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Second-Order Differential Operators with Non-Local Ventcel’s
Boundary Conditions
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ABSTRACT. Different boundary conditions have been introduced for second-order differential operators and the
properties of the operators on the corresponding domains have been deeply investigated since the work of Feller. The
aim of this paper is to study second-order differential operators satisfying a Ventcel’s type boundary condition which
involves simultaneously both the endpoints of a real interval. We study different general properties and a resolvent
estimate for this kind of operators.
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1. INTRODUCTION AND NOTATION

Let −∞ ≤ r1 < r2 ≤ +∞, set I :=]r1, r2[ and consider the second-order differential operator

(1.1) Au(x) = α(x)u′′(x) + β(x)u′(x), x ∈ I,

where α, β ∈ C(I) and α(x) > 0 for every x ∈ I .
Using the work of Feller [7], several authors have characterized the generation of aC0-semigroup
studying particular boundary conditions on the operator A, such as Ventcel’s boundary condi-
tions [5] on the corresponding domain

DV (A) =
{
u ∈ C(I) ∩ C2(I) | lim

x→r1
Au(x) = 0 and lim

x→r2
Au(x) = 0

}
,

or the maximal domain [9]

DM (A) =
{
u ∈ C(I) ∩ C2(I) | Au ∈ C(I)

}
.

We also point out that further characterizations have been obtained in L1(I) for different do-
mains [3] and even for periodic functions [4].
In this paper, we consider a different boundary condition which involves the two endpoints
simultaneously. Namely, we fix a real parameter ρ 6= 0 and define

(1.2) Dρ(A) :=
{
u ∈ DM (A) | Au(r1) + ρAu(r2) = 0

}
.

Obviously
DV (A) ⊂ Dρ(A) ⊂ DM (A) ,

and this implies that (A,Dρ(A)) is densely defined in C(I).
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Our aim is to study some properties of the operator (A,Dρ(A)) in C(I). These conditions are
expressed in terms of Feller’s classification of the boundary points and therefore we make the
following recalls. Fix x0 ∈ I and define, for every x ∈ I ,

W (x) := exp

(
−
∫ x

x0

β

α

)
, Q(x) :=

1

α(x)W (x)

∫ x

x0

W , R(x) := W (x)

∫ x

x0

1

αW
.

According to the classification introduced by Feller [7] (see also [6, p. 396]), the endpoint r2 is

(1.3)

a regular boundary if Q ∈ L1(]x0, r2[) , R ∈ L1(]x0, r2[) ;
an exit boundary if Q /∈ L1(]x0, r2[) , R ∈ L1(]x0, r2[) ;
an entrance boundary if Q ∈ L1(]x0, r2[) , R /∈ L1(]x0, r2[) ;
a natural boundary if Q /∈ L1(]x0, r2[) , R /∈ L1(]x0, r2[) .

The classification of r1 is similar with ]r1, x0[ in place of ]x0, r2[.
Boundary conditions involving simultaneously the two endpoints arise in many differential
problems, such as oscillations under external and resistant forces or the working of kidneys in
biology (see also [8, Sections IV.3 and V.2] and [7, Section 23] for some related discussions).

2. GENERAL PROPERTIES OF NON-LOCAL BOUNDARY CONDITIONS.

We begin with some preliminary properties of the operator (A,Dρ(A)). Some straightforward
details given in [7] and also in [5, 9] will be briefly outlined.

Lemma 2.1. The operator (A,Dρ(A)) is closed.

Proof. Let u ∈ Dρ(A) and [a, b] ⊂]r1, r2[. If ε > 0 there exists Kε > 0 such that |u′(x)| ≤
ε‖u′′‖[a,b] +Kε‖u‖[a,b] for every x ∈ [a, b]. Since u ∈ C2([a, b]) and β is continuous, we can find
Cε > 0 such that |β(x)u′(x)| ≤ ε‖u′′‖[a,b] + Cε‖u‖[a,b].
Since α > 0 on [a, b] there exists C > 0 such that ‖u′′‖[a,b] ≤ C

(
‖Au‖[a,b] + ‖u‖[a,b]

)
. Now,

consider a sequence (un) in Dρ(A) which converges uniformly to u ∈ C([r1, r2]) and such that
(Aun) converges uniformly to v ∈ C([r1, r2]). We have only to show that u ∈ Dρ(A) and
Au = v.
If [a, b] ⊂]r1, r2[, from the preceding estimates we have that (u′′n) is a Cauchy sequence in
C([a, b]) and therefore it is uniformly convergent in C([a, b]) and analogously, we have also
the uniform convergence in C([a, b]) of the sequence (u′n). We conclude that u ∈ C2([a, b]) and
Au = v on [a, b]. Since [a, b] is arbitrarily chosen, we get u ∈ C([r1, r2])∩C2(]r1, r2[) andAu = v.
Finally, the boundary condition limx→r1 Au(x) + ρ limx→r2 Au(x) = 0 is a consequence of the
uniform convergence of (Aun) to Au and un ∈ Dρ(A). �

Let λ > 0, x0 ∈ I and denote by Σλ(x0) the set of all solutions u ∈ C(I)∩C2(I) of λu−Au = 0
satisfying u(x0) = 1. Moreover, let

A1,λ(x0) = {u ∈ Σλ(x0) | u is positive and increasing},

A2,λ(x0) = {u ∈ Σλ(x0) | u is positive and decreasing}.
From [7, Sections 8 and 9] and [5] there exist χ1,λ ∈ A1,λ(x0) and χ2,λ ∈ A2,λ(x0) such that

(1) If u ∈ A1,λ(x0) we have u ≥ χ1,λ on [r1, x0] and u ≤ χ1,λ on [x0, r2].
(2) If u ∈ A2,λ(x0) we have u ≤ χ2,λ on [r1, x0] and u ≥ χ2,λ on [x0, r2].

Moreover, if we put

γi,λ := lim
x→ri

χi,λ(x)(= inf χi,λ), Mi,λ := lim
x→r3−i

χi,λ(x)(= supχi,λ), i = 1, 2,
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we have ([7, Lemma 9.3] and [5, Lemma 5 and Lemma 7])

γ1,λ > 0 ⇔ W /∈ L1(r1, x0) and

∫ x0

r1

W (x)

∫ x

r1

1

α(t)W (t)
dt dx < +∞,

γ2,λ > 0 ⇔ W /∈ L1(x0, r2) and

∫ r2

x0

W (x)

∫ r2

x

1

α(t)W (t)
dt dx < +∞,

that is, r1 (respectively r2) is not an entrance boundary.
Finally, in [9, Lemma 6] it has been shown that

M1,λ < +∞⇔
∫ r2

x0

R(x) dx < +∞, M2,λ < +∞⇔
∫ x0

r1

R(x) dx < +∞,

which means that r1 (respectively r2) is not entrance nor natural.
If ui ∈ Ai,λ(x0), i = 1, 2, we can define the Green’s function

(2.4) Gu1,u2(x, s) :=

{
u1(x)u2(s)
α(s) v(s) , r1 < x ≤ s < r2,
u1(x)u2(s)
α(s) v(s) , r1 < s < x < r2,

where v(s) := u′1(s)u2(s)− u′2(s)u1(s). Then for every f ∈ C(I), the function

(2.5) uf (x) :=

∫ r2

r1

Gu1,u2
(x, s) f(s) ds, x ∈]r1, r2[

is a solution of λuf − Auf = f satisfying λ‖uf‖ ≤ ‖f‖ and is positive whenever f is positive
(see [7, Theorem 13.1]); if the endpoint ri, i = 1, 2, is a regular or an exit point, we also have
limx→ri uf (x) = 0 (see [8, #8, p. 32]).
Consequently the general solution of λu−Au = f (on I) is given by

(2.6) uf (x;λ, c1, c2) = uf (x) + c1χ1,λ(x) + c2χ2,λ(x), x ∈ I.
If one of the endpoints is natural, then Dρ(A) = DV (A). Indeed, from [7, Corollary to Theorem
13.1], the Ventcel’s boundary is always satisfied at a natural endpoint and consequently the non
local boundary condition (1.2) implies the Ventcel’s boundary condition at the other endpoint
too. In this case (A,Dρ(A)) generates a C0-semigroup if and only if the other endpoint is not
an entrance boundary [5, Theorem 2].
In the case of two entrance boundary points, we cannot prescribe the values of Au at any end-
point and therefore we have the generation of a C0-semigroup only on the maximal domain.
To avoid these well-known cases, in the sequel we shall require

(2.7) DV (A) ⊂
6=
Dρ(A) ⊂

6=
DM (A) ,

which implies that each endpoint is not a natural boundary and that the two endpoints are not
both entrance boundaries.
We shall find the most interesting properties in the case where one of the endpoints is an en-
trance boundary and the other a regular or exit boundary.
We shall require that the integral of R will be finite only on just one of the intervals [r1, x0] and
[x0, r2], that is

(2.8)
∫ r1

x0

R(x) dx < +∞,
∫ r2

x0

R(x) dx = +∞,

or

(2.9)
∫ r1

x0

R(x) dx = +∞,
∫ r2

x0

R(x) dx < +∞.
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Remark 2.1. Assume that (2.7) is satisfied. Then, conditions (2.8)–(2.9) hold if and only if one
boundary point is entrance and the other is regular or exit.
Indeed, changing the order of integration, we can write∫ r1

x0

R(x) dx =

∫ x0

r1

1

α(x)W (x)

∫ x

r1

W (t) dt dx

and ∫ r2

x0

R(x) dx =

∫ r2

x0

1

α(x)W (x)

∫ r2

x

W (t) dt dx.

If
∫ r1
x0
R(x) dx < +∞, we must have W ∈ L(r1, x0); therefore, according to [7, Section 23], if

1
αW ∈ L(r1, x0) then r1 is a regular boundary point while if 1

αW /∈ L(r1, x0) then r1 is an exit
boundary point.
Conversely, it is clear that if r1 is a regular or exit boundary point, then necessarily

∫ r1
x0
R(x) dx <

+∞ and thus condition
∫ r1
x0
R(x) dx = +∞ implies that r1 is an entrance or natural boundary

point. An analogous reasoning holds at the point r2.

If (2.8) holds, we must have

(2.10) γ1,λ = 0, M1,λ = +∞, γ2,λ > 0, M2,λ < +∞
and similarly, if (2.9) holds,

(2.11) γ1,λ > 0, M1,λ < +∞, γ2,λ = 0, M2,λ = +∞;

indeed, condition (2.8) is equivalent to M1,λ = +∞ and M2,λ < +∞ and (2.9) to M1,λ < +∞
and M2,λ = +∞.
Moreover, if (2.8) holds, again by (2.10) it follows that there exists no decreasing positive solu-
tion of λu − Au = 0 which is independent of χ2,λ. Hence, as in [8, pp. 25–37], we can obtain a
different expression of χ2,λ; namely, for n ∈ N and x ∈ I we define recursively

u0(x) = 1, un+1(x) =

∫ x

x0

W (t)

∫ t

x0

un(s)

α(s)W (s)
ds dt

and we put

(2.12) u(x, λ) :=

+∞∑
n=0

λnun(x).

A decreasing positive solution of λu−Au = 0 is [8, pp. 26–27]

(2.13) u+(x, λ) := u(x, λ)

∫ r2

x

W (t)

u(t, λ)2
dt

and normalizing both solutions χ2,λ and u+(·, λ), we obtain

(2.14) χ2,λ(x) = M2,λ
u+(x, λ)

u+(r1, λ)
, x ∈ I.

Similarly, as a consequence of (2.9), it is possible to show that

(2.15) χ1,λ(x) = M1,λ
u−(x, λ)

u−(r2, λ)
, x ∈]r1, r2[,

where

(2.16) u−(x, λ) := u(x, λ)

∫ x

r1

W (t)

u(t, λ)2
dt.



148 M. Campiti

Taking into account the above discussion, we can state the following result.

Proposition 2.1. Assume that condition (2.8) holds. Then, the map λ 7→ γ2,λ/M2,λ is continuous and
strictly decreasing and further

lim
λ→0+

γ2,λ
M2,λ

= 1, lim
λ→+∞

γ2,λ
M2,λ

= 0.

Analogously, if (2.9) holds, then the map λ 7→ γ1,λ/M1,λ is continuous and strictly decreasing and

lim
λ→0+

γ1,λ
M1,λ

= 1, lim
λ→+∞

γ1,λ
M1,λ

= 0.

Proof. We prove only the first part under the assumption that (2.8) holds. First, observe that
the function λ 7→ γ2,λ/M2,λ is well-defined by (2.10) and takes its values in the interval ]0, 1[.
Its continuity is a direct consequence of (2.12) and (2.13). To show the remaining properties,
it is useful to consider the function u2(x, λ) = u+(x, λ)/u+(r1, λ) and observe that u2(r2, λ) =
γ2,λ/M2,λ. Since u2(x, λ) is a solution of λu−Au = 0, for every x ∈ I we have

λ =
α(x)u′′2(x, λ) + β(x)u′2(x, λ)

u2(x, λ)
=
u′2(x, λ)

u2(x, λ)

(
α(x)

u′′2(x, λ)

u′2(x, λ)
+ β(x)

)
.

If λ→ 0+ we must have
u′2(x, λ)

u2(x, λ)
→ 0 or α(x)

u′′2(x, λ)

u′2(x, λ)
+ β(x)→ 0.

In the first case, we obtain

|u′2(x, λ)| ≤
∣∣∣u′2(x, λ)

u2(x, λ)

∣∣∣→ 0

and hence u′2(x, λ) → 0 for every x ∈]r1, r2[; then, it follows that limλ→0+ u2(x, λ) = 1 and in
particular

lim
λ→0+

γ2,λ
M2,λ

= lim
λ→0+

u2(r2, λ) = 1.

In the second case, we should have that limλ→0+ u
′′
2(x, λ)/u′2(x, λ) = −β(x)/α(x) from which

limλ→0+ u
′
2(x, λ) = cW (x) for a suitable constant c and consequently

lim
λ→0+

u2(x, λ) = c1 + c2

∫ x

x0

W (t) dt .

Since the term
∫ x
x0
W (t) dt is unbounded at r2, the only possibility is that c2 = 0 and conse-

quently c1 = 1 by evaluation at r1; so, we obtain again limλ→0+ u2(x, λ) = 1.
If λ → +∞, by the equality λ = α(x)u′′2(x, λ)/u2(x, λ) + β(x)u′2(x, λ)/u′2(x, λ), we deduce that
necessarily u2(x, λ)→ 0 at least at one point (and hence at every point by monotonicity). Oth-
erwise, since the functions α and β are bounded, at every point we should have that u′2(x, λ)→
−∞ or |u′′2(x, λ)| → +∞. It follows that the set X = {x ∈]r1, r2[ | limλ→+∞ u′2(x, λ) = −∞}
is dense in ]r1, r2[; for, if [x, y] ∩ X = ∅ with x < y, then by the equality u′2(y, λ) − u′2(x, λ) =
u′′2(tλ, λ)(y − x) we get a contradiction by taking a cluster point t for (tλ)λ>0 where we should
have limλ→+∞ |u′′2(t, λ)| = +∞. At this point, it is clear that limλ→+∞ u2(x, λ) = 0 for every
x ∈]r1, r2[ and in particular, by the continuity of the map λ 7→ u2(·, λ), we conclude that

lim
λ→+∞

γ2,λ
M2,λ

= lim
λ→+∞

u2(r2, λ) = 0.

Finally, we have to show that (u2(r2, λ))λ>0 is decreasing.
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Let 0 < λ < µ; then, for every x ∈]r1, r2[ we have(u′2(x, µ)

W (x)

)′ 1

u2(x, µ)
−
(u′2(x, λ)

W (x)

)′ 1

u2(x, λ)
= µ− λ > 0

and consequently we have(u′2(x, λ)

W (x)

)′ 1

u2(x, λ)
<
(u′2(y, µ)

W (y)

)′ 1

u2(y, µ)

for x, y in a suitable interval ]r2−δ1, r2[. By contradiction, assume that u2(r2, λ) < u2(r2, µ); we
can choose δ2 > 0 such that u2(x, λ) < u2(y, µ) for x, y ∈]r2 − δ2, r2[. Now, let δ = min{δ1, δ2};
since u2(·, λ)/W tends to 0 at r2 for every λ > 0 (see, e.g., [7, Section 11, III, p. 488]), for every
x ∈]r2 − δ, r2[ we can write

u′2(x, λ)

W (x)
=
(u′2(·, λ)

W

)′
(t)(x− r2),

u′2(x, µ)

W (x)
=
(u′2(·, µ)

W

)′
(s)(x− r2)

for suitable t, s ∈]r2 − δ, r2[ and hence, by the above inequalities, we obtain

u′2(x, λ)/W (x) > u′2(x, µ)/W (x), i .e.,u′2(x, λ) > u′2(x, µ) .

We observe that the inequality u′2(x, λ) > u′2(x, µ) cannot hold for every x ∈]r1, r2[, since
u′2(r1, λ) = u′2(r1, µ) = 1. Hence we could not have u2(r2, λ) < u2(r2, µ). Then, we can find
x1 ∈]r1, r2[ for which u′2(x1, λ) = u′2(x1, µ) and u′2(x, λ) > u′2(x, µ) for every x ∈]x1, r2[. Finally,
consider the function u = u2(·, µ)−u2(·, λ); u is strictly decreasing and positive on [x1, r2]. Con-
sequently, we have u′(x1) = 0, u′′(x1) ≤ 0 and hence Au(x1) ≤ 0; on the other hand Au(x1) =
Au2(x1, µ) − Au2(x1, λ) = µu2(x1, µ) − λu2(x1, λ) > λ(u2(x1, µ) − u2(x1, λ)) = λu(x1) > 0
which is a contradiction. So, the proof is complete. �

Theorem 2.1. Assume that ρ 6= 0 and that (A,Dρ(A)) satisfies condition (2.7). Then the following
statements are equivalent:

a) There exists λ0 ≥ 0 such that λ−A is injective for every λ > λ0.
b) (A,Dρ(A)) satisfies condition (2.8) or (2.9).

Moreover, if condition (2.8) holds, we can take λ0 = 0 if and only if ρ ∈ [−1,+∞[ while, if condition
(2.9) holds, we can take λ0 = 0 if and only if ρ ∈]−∞,−1] ∪ [0,+∞[.

Proof. For every λ > 0 the general solution in I of λu−Au = 0 is given by (see (2.6)) u0(·;λ, c1, c2) =
c1χ1,λ + c2χ2,λ, with c1, c2 ∈ R.
We discuss the existence of a unique solution in Dρ(A) on the finiteness of M1,λ and M2,λ.
The case M1 = M2 = +∞ cannot occur otherwise both the endpoints are of entrance or natural
type (see [9, Lemma 6]) and this is excluded by condition (2.7).
If condition (2.8) holds, we have M1,λ = +∞ and M2,λ < +∞ and the general solution in I of
λu−Au = 0 is u0 := c2χ2,λ with c2 ∈ R. Moreover u0 ∈ Dρ(A) if and only if c2(M2,λ+ργ2,λ) =
0. The term M2,λ + ργ2,λ may vanish only if ρ < −1 and in this case (see Proposition 2.1) there
exists λ0 > 0 such that ρ = −M2,λ0

/γ2,λ0
. It follows γ2,λ/M2,λ < γ2,λ0

/M2,λ0
for every λ > λ0

and therefore M2,λ + ργ2,λ > 0. Hence, for every λ > λ0, we must have c2 = 0 and we get that
the unique solution of λu − Au = 0 in Dρ(A) is u0 = 0. If ρ ≥ −1 we have M2,λ + ργ2,λ > 0
for every λ > 0 and this yields again c2 = 0 and the unique solution u0 = 0 of λu − Au = 0 in
Dρ(A).
If condition (2.9) holds, we have M1,λ < +∞ and M2,λ = +∞ and the general solution in I
of λu − Au = 0 is u0 := c1χ1,λ with c1 ∈ R. Moreover u0 ∈ Dρ(A) if and only if c1(γ1,λ +
ρM1,λ) = 0. In this case the term γ1,λ + ρM1,λ may vanish only if −1 < ρ < 0 and in this
case (Proposition 2.1) there exists just one value λ0 > 0 such that ρ = −γ1,λ0

/M1,λ0
. It follows
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γ1,λ/M1,λ < γ1,λ0
/M1,λ0

for every λ > λ0 and consequently γ1,λ + ρM1,λ > 0. Thus c1 = 0
and we get the unique solution u0 = 0 of λu − Au = 0 in Dρ(A). If ρ /∈] − 1, 0[ we have
γ1,λ + ρM1,λ > 0 for every λ > 0 and again c1 = 0 which implies that u0 = 0 is the unique
solution of λu−Au = 0 in Dρ(A).
If M1,λ and M2,λ are both finite, the general solution in I of λu−Au = 0 is u0 := c1χ1,λ+ c2χ1,λ

with c1, c2 ∈ R and we have u0 ∈ Dρ(A) if and only if c1(γ1,λ + ρM1,λ) + c2(M2,λ + ργ2,λ) = 0.
In this case we may always obtain infinite solutions in Dρ(A) by taking

c1 := −M2,λ + ργ2,λ
γ1,λ + ρM1,λ

c2

if ρ /∈]− 1, 0[, or

c2 = −γ1,λ + ρM1,λ

M2,λ + ργ2,λ
c1

if ρ ≥ −1. This show that if λ−A is injective, we necessarily have that just one of the numbers
M1 andM2 must be finite and consequently we obtain the validity of condition (2.8) or (2.9). �

Remark 2.2. In general, we cannot expect the validity of the dissipativity property even in the
cases where λ−A is injective for every λ > 0.
To show this, consider the operator

Au(x) = x(1− x)u′′(x) + u′(x), x ∈]0, 1[

on the domain D−1(A). In this case, choosing x0 = 1/2, we have W (x) = x/(1 − x) and
R(x) = (2x− 1)/(1− x).
Hence A satisfies (2.8); moreover, for u ∈ C2([0, 1]) we have u ∈ D−1(A) if and only if u′(0) =
u′(1).
Thus, if c > 2 and λ > 0, the function u(x) = c − x is in D−1(A) and satisfies λ‖u‖ = λc,
while Au(x) = 1 and consequently ‖λu−Au‖ = λc− 1; hence, the operator (A,D−1(A)) is not
dissipative.
A similar discussion can be carried out to show that (A,Dρ(A)) does not satisfy in general
the positive minimum principle. If we consider the above example, the function u(x) = x is
positive on [0, 1] and vanishes at 0, while Au(x) = −1 < 0. �

According to the work of Feller [7], if A satisfies condition (2.7) and ρ 6= 0, we may not expect
that (A,Dρ(A)) generates a (positive) contraction semigroup.
However we can also obtain the surjectivity of the operator λ−A for every λ > λ0.

Proposition 2.2. Assume that ρ 6= 0 and that (A,Dρ(A)) satisfies condition (2.7) and one the condi-
tions (2.8) or (2.9). Then there exists λ0 ≥ 0 such that λ− A is surjective for every λ > λ0. Moreover,
for every λ > λ0 and every f and f ∈ C(I), the unique solution u ∈ Dρ(A) of (λ− A)u = f satisfies
the estimate

(2.17) ‖u‖ ≤ 1 + 2|ρ|
λ− λ0

‖f‖ .

Finally, if condition (2.8) holds, we can take λ0 = 0 if and only if ρ ∈ [−1,+∞[ while, if condition (2.9)
holds, we can take λ0 = 0 if and only if ρ ∈]−∞,−1] ∪ [0,+∞[.

Proof. Let λ0 as in Theorem 2.1 and fix f ∈ C(I). If (2.8) holds, the function χ2,λ is bounded
and therefore the equation λu−Au = f admits infinite bounded solutions

(2.18) u = uf + cχ2,λ,

depending on the constant c, where uf is defined by considering in (2.5) the Green’s function
Gχ1,λ,χ2,λ

relative to χ1,λ and χ2,λ.
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Moreover, since limx→r1 Auf (x) = 0, we have

lim
x→r1

Au(x) + ρ lim
x→r2

Au(x) = cλM2,λ + ρAuf (r2) + cρλγ2,λ

and therefore we obtain a unique solution in Dρ(A) corresponding to

(2.19) c := − ρAuf (r2)

λ(M2,λ + ργ2,λ)
.

Hence, the function

(2.20) u := uf −
ρAuf (r2)

λ(M2,λ + ργ2,λ)
χ2,λ

is the unique solution of (λ−A)u = f and this completes the proof of the surjectivity of λ−A.
As regards to estimate (2.17), let f ∈ C(I) and consider the unique solution u := (λ − A)f the
unique solution of (λ − A)u = f in Dρ(A) given in (2.20). We already know that the operator
A generates a C0-semigroup of positive contractions on the following domain (see [9, Theorem
4])

DVM := {u ∈ C(I) ∩ C2(I) | Au ∈ C(I), lim
x→r1

Au(x) = 0} .

Hence the equation (λ − A)v = f has a unique solution v := R(λ,A)f ∈ DVM (A) and further
‖v‖ ≤ ‖f‖/λ. From the equality AR(λ,A) = λR(λ,A)− I and since M2,λ + ργ2,λ > 0 for every
λ > λ0, we get

‖u‖ ≤ ‖v‖+
|ρ| ‖AR(λ,A)f‖
λ(M2,λ + ργ2,λ)

M2,λ ≤
‖f‖
λ

+
|ρ| ‖R(λ,A)f‖
1 + ργ2,λ/M2,λ

+
|ρ| ‖f‖

λ(1 + ργ2,λ/M2,λ)

≤ ‖f‖
λ

+
|ρ| ‖f‖
λ

+
|ρ| ‖f‖
λ

=
1 + 2|ρ|

λ
‖f‖ ≤ 1 + 2|ρ|

λ− λ0
‖f‖

which completes the proof in the case where condition (2.8) holds.
An analogous reasoning can be carried out if condition (2.9) holds.
The last part is a consequence of Theorem 2.1. �

Assume that ρ 6= 0 and that (A,Dρ(A)) satisfies condition (2.7) and one of the conditions (2.8)
or (2.9). From the preceding results it follows that (A,Dρ(A)) is closed (Lemma 2.1) and by
Theorem 2.1 and Proposition 2.2 we find λ0 ≥ 0 such that for every λ > λ0 the operator λ− A
is invertible and its inverse satisfies the estimate

‖(λ−A)−1‖ ≤ 1 + 2|ρ|
λ− λ0

.

The last estimate does not ensure that that the operator (A,Dρ(A)) generates a C0-semigroup
in C(I). Moreover, the better case can be obtained by setting ρ = 0 and in this case we have the
generation of C0-semigroup from the classical Hille-Yosida theorem.
Many authors have studied the possibility of approximating the solutions of evolution prob-
lems by using the iterates of suitable approximation processes (see [1, 2] for a complete de-
scription of these methods). Using the results in this paper we can approximate the solution of
similar problems when different boundary conditions are assigned.
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