INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 2 NO. 2 PP. 58-62 (2009) ©IEJG

TWO DIMENSIONAL NULL SCROLLS IN \mathbb{R}^n_1 AND MASSEY'S THEOREM

HANDAN B. ÖZTEKİN AND MAHMUT ERGÜT

(Communicated by H. Hilmi HACISALIHOĞLU)

ABSTRACT. In this study, we investigated new characteristic properties for two dimensional null scroll in the *n*-dimensional Lorentzian space \mathbb{R}_1^n and we examined the sufficient and necessary conditions for the null scroll M is to be totally geodesic. We also gave the Massey's Theorem for the two dimensional null scroll in \mathbb{R}_1^n which is well known for the ruled surfaces in the Euclidean 3-space [4, 5].

1. Introduction

Let M be an *m*-dimensional Lorentzian submanifold of \mathbb{R}^n_1 . Let $\overline{\nabla}$ be a Levi-Civita connection of \mathbb{R}^n_1 and ∇ be a Levi-Civita connection of M. If $X, Y \in \chi(M)$ and h is the second fundamental form of M, then we have the Gauss equation

(1.1)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

where $\chi(M)$ is the tangent bundle of M.

Let ξ be a unit normal vector field on M. Then the Weingarten equation is

(1.2)
$$\overline{\nabla}_X \xi = -A_\xi(X) + \nabla_X^{\perp} \xi$$

where A_{ξ} determines at each point a self-adjoint linear map on T_pM and ∇^{\perp} is a metric connection on normal bundle of M. In this paper, A_{ξ} will be used for the linear map and the corresponding matrix of the linear map. From the equations (1.1) and (1.2), we have

(1.3)
$$\langle \overline{\nabla}_X Y, \xi \rangle = \langle h(X, Y), \xi \rangle$$

and

(1.4)
$$\langle \overline{\nabla}_X Y, \xi \rangle = \langle A_{\xi}(X), Y \rangle.$$

Also, by the equations (1.3) and (1.4), we get

(1.5)
$$\langle h(X,Y),\xi\rangle = \langle A_{\xi}(X),Y\rangle.$$

²⁰⁰⁰ Mathematics Subject Classification. 53B30, 53A04. Key words and phrases. Null scroll, Massey's Theorem.

Let $\{\xi_1, \xi_2, ..., \xi_{n-m}\}$ be an orthonormal basis of $\chi^{\perp}(M)$. Then there exist smooth functions $h^j(X, Y), j = 1, ..., n - m$, such that

(1.6)
$$h(X,Y) = \sum_{j=1}^{n-m} h^j(X,Y)\xi_j$$

and furthermore we may define the mean curvature vector field H by

(1.7)
$$H = \sum_{j=1}^{n-m} \frac{trace A_{\xi_j}}{m} \xi_j$$

If H(p) = 0 for each $p \in M$, then M is said to be minimal [6].

Let ξ be a unit normal vector, then the Lipschitz-Killing curvature in the direction ξ at the point $p \in M$ is defined by

(1.8)
$$G(p,\xi) = \det A_{\xi}(p)$$

The Gauss curvature is defined by

(1.9)
$$K(p) = \sum_{j=1}^{n-m} G(p,\xi_j)$$

If K(p) = 0 for all $p \in M$, then M is called developable. In particular, if the Lipschitz-Killing curvature is zero for each point and each normal direction, then M is developable [7].

Let M be a two dimensional null scroll in \mathbb{R}_1^n . If the tangent planes of M are constant along the generators of M,then M is called developable [1].

A normal vector field ξ is called parallel in the normal bundle $\chi^{\perp}(M)$ if we have $\nabla^{\perp}_{X}\xi = 0$ for each $X \in \chi(M)$ [6].

Massey's Theorem in the 3-dimensional Euclidean space \mathbb{R}^3 as follows

"A complete, connected surface in \mathbb{R}^3 is a developable surface if and only if K=0, where K is Gauss curvature."

In this paper, we will generalize the Massey's Theorem which is well known for the ruled surfaces in \mathbb{R}^3 for the two dimensional null scroll in the \mathbb{R}^n_1 as similar to the method in [5].

2. Two dimensional null scrolls in \mathbb{R}^n_1 and their characteristic properties

The construction of the (r + 1)-dimensional generalized null scroll is given by following [1, 2].

Let α be a null curve in the *n*-dimensional Lorentzian space \mathbb{R}^n_1 and

 $\{X, Y, Z_1, \dots Z_{n-2}\}$ be a pseudo-orthonormal frame along the null curve α such that $\alpha' = X$ and $\langle X, X \rangle = \langle Y, Y \rangle = 0$, $\langle X, Y \rangle = -1$. Then the

(r+1)-dimensional generalized null scroll M can be expressed by the following parametric equation

$$\Psi(t, u_0, \dots, u_{r-1}) = \alpha(t) + u_0 Y(t) + \sum_{i=1}^{r-1} u_i Z_i(t).$$

Now suppose that the base curve $\alpha(t)$ of the two dimensional null scroll M in \mathbb{R}^n_1 is a pseudo-orthogonal trajectory of the generators which have the direction of the null vector field Y(t). Then M can be represented locally by

(2.1)
$$\Psi(t,u) = \alpha(t) + uY(t).$$

It is easy to check that M is a Lorentzian submanifold.

Definition 2.1. Let M be a two dimensional null scroll in \mathbb{R}^n_1 and h be the second fundamental form of M. If h(W, W) = 0 for all $W \in \chi(M)$ then W is called an asymptotic vector field on M [1].

Definition 2.2. Let W be a null vector field on M. If $\nabla_W W = 0$, then W is called null geodesic vector field of M [1].

Definition 2.3. Let M be a two dimensional null scroll in \mathbb{R}^n_1 and h be the second fundamental form of M. If h(U, V) = 0 for all $U, V \in \chi(M)$ then M is called totally geodesic [1].

Theorem 2.1. Let M be a two dimensional null scroll in \mathbb{R}^n_1 . Then the null generators of M are asymptotics and null geodesics of M.

Proof. Since the null generators are the null geodesic of \mathbb{R}_1^n , we have $\overline{\nabla}_Y Y = 0$. Then from (1.1), we find $\nabla_Y Y = 0$ and h(Y,Y) = 0. Considering the definition 2.1. and definition 2.3., the null generators of M are the asymptotics and null geodesics of M. This completes the proof.

Now suppose that $\{X, Y\}$ is an orthonormal basis field of the tangent bundle $\chi(M)$ and $\{\xi_1, \xi_2, ..., \xi_{n-2}\}$ is an orthonormal basis field of the normal bundle $\chi^{\perp}(M)$. Then we can write the following equations:

(2.2)
$$\overline{\nabla}_{Y}\xi_{j} = a_{00}^{j}X + a_{01}^{j}Y + \sum_{i=1}^{n-2} b_{1i}^{j}\xi_{i}, \qquad j = 1, ..., n-2$$
$$\overline{\nabla}_{X}\xi_{j} = a_{10}^{j}X + a_{11}^{j}Y + \sum_{i=1}^{n-2} b_{2i}^{j}\xi_{i}.$$

Thus we have

(2.3)
$$A_{\xi_j} = -\begin{bmatrix} a_{00}^j & a_{01}^j \\ a_{10}^j & a_{11}^j \end{bmatrix}, \qquad j = 1, ..., n - 2.$$

If we consider the equations (2.2) and theorem 2.1, then we find

$$a_{00}^{j} = b_{1i}^{j} = b_{2i}^{j} = 0, \qquad j = 1, ..., n - 2.$$

 $a_{10}^{j} = a_{01}^{j}.$

(2.4) Hence

$$A_{\xi_j} = -\begin{bmatrix} 0 & a_{01}^j \\ a_{01}^j & a_{11}^j \end{bmatrix}, \qquad j = 1, ..., n - 2.$$

Also we have

(2.5)
$$trace A_{\xi_j} = -a_{11}^j = -\langle h(X, X), \xi_j \rangle, \qquad j = 1, ..., n-2.$$

Theorem 2.2. Let M be a two dimensional null scroll in \mathbb{R}^n_1 and $\{X, Y\}$ be an orthonormal basis of $\chi(M)$. Then the Gauss curvature K is given by

(2.6)
$$K = \left\langle \overline{\nabla}_Y X, \overline{\nabla}_Y X \right\rangle$$

Proof. The proof is clear from (1.1), (1.6) and (2.2), (See [1]).

60

Considering the equation (2.6), we have

(2.7)
$$K = \sum_{j=1}^{n-2} (a_{01}^j)^2$$

and

(2.8)
$$H = -\sum_{j=1}^{n-2} \frac{\langle h(X,X), \xi_j \rangle \, \xi_j}{2}$$

Theorem 2.3. Let M be a two dimensional null scroll in \mathbb{R}^n_1 Then M is developable and minimal if and only if M is totally geodesic.

Proof. We suppose that M is developable and minimal. We can write Z = aX + bY and W = cX + dY for $Z, W \in \chi(M)$. Then we have

(2.9)
$$h(Z,W) = ac h(X,X) + (ad + bc) h(X,Y) + bd h(Y,Y).$$

According to Theorem 2.1 and the equation (2.8) we have h(X, X) = 0 and h(Y, Y) = 0. Moreover, since M is developable $\overline{\nabla}_Y X = 0$. Thus using (1.1), we get h(Z, W) = 0 for all $Z, W \in \chi(M)$.

Conversely, let us assume that h(Z, W) = 0 for all $Z, W \in \chi(M)$. Then we have h(X, X) = h(Y, Y) = h(X, Y) = 0. So from Theorem 2.1. we get $\langle \overline{\nabla}_Y X, X \rangle = 0$ and $\langle \overline{\nabla}_Y X, Y \rangle = 0$. This means that $\overline{\nabla}_Y X$ is a normal vector field or $\overline{\nabla}_Y X = h(X, Y)$. Therefore we have $\overline{\nabla}_Y X = 0$. This implies that M is developable and h(X, X) = 0, that is M is minimal.

3. The Massesy's Theorem for two dimensional null scroll in \mathbb{R}^n_1

Let M be a two dimensional null scroll in \mathbb{R}_1^n and $\{X, Y\}$ be an orthonormal basis of $\chi(M)$. Let $\{\xi_1, \xi_2, ..., \xi_{n-2}\}$ be the spacelike orthonormal basis of $\chi^{\perp}(M)$. Then $\{X, Y, \xi_1, \xi_2, ..., \xi_{n-2}\}$ is the pseudo-orthonormal basis of $\chi(\mathbb{R}_1^n)$ at each point p of \mathbb{R}_1^n .

We have also the equations of covariant derivative of the pseudo-orthonormal basis $\{X, Y, \xi_1, \xi_2, ..., \xi_{n-2}\}$ of $\chi(\mathbb{R}^n_1)$ as follow

$$(2.10) \qquad \begin{bmatrix} \nabla_X X \\ \overline{\nabla}_X Y \\ \overline{\nabla}_X \xi_1 \\ \overline{\nabla}_X \xi_2 \\ \vdots \\ \overline{\nabla}_X \xi_{n-2} \end{bmatrix} = \begin{bmatrix} c_{11} & 0 & c_{13} & 0 & \cdots & 0 \\ 0 & -c_{22} & -c_{23} & -c_{24} & \cdots & 0 \\ c_{31} & c_{32} & 0 & c_{34} & \cdots & 0 \\ c_{41} & 0 & -c_{43} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ \xi_1 \\ \xi_2 \\ \vdots \\ \xi_{n-2} \end{bmatrix}.$$

[1].

Theorem 3.1. Let M be a two dimensional null scroll in \mathbb{R}^n_1 and $\{X, Y\}$ be an orthonormal basis of $\chi(M)$. Suppose that $\alpha(t)$ is a pseudo-orthogonal trajectory of the generators of M. Then the following propositions are equivalent

(i) M is developable.

(ii) The Lipschitz-Killing curvature $G(p,\xi_j) = 0, \ j = 1, 2, ..., n-2$.

(iii) The Gauss curvature K = 0.

- (iv) In the equation (2.10), $c_{31} = c_{41} = 0$.
- (v) $A_{\xi_i}(X) = 0, \ j = 1, 2, ..., n 2.$

61

(vi) $\overline{\nabla}_X Y \in \chi(M)$.

Proof. (i) \Longrightarrow (ii) Suppose that M is developable. Then we have $a_{00}^j = 0$ and $a_{10}^j = a_{01}^j$ Since M is developable, we get $G(p,\xi_j) = 0$, j = 1, 2, ..., n-2.

(ii) \Longrightarrow (iii) Let $G(p,\xi_j) = 0$, j = 1, 2, ..., n - 2. We know that $K(p) =_{j=1}^{n-2} G(p,\xi_j)$, $\forall p \in \mathbb{M}$, so it is clear that K = 0, $\forall p \in \mathbb{M}$.

(iii) \Longrightarrow (iv) Assume that $K = 0, \forall p \in M$. Then from (2.7) we have $a_{01}^j = 0, \ j = 1, 2, ..., n-2$. Hence $\overline{\nabla}_X \xi_j$ has no component in the direction X. Thus from (2.10) we find $c_{31} = c_{41} = 0$.

(iv) \Longrightarrow (v) Let $c_{31} = c_{41} = 0$. This means that $\overline{\nabla}_X \xi_j$ has no component in the direction X. Therefore we get $a_{01}^j = 0, \ j = 1, 2, ..., n-2$. We also find

$$A_{\xi_j} = -\begin{bmatrix} 0 & 0\\ 0 & a_{11}^j \end{bmatrix}, \qquad j = 1, ..., n - 2$$

and this implies that $A_{\xi_i}(X) = 0, \ j = 1, 2, ..., n - 2.$

(v) \Longrightarrow (vi) Suppose that $A_{\xi_j}(X) = 0$, j = 1, 2, ..., n - 2. Then from the Weingarten equation we have $a_{00}^j = a_{01}^j = 0$, j = 1, 2, ..., n - 2. Moreover we find $\langle \overline{\nabla}_X Y, \xi_j \rangle = 0$, that means $\overline{\nabla}_X Y \in \chi(M)$.

(vi) \Longrightarrow (i) Let $\overline{\nabla}_X Y \in \chi(M)$. Then $\langle \overline{\nabla}_X Y, \xi_j \rangle = -a_{01}^j = 0$. We also have $\langle \overline{\nabla}_Y X, X \rangle = 0$ and $\langle \overline{\nabla}_Y X, Y \rangle = 0$, this implies that $\overline{\nabla}_Y X \in \chi(M)$ and since $\overline{\nabla}_Y X = \sum_{j=1}^{n-2} a_{01}^j \xi_j$, we get $\overline{\nabla}_Y X = 0$. This means that the tangent planes of M are constant along the generator Y of M, i.e., M is developable.

Corollary 3.1. Let M be a two dimensional null scroll in \mathbb{R}^n_1 with Gauss curvature being zero. If M is minimal then $c_{13} = c_{31} = c_{41} = 0$.

Proof. It can be easily done from the equations (1.1), (2.8), (2.10) and Theorem 3.1. \Box

References

- Balgetir, H. Generalized Null Scrolls in the Lorentzian Space, PhD Thesis, Fırat University, Turkey,2002.
- [2] Balgetir, H. and Ergüt, M., (n-1)-Dimensional Generalized Null Scrolls in Rⁿ₁, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 19, 227-231,2003.
- [3] Duggal, K.L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Its Applications, Kluwer, Dortrecht, 1996.
- [4] Hicks, N., Notes On Differential Geometry, Van Nostrand, Princeton, N.J., U.S.A., 1963.
- [5] Keleş, S. and Kuruoğlu, N., Properties of 2-Dimensional Ruled Surfaces in the Euclidean n-Space Eⁿ and Massey's Theorem, *Communications*, Faculty of Sciences University of Ankara, pp. 151-158., 1984.
- [6] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [7] Thas, C., Properties of Ruled Surfaces in the Euclidean Space Eⁿ, Bull. Inst. Math. Academica Sinica, Vol.6,1, 133-142, 1978.

Firat University Fac.of Arts and Sci. Department of Mathematics 23119 Elazığ - TURKEY

E-mail address: handanoztekin@gmail.com and mergut@firat.edu.tr

62