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RIEMANNIAN HYPERSURFACES WITH CONSTANT SCALAR
CURVATURE IN A HESSIAN MANIFOLD OF CONSTANT

CURVATURE

MÜNEVVER YILDIRIM YILMAZ, MEHMET BEKTAŞ AND MAHMUT ERGÜT

(Communicated by Kazım İLARSLAN)

Abstract. We investigated hypersurfaces with constant scalar curvature in a
Hessian manifold of constant curvature and obtained two theorems on hyper-
surfaces of Hessian manifolds with non-negative constant curvature.

1. Introduction

Let Mn+1 be a flat affine manifold with flat affine connection D. Among Rie-
mannian metrics on Mn+1 there exists an important class of Riemannian metrics
compatible with the flat affine connection D. A Riemannian metric g on Mn+1 is
said to be Hessian metric if g is locally expressed by g = D2u where u is a local
smooth function.We call such a pair (D , g) a Hessian structure on Mn+1 and a
triple

(
Mn+1 , D , g

)
a Hessian manifold, [1], [2], [3], [4]. Geometry of Hessian man-

ifold is deeply related to Kählerian geometry and affine differential geometry [2].
It is also a fruitful area for differential geometry. Hessian manifolds with constant
sectional curvature has interesting applications with different aspects [5], [6], [7]. It
is well known that a compact convex hypersurface with constant mean curvature
in a Euclidean space is a sphere. On the other hand Simons [8] has recently done
an important suggestive contribution to the study of minimal submanifolds in a
Riemannian manifold, in which he has given a formula for the Laplacian of the
square of the norm of the second fundamental form of the submanifold. Under the
stimulus of the Simons’ study Do Cormo, Chern and Kobayashi [9] and Nomizu
and Smyth [10], using the similar formula to that of Simons, have obtained some
theorems on a compact minimal submanifold or a complete hypersurface with con-
stant mean curvature in a Riemannian manifold of constant curvature. Nakagawa
and Yokote [11] generalize by applying a formula of Simons’ type to a compact
hypersurface with constant scalar curvature in a Riemannian manifold of constant
curvature. Then Omachi [12] has obtained some results in the case of hypersurfaces
in a space of non-negative constant curvature making use of harmonic curvature.
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In this paper our main purpose is to investigate hypersurfaces with constant scalar
curvature in a Hessian manifold of constant curvature by a close analogy with above
studies. Also we generalize Nakagawa and Yokote’s result to the special type of a
Hessian manifold.

2. Preliminaries

Let M n+1 be a Hessian manifold with Hessian structure (D , g ). We express
various geometric concepts for the Hessian structure (D , g) in terms of affine coor-
dinate system

{
x1 , . . . , xn+1

}
with respect to D , i.e D dxA = 0. Here A, B, C, ...

run from 1 to n + 1. i ) The Hessian metric ;

gAB =
∂2u

∂xA∂xB

ii ) Let γ be a tensor field of type (1, 2) defined by

γ (X, Y ) = 5XY −DXY

where ∇ is the Riemannian connection for g . Then we have

γA
BC = ΓA

BC =
1
2
gAD ∂gDB

∂xC

γABC =
1
2

∂gAB

∂xC
=

1
2

∂3u

∂xA∂xB∂xC

γABC = γBAC = γCBA

where ΓA
BC are the Christoffel ’ s symbols of ∇ . iii )Define a tensor field S of type

(1, 3) by
S = Dγ

and call it the Hessian curvature tensor for ( D , g ) . Then we have

S A
BCE =

∂γA
BE

∂xC

SABCE =
1
2

∂4u

∂xA∂xB∂xC∂xE
− 1

2
gDF ∂3u

∂xA∂xC∂xD
− ∂3u

∂xB∂xE∂xF

SABCE = SAECB = SCBAE = SBAEC = SCEAB .

iv ) The Riemannian curvature tensor for ∇ ;

RA
BCE = γA

DCγD
BE − γA

DEγD
BC ,

(2.1) RABCE =
1
2

(SBACE − SABCE)

[4].

Definition 2.1. For a non-zero contravariant symmetric tensor ξx of degree 2 at
x we set

h (ξx) =
〈ς (ξx) , ξx〉
〈ξx , ξx〉

and call it the Hessian sectional curvature in the direction ξx. Here ς is a endo-
morphism with respect to the inner product 〈, 〉 induced by the Hessian metric g
[4].
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Theorem 2.1. Let
(
Mn+1 , D , g

)
be a Hessian manifold of dimension ≥ 2. If

the Hessian sectional curvature h (ξx) depends only x then
(
M n+1, D , g

)
is of con-

stant Hessian sectional curvature .
(
Mn+1 , D , g

)
is of constant Hessian sectional

curvature c if and only if

(2.2) SABCE =
c

2
(gABgCE + gAEgCB) .

[4].

Corollary 2.1. If a Hessian manifold
(
M n+1, D , g

)
is a space of constant

Hessian sectional curvature c , then the Riemannian manifold
(
M n+1, g

)
is a space

of constant sectional curvature − c
4 [4].

3. Constructions of Hessian Manifolds of constant Hessian sectional
curvature

In this section we shall construct, for each constant c, a Hessian manifold with
constant Hessian sectional curvature c. We now recall the following result due
to Yagi [3]. Let

(
Mn+1, D, g

)
be a simply connected Hessian manifold. If g is

complete, then
(
Mn+1, D, g

)
is isomorphic to

(
Ω, D̃, D̃2ϕ

)
where Ω is a convex

domain in Rn+1, D̃ is the canonical flat connection on Rn+1 and ϕ is a smooth
convex function on Ω.

A. The case c = 0. It is obvious that the Euclidean space
(
Rn+1, D̃, g = (1/2) D̃2

{(
xA

)2
})

is a simply connected Hessian manifold of constant Hessian sectional curvature 0.
B. The case c > 0.

Theorem 3.1. Let Ω be a domain in Rn+1 given by

xn+1 >
c

2
n

A=1

(
xA

)2
,

where c is a positive constant, and let ϕ be a smooth function on Ω defined by

ϕ = −1
c

log
{

xn+1 − c

2
n

A=1

(
xA

)2
}

.

Then
(
Ω, D̃, g = D̃2ϕ

)
is a simply connected Hessian manifold of positive constant

Hessian sectional curvature c. As Riemannian manifold (Ω, g) is isometric to the
hyperbolic space

(
H

(− c
4

)
, g

)
of constant sectional curvature −c/4;

H =
{(

ξ1, ..., ξn, ξn+1
) ∈ Rn+1

∣∣ξn+1 > 0
}

,

g =
1

(ξn+1)2

{
n

A=1

(
dξA

)2
+

4
c

(
dξn+1

)2
}

.

C. The case c < 0 [4].

Theorem 3.2. Let ϕ be a smooth function on Rn+1 defined by

ϕ = −1
c

log

(
n+1∑

A=1

e−cxA

+ 1

)
,
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where c is a negative constant. Then
(
Rn+1, D̃, g = D̃2ϕ

)
is a simply connected

Hessian manifold of negative constant Hessian sectional curvature c. The Riemann-
ian manifold

(
Rn+1, g

)
is isometric a domain of the sphere n+2

i=1
ξ2
A = − 4

c defined by

ξA > 0 for all A [4].

For the proof of the theorems we refer to [4].

4. Basic concepts and equations on Riemannian hypersurfaces of
Hessian manifolds of constant curvature

We consider n−dimensional hypersurface M isometrically immersed in an (n + 1)−
dimensional Hessian manifold M

′
of constant curvature − c

4 where c is a negative
constant by an isometric immersion Φ : M → M

′ (− c
4

)
, and denote gji, Rh

kji and
Hji components of the Riemannian metric tensor, the Riemannian curvature tensor
and second fundamental tensor of M, respectively. Then the equation of Gauss for
the hypersurface M and that of Codazzi are given below, respectively

(4.1) Rkjih = − c

4
(gkhgji − gkigjh) + HkhHji −HkiHjh

(4.2) ∇kHji −∇jHki = 0

where ∇ denotes the induced connection of M. Let us define the function f on M
by

(4.3) f = Hjig
ji = Hj

j

which is globally defined on M up to the sign. Contracting the equation of Gauss
with gkh, we get

(4.4) Rji = − c

4
(n− 1) gji + fHji −HjrH

r
i

where Rji are conponents of the Ricci tensor. We denote by R the scalar curvature
of M and calculate as follows

R = Rjig
ji.

Considering this definition and equation (4.3) in (4.4) we obtain scalar curvature
as

(4.5) R = − c

4
n (n− 1) + f2 −HjiH

ji.

Then applying the Ricci identitiy to Hji and taking account of equation (4.2) we
have

∇j∇if = ∇j∇iH
k
k = ∇k∇kHji −RjrH

r
i −Rr

jkiH
k
r

where ∇k = gki∇i. Substituting (4.1) and (4.2) into the equation above, we obtain

∆Hji = ∇j∇if − c

4
(nHji − fgji) + fHjrH

r
i −HrsH

rsHji

where ∆ = ∇r∇r is the differential operator of Laplace and Beltrami. Then we
have the following equation

Hji∆Hji = Hji∇j∇if − c

4
(
nHjiH

ji − f2
)

+ fHjrH
r
i Hji − (

HjiH
ji

)2
,
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with analogous Chern, Do Cormo and Kobayashi [9]. Using the principal curvatures
k1, k2, ..., kn of M we get

− c

4
(
nHjiH

ji − f2
)

+ fHjrH
r
i Hji − (

HjiH
ji

)2
=

∑

i<j

(
− c

4
+ kikj

)
(ki − kj)

2
.

This shows that

(4.6) Hji∆Hji = Hji∇j∇if +
∑

i<j

(
− c

4
+ kikj

)
(ki − kj)

2
.

The familiar equation has been obtained by Nomizu and Smyth [10]. This equation
can also be written as follows:

1
2
∆

(
HjiH

ji
)−∇j

(
Hjifi

)
= ∇kHji∇kHji − fif

i

+
∑

i<j

(
− c

4
+ kikj

)
(ki − kj)

2
, 4.7(4.1)

where fi = ∇if and f i = gjifj .

5. Riemannian hypersurfaces of Hessian manifolds with constant scalar
curvature

In this section, we consider M is a Riemannian hypersurface with constant scalar
curvature R in Hessian manifold M

′
. We shall investigate the sign of the right hand

side of (4.7) . First of all, we consider the first term and the second term of the right
hand side of (4.7) . By calculating the square of the norm of f∇kHji − fkHji, we
get

‖f∇kHji − fkHji‖2 = f2∇kHji∇kHji − 2ffkHji∇kHji + fkfkHjiH
ji.

Then we find from (4.5) that

HjiH
ji = − c

4
n (n− 1) + f2 −R

and also we find

Hji∇kHji = ∇k

(
HjiH

ji
)
/2 = ∇kf2/2 = ffk,

because the scalar curvature R is constant. Eliminating HijH
ji and Hji∇kHji

from these equations, we obtain
∥∥f∇kHji∇kHji − fkHji

∥∥2
= f2

(∇kHji∇kHji − fif
i
)

−
{

R +
c

4
n (n− 1)

}
fif

i.5.1(5.1)

Then let us define a domain D in M as follows: D is the set of points x in M such
that (∇kHji∇kHji − fif

i
)
(x) < 0.

Making use of (5.1) following lemma can be proved. Also this lemma gives a
sufficient condition for the algebraic sum of the first and second terms of the right
hand side in (4.7) to be non-negative.

Lemma 5.1. Let M be a hypersurface with constant scalar curvature R in M
′
. If

R ≥ − c
4n (n− 1) , then the domain D is empty.
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Proof. Suppose that D is not empty. By means of the domain D, follows from
(5.1) that

0 ≥ f2
(∇kHji∇kHji − fif

i
) ≥

{
R +

c

4
n (n− 1)

}
fif

i

on D. From the assumption the scalar curvature R is equal to or greater than
− c

4 n (n− 1) , the inequality above shows that R = − c
4n (n− 1) or fi vanishes

identically on D. Firstly we consider the first case in which the scalar curvature
is equal to − c

4n (n− 1) . the left hand side of (5.1) being equal to or greater than
zero, we get

f2
(∇kHji∇kHji − fif

i
) ≥ 0.

This means that f vanishes on D. Since the domain D is open, we obtain

fi = 0

on D.This shows that R = − c
4n (n− 1) implies that fi = 0 on D. When fi = 0 on

D, the scalar function ∇kHji∇kHji − fif
i is equal to or greater than zero on D.

Thus the domain D must be empty. This concludes the proof. ¤

For each point x in M, let X1, X2,..., Xn be an orthonormal frame of the tangent
space Mx such that any Xj is an eigenvector of the second fundamental tensor that
corresponds to an eigen value kj . Then by remembering Gauss equation (4.1) , the
sectional curvature K (Xi, Xj) of the plane spanned by Xi and Xj is given by

(5.2) K (Xi, Xj) = − c

4
+ kikj .

From this equation and remembering the right hand side of equation (4.7) we
see that if M is non-negative curvature and with constant scalar curvature R ≥
− c

4n (n− 1) , then the right hand side is non-negative.

Lemma 5.2. Let M be a compact orientable hypersurface of non-negative curva-
ture and with constant scalar curvature R in M

′
. If R ≥ − c

4n (n− 1) , then there
exist at most two distinct principal curvatures, say λ and µ, such that

(5.3) − c

4
+ λµ = 0.

Proof. Using Lemma 4.1 one can conclude that D is empty. This shows that

∇kHji∇kHji − fif
i ≥ 0

on M. On the other hand, taking into account of Green’s theorem and equation
(4.7) , we obtain

∫

M



∇kHji∇kHji − fif

i +
∑

i<j

(
− c

4
+ kikj

)
(ki − kj)

2



 dM = 0

dM being the volume element of M. Thus ∇kHji∇kHji−fif
i and − c

4 +kikj being
both non-negative, we find

(5.4) ∇kHji∇kHji − fif
i = 0

and

(5.5)
(
− c

4
+ kikj

)
(ki − kj)

2 = 0

for any indices at each point is at most two, and satisfy (5.3) . ¤
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Theorem 5.1. Let M
′

be a complete and simply connected Hessian
(n + 1)−manifold of constant curvature − c

4 (c < 0) and let M be a connected com-
pact Riemannian n− manifold. Let Φ be an isometric immersion of M into M

′
.

Suppose that M is of non-negative curvature and with constant scalar curvature
R. If R ≥ − c

4n (n− 1) , then (M, Φ) is totally umbilic or there exist exactly two
distinct and constant principal curvatures.

Proof. Using the equations (5.1) and (5.4) and taking into account of the assump-
tion R ≥ − c

4n (n− 1) , we conclude that the equation
{

R +
c

4
n (n− 1)

}
fif

i = 0

holds. We consider the case in which R is different from − c
4n (n− 1) and the case

in which R = − c
4n (n− 1) , separately. In the first case, f is constant. Accordingly

a theorem Nomizu and Smyth [10], the assertion of Theorem 4.1 is true. In the
other case, it follows from (4.5) that

f2 −HjiH
ji = 0.

This equation can be written by using principal curvatures as

(5.6)
∑

i<j

kikj = 0.

Also considering the sectional curvature is non negative we see that the scalar
curvature R is non-negative and so is the constant curvature − c

4 . Considering c is
equal to zero we conclude that the ambient space M

′
is an (n + 1)− dimensional

Euclidean space En+1. We get by (5.6) and the assumption that the hypersurface
is non-negative curvature

kikj = 0

for any distinct indices i and j. This implies that the type number t (x) at each point
x in M is equal to 0 or 1. Since M is compact, it is seen that there exists a point in
M at which all principal curvatures of M are positive or negative. This contradicts
the fact that the type number is equal to 0 or 1. Thus the constant curvature − c

4
must be positive. Then let us suppose that there exists a non-umbilical point p in
M , at which we have two distinct principal curvatures λ (p) and µ (p) . Then, by
means of (5.3) they satisfy − c

4 + λ (p)µ (p) = 0. Hence one is positive and other
is negative. Under this situation, there exists a maximal connected open set U
consisting of non-umbilic points, which contains p. At each point in U, (M, Φ) has
exactly two distinct principal curvatures with constant multiplicities k and n− k ,
respectively. Then equation (5.6) is equivalent to

(5.7)
k (k − 1)

2
λ2 + k (n− k)λµ +

(n− k) (n− k − 1)
2

µ2 = 0.

Considering (5.3) and (5.7), we see that λ and µ are constant on U. This shows
that λ is different from µ at the boundary point of U and then by the definition of
U, the closure U

′
of U should be contained in U < Thus U is closed. Since M is

connected U is M itself. This completes the proof. ¤

If the ambient space is Euclidean as a direct consequence of Theorem 4.1 we
obtain the following theorem that is similar to Nakagawa and Yokote’s results.
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Theorem 5.2. Let M be a connected compact Riemannian n− manifold of non-
negative curvature and let Φ be an isometric immersion of M into En+1. If the
scalar curvature R of M is constant, then M is isometric to a sphere Sn and Φ is
an imbedding.
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