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PROJECTIVE EQUIVALENCE OF QUADRICS IN
KLINGENBERG PROJECTIVE SPACES OVER A SPECIAL

LOCAL RING

MAREK JUKL AND VÁCLAV SNÁŠEL

(Communicated by Josef MIKEŠ)

Abstract. This article is devoted to the projective equivalence of quadrics
in Klingenberg projective spaces over a special type of local ring. Signature
of quadrics is introduced by a suitable way (as a generalization of this one for
quadrics in projective spaces over fields) and projective equivalence criterion
is found.

1. Introduction

W. Klingenberg [2] has introduced certain incidence structure which may be
considered as a generalization of projective spaces (over fields). This structure was
later denominated by his name. F. Machala [1] studied Klingenberg projective
spaces over a local ring.

One special type of local ring is used in this article, namely plural algebra of
finite order which may be taken as a natural generalization of the s.c. dual numbers.
It is used for example in mathematical statistics or dynamics of solid body.

The free finite dimensional modules over special local rings were studied by
author and the results may be used for description of Klingenberg projective spaces
over plural algebras.

Definition 1.1. A plural algebra over a field T of order m is any linear algebra A
on T having as a vector space over T a basis

{1, η, η2, . . . , ηm−1}, with ηm = 0.

In the case T = R we use the notion real plural algebra or plural numbers.

Throughout this paper we will denote by A denote the real plural algebra of
order m.
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Remark 1.1. Any element β of A has the unique expression in the form

β =
m−1∑

i=0

biη
i.

We get a system of homomorphisms p0, . . . , pm−1 of A onto R which are naturally
given for all k = 0, . . . ,m− 1 by

pk(β) = bk.

Remark 1.2. Every plural algebra A is a local ring with the maximal ideal ηA.
The ideals ηjA, 1 ≤ j ≤ m, are just all ideals of A.

Remark 1.3. Let M be a free finite dimensional module over A. It is well known
that since A is a local ring all bases of M have the same number of elements and
from every system of generators of M we may select a basis of M.

Moreover in our case the module M has the following qualities (proved by the
author in [3]):

(1) Any linearly independent system can be completed to a basis of M.
(2) A submodule of M is a free module if and only if it is a direct summand

of M.
Free finite dimensional modules over a local ring R are called R-spaces (see e.g. [5])
and their direct summands R-subspaces.

Now, we may formulated the remark 2. by the following way:
(3) A-subspaces of A-space M are just all free submodules of M.

For A-subspaces of M it holds (proved in [3]):
(4) Let K, L be A-subspaces of the A-space M. Then K + L is an A-subspace

if and only if K ∩ L is an A-subspace. In this case the dimensions of
A-subspaces fulfil the following relation:

dim (K + L) + dim (K ∩ L) = dimK + dim L.

It follows from this remarks that the following lemma holds.

Lemma 1.1. Let M be an A-space and let M̄ be a vector space M/ηM. Then
elements u1, . . . ,uk form a linearly independent system in M if and only if cosets
ū1, . . . , ūk form a linearly independent system in M̄.

According to [1] we define:

Definition 1.2. Let R be a local ring with the maximal ideal r . Let us denote
M = Rn+1, M̄ = M/rM, R̄ = R/r, and let µ be a natural homomorphism M→M̄.

Then the incidence structure PR such that
(1) the points are just all submodules [x] of M such that µ(x) is a non-zero

element of M̄,
(2) the lines are just all submodules [x,y] of M such that [µ(x), µ(y)] is a

2-dimensional subspace of M̄,
(3) the incidence relation is the inclusion,

is called n-dimensional coordinate projective Klingenberg space over the ring R.

If X = [x] is a point of PR, then x will be called an arithmetic representative of X.
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We obtain from Definition 1.2, Lemma 1.1 and Remark 1.3 the following de-
scription of Klingenberg projective spaces in our case. We may see that for the
case m=0 (where m is the order of plural algebra A) Klingenberg projective space
becomes “ usual” projective space (over a field).

Corollary 1.1.
(1) The points of the Klingenberg space PA are just all 1-dimensional A-subspaces

of M. The k-dimensional subspaces of the Klingenberg space PA are just
all (k + 1)-dimensional A-subspaces of M, 1 ≤ k ≤ n− 1,

(2) X = [x] is a point of PA if and only if x ∈ M − ηM.

2. Projective equivalence of quadrics in Klingenberg projective
spaces

Definition 2.1. Let an automorphism f of the A-space M be given1. Then the
mapping Cf : PA → PA defined by

∀ X = [x] ∈ PA: Cf (X) = [f(x)]

is called a collineation in Klingenberg projective space PA (induced by the automor-
phism f ).

Remark 2.1. Without troubles we may prove that two automorphisms f , g of the
A-space M induce the same collineation in PA (i.e. Cf = Cg) iff there exists a unit
α ∈ A − ηA with g = αf .

Definition 2.2. Let a quadratic form ϕ2 on M be given. Then the set Qϕ2 defined
by

Qϕ2 = {X = [x] ∈ PA; x /∈ ηM ∧ ϕ2(x) = 0}
is called a quadric in PA (determined by the quadratic form ϕ2).

Now let us introduce the notion of equivalence of quadrics by a very natural way:

Definition 2.3. Quadrics Q and Q′ on PA will be called projectively equivalent if
there exists a collineation C in PA such that

Q′ = C(Q).

Evidently, this relation is equivalence on the set of quadrics on PA.

Definition 2.4. Let a quadric Qϕ2 on PA be given. An arithmetic basis A =
{u0,u1, . . . ,un} will be called a normal polar basis of PA with respect to the Qϕ2 if

(1) A is a polar basis of M with respect to the quadratic form ϕ2,
(2) for every i, 1 ≤ i ≤ n, there exists k, 0 ≤ k ≤ m, such that

ϕ2(ui) = ±ηk.

It is proved in [4] that for every quadratic form on a free module over A there
exists a normal polar basis. Therefore we get clearly:

Proposition 2.1. Let a quadric Q on PA be given. Then there exists at least one
normal polar basis of PA with respect to the Q.

The following notion is a natural generalization of the “ usual” signature of a
quadric in the projective space over real numbers.

1the notion automorphism is considered in the obvious sense
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Definition 2.5. Let a quadric Qϕ2 on PA and a normal polar basis A of PA with
respect to Qϕ2 be given. Then the set

S(Qϕ2) = {(p0, p1, . . . , pm−1), (q0, q1, . . . , qm−1)}
where the numbers p0, p1 . . . , pm−1, q0, q1, . . . , qm−1 are defined for all k, 0 ≤ k ≤
m− 1 as follows

pk = card{u ∈ A; ϕ2(u) = ηk}, nk = card{u ∈ A; ϕ2(u) = −ηk},
will be called plural signature of the quadric Qϕ2 .

The aim of this article is to find a projective equivalence criterion for quadrics.
Let Qϕ2 be a quadric and Cf a collineation in PA. Evidently, the image C(Qϕ2)

is a quadric determined by the quadratic form which is equal to the composition
f−1ϕ2.

First, let a quadratic form ϕ2 on M be given. If we introduce, for a certain
normal polar basis of the A-space M with respect to the ϕ2, the system of numbers
p0, . . . , pm−1, q0, . . . , qm−1 by the same way as in definition 2.5 we may derive
(see [4]) that the ordered 2m-tuple

S(ϕ2) = (p0, p1, . . . , pm−1, q0, q1, . . . , qm−1)

is independent of the choose of the normal polar basis.
Further, let us consider two quadratic forms ϕ2 and ψ2 on M. Now, using the

fact above we may prove that there exists an automorphism f on M with fψ2 = ϕ2

iff S(ϕ2) = S(ψ2). (If Aϕ, resp. Aψ, are normal polar bases2 with respect to ϕ2,
resp. ψ2, then the automorphism maps Aϕ onto Aψ2).

Second, let Q be a quadric on PA and let quadratic form ϕ2 as well as ψ2

determines this quadric. It may be shown that it is possible iff there exists a unit
α ∈ A− ηA with ϕ2 = αψ2 or an automorphism f on M such that fψ2 = ϕ2.

Let ϕ2 = αψ2. It is clear that in the case p0(α) > 0 we have S(ϕ2) = S(ψ2). De-
noting S(ϕ2) = (p0, . . . , pm−1, q0, . . . , qm−1) we obtain for p0(α) < 0 that S(ψ2) =
(q0, . . . , qm−1, p0, . . . , pm−1). With respect to this fact the signature of quadric was
introduced by the way above (definition 2.5) correctly.

Thirdly, let two quadrics Q, Q′ on PA be given.
Let this quadrics have the same plural signature. It follows from this and from

the previous paragraph that there exist quadratic forms ϕ2, ψ2 such that

Q = Qϕ2 , Q
′ = Qψ2 and S(ϕ2) = S(ψ2).

As mentioned above we have guaranteed the existence of an automorphism f on
M with fψ2 = ϕ2, which gives Cf (Q) = Q′. We obtain the projective equivalence
of these given quadrics.

Now, let us suppose that Q, Q′ are projectively equivalent quadrics. Thus there
exists a collineation Cf in PA with Q′ = Cf (Q). If ϕ2 is an arbitrary quadratic
form determining Q (i.e. Q = Qϕ2) then ψ2 = f−1ϕ2 is a quadratic form which
determines quadric Cf (Q) (i.e. Q′ = Qψ2). It yields that S(Qϕ2) = S(Qψ2),
immediately.

We have proved the following theorem, which brings projective equivalence cri-
terion.

2this notion is for quadratic forms introduced analogously as for the case of quadrics
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Theorem 2.1. Let quadrics Q, Q′ on PA be given. Then these quadrics are pro-
jectively equivalent if and only if

S(Qϕ2) = S(Qψ2).
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ČSAV, Řada Mat. Př́ırod. Věd, 90(1980), no. 5, 81pp.
[2] Klingenberg, W., Projektive Geometrien mit Homomorphismus, Math. Annalen, 132(1956),

180-200.
[3] Jukl, M., Grassmann formula for certain type of modules, Acta UP Olomouc, Mathematica,

34(1995), 69-74.
[4] Jukl, M., Inertial law of quadratic forms on modules over plural algebra, Mathematica Bo-

hemica, 120(1995), 255-263.
[5] McDonald, B.R., Geometric algebra over local rings, Pure and Appl. Math., New York, No.

36, 1976.

Department of Algebra and Geometry, Faculty of Science, Palacký University Olo-
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