Evidently, this relation is equivalence on the set of quadrics on P_{A}.
Definition 2.4. Let a quadric $Q_{\varphi_{2}}$ on P_{A} be given. An arithmetic basis $\mathcal{A}=$ $\left\{\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ will be called a normal polar basis of P_{A} with respect to the $Q_{\varphi_{2}}$ if
(1) \mathcal{A} is a polar basis of \mathbf{M} with respect to the quadratic form φ_{2},
(2) for every $i, 1 \leq i \leq n$, there exists $k, 0 \leq k \leq m$, such that

$$
\varphi_{2}\left(\mathbf{u}_{i}\right)= \pm \eta^{k}
$$

It is proved in [4] that for every quadratic form on a free module over \mathbf{A} there exists a normal polar basis. Therefore we get clearly:
Proposition 2.1. Let a quadric Q on P_{A} be given. Then there exists at least one normal polar basis of P_{A} with respect to the Q.

The following notion is a natural generalization of the "usual" signature of a quadric in the projective space over real numbers.

[^1]Definition 2.5. Let a quadric $Q_{\varphi_{2}}$ on P_{A} and a normal polar basis \mathcal{A} of P_{A} with respect to $Q_{\varphi_{2}}$ be given. Then the set

$$
\mathfrak{S}\left(Q_{\varphi_{2}}\right)=\left\{\left(p_{0}, p_{1}, \ldots, p_{m-1}\right),\left(q_{0}, q_{1}, \ldots, q_{m-1}\right)\right\}
$$

where the numbers $p_{0}, p_{1} \ldots, p_{m-1}, q_{0}, q_{1}, \ldots, q_{m-1}$ are defined for all $k, 0 \leq k \leq$ $m-1$ as follows

$$
p_{k}=\operatorname{card}\left\{\mathbf{u} \in \mathcal{A} ; \varphi_{2}(\mathbf{u})=\eta^{k}\right\}, \quad n_{k}=\operatorname{card}\left\{\mathbf{u} \in \mathcal{A} ; \varphi_{2}(\mathbf{u})=-\eta^{k}\right\},
$$

will be called plural signature of the quadric $Q_{\varphi_{2}}$.
The aim of this article is to find a projective equivalence criterion for quadrics.
Let $Q_{\varphi_{2}}$ be a quadric and C_{f} a collineation in P_{A}. Evidently, the image $C\left(Q_{\varphi_{2}}\right)$ is a quadric determined by the quadratic form which is equal to the composition $f^{-1} \varphi_{2}$.

First, let a quadratic form φ_{2} on \mathbf{M} be given. If we introduce, for a certain normal polar basis of the \mathbf{A}-space \mathbf{M} with respect to the φ_{2}, the system of numbers $p_{0}, \ldots, p_{m-1}, q_{0}, \ldots, q_{m-1}$ by the same way as in definition 2.5 we may derive (see [4]) that the ordered $2 m$-tuple

$$
\mathfrak{S}\left(\varphi_{2}\right)=\left(p_{0}, p_{1}, \ldots, p_{m-1}, q_{0}, q_{1}, \ldots, q_{m-1}\right)
$$

is independent of the choose of the normal polar basis.
Further, let us consider two quadratic forms φ_{2} and ψ_{2} on \mathbf{M}. Now, using the fact above we may prove that there exists an automorphism f on \mathbf{M} with $f \psi_{2}=\varphi_{2}$ iff $\mathfrak{S}\left(\varphi_{2}\right)=\mathfrak{S}\left(\psi_{2}\right)$. (If \mathcal{A}_{φ}, resp. \mathcal{A}_{ψ}, are normal polar bases ${ }^{2}$ with respect to φ_{2}, resp. ψ_{2}, then the automorphism maps \mathcal{A}_{φ} onto $\mathcal{A}_{\psi_{2}}$).

Second, let Q be a quadric on P_{A} and let quadratic form φ_{2} as well as ψ_{2} determines this quadric. It may be shown that it is possible iff there exists a unit $\alpha \in \mathbf{A}-\eta \mathbf{A}$ with $\varphi_{2}=\alpha \psi_{2}$ or an automorphism f on \mathbf{M} such that $f \psi_{2}=\varphi_{2}$.

Let $\varphi_{2}=\alpha \psi_{2}$. It is clear that in the case $p_{0}(\alpha)>0$ we have $\mathfrak{S}\left(\varphi_{2}\right)=\mathfrak{S}\left(\psi_{2}\right)$. Denoting $\mathfrak{S}\left(\varphi_{2}\right)=\left(p_{0}, \ldots, p_{m-1}, q_{0}, \ldots, q_{m-1}\right)$ we obtain for $p_{0}(\alpha)<0$ that $\mathfrak{S}\left(\psi_{2}\right)=$ $\left(q_{0}, \ldots, q_{m-1}, p_{0}, \ldots, p_{m-1}\right)$. With respect to this fact the signature of quadric was introduced by the way above (definition 2.5) correctly.

Thirdly, let two quadrics Q, Q^{\prime} on P_{A} be given.
Let this quadrics have the same plural signature. It follows from this and from the previous paragraph that there exist quadratic forms φ_{2}, ψ_{2} such that

$$
Q=Q_{\varphi_{2}}, Q^{\prime}=Q_{\psi_{2}} \text { and } \mathfrak{S}\left(\varphi_{2}\right)=\mathfrak{S}\left(\psi_{2}\right) .
$$

As mentioned above we have guaranteed the existence of an automorphism f on \mathbf{M} with $f \psi_{2}=\varphi_{2}$, which gives $C_{f}(Q)=Q^{\prime}$. We obtain the projective equivalence of these given quadrics.

Now, let us suppose that Q, Q^{\prime} are projectively equivalent quadrics. Thus there exists a collineation C_{f} in P_{A} with $Q^{\prime}=C_{f}(Q)$. If φ_{2} is an arbitrary quadratic form determining Q (i.e. $Q=Q_{\varphi_{2}}$) then $\psi_{2}=f^{-1} \varphi_{2}$ is a quadratic form which determines quadric $C_{f}(Q)$ (i.e. $Q^{\prime}=Q_{\psi_{2}}$). It yields that $\mathfrak{S}\left(Q_{\varphi_{2}}\right)=\mathfrak{S}\left(Q_{\psi_{2}}\right)$, immediately.

We have proved the following theorem, which brings projective equivalence criterion.

[^2]Theorem 2.1. Let quadrics Q, Q^{\prime} on P_{A} be given. Then these quadrics are projectively equivalent if and only if

$$
\mathfrak{S}\left(Q_{\varphi_{2}}\right)=\mathfrak{S}\left(Q_{\psi_{2}}\right)
$$

References

[1] Machala, F., Fundamentalsätze der projektiven Geometrie mit Homomorphismus, Rozpravy ČSAV, Řada Mat. Přírod. Věd, 90(1980), no. 5, 81pp.
[2] Klingenberg, W., Projektive Geometrien mit Homomorphismus, Math. Annalen, 132(1956), 180-200.
[3] Jukl, M., Grassmann formula for certain type of modules, Acta UP Olomouc, Mathematica, 34(1995), 69-74.
[4] Jukl, M., Inertial law of quadratic forms on modules over plural algebra, Mathematica Bohemica, 120(1995), 255-263.
[5] McDonald, B.R., Geometric algebra over local rings, Pure and Appl. Math., New York, No. 36, 1976.

Department of Algebra and Geometry, Faculty of Science, Palacký University Olomouc, Tr. 17 listopadu 12, 77900 Olomouc, Czech Republic

E-mail address: marek.jukl@upol.cz
Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, 17. listopadu 15, 0833 Ostrava - Poruba, Czech Republic

E-mail address: vaclav.snasel@vsb.cz

[^0]: 2000 Mathematics Subject Classification. 51C05, 11E08.
 Key words and phrases. Klingenberg projective space, quadric, projective equivalence, plural numbers.

 Supported by grant No. 201/05/2707 of The Grant Agency of Czech Republic.

[^1]: ${ }^{1}$ the notion automorphism is considered in the obvious sense

[^2]: ${ }^{2}$ this notion is for quadratic forms introduced analogously as for the case of quadrics

