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ON THE DEFINITION OF MINIMAL LIGHTLIKE

SUBMANIFOLDS

MAKOTO SAKAKI

(Communicated by Krishan Lal DUGGAL)

Abstract. We consider a new definition of minimal lightlike submanifolds
which is independent of the choice of the screen distribution, the screen transver-
sal vector bundle, and the lightlike transversal vector bundle. Under the defi-
nition, we give a class of 4-dimensional minimal lightlike submanifolds in the
6-dimensional semi-Euclidean space of index 3, which are not totally geodesic.
The construction is related to the geometry of paracomplex submanifolds.

1. Introduction

Let M be a submanifold immersed in a semi-Riemannian manifold (M̄, ḡ). If
the induced metric g = ḡ|M is degenerate, then M is called a lightlike submanifold
(cf. [4]). The geometry of lightlike submanifolds is much different from that of
semi-Riemannian submanifolds. For a lightlike submanifold M , the tangent bundle
TM and the normal bundle TM⊥ have a non-trivial intersection, which is called
the radical distribution and denoted by Rad(TM). We may choose a (non-unique)
semi-Riemannian complementary distribution of Rad(TM) in TM , which is called
the screen distribution and denoted by S(TM). Similarly, we may choose a comple-
mentary vector bundle of Rad(TM) in TM⊥, which is called the screen transversal
vector bundle and denoted by s(TM⊥). Corresponding to S(TM) and s(TM⊥),
we may choose a lightlike transversal vector bundle ltr(TM).

In [2] Bejan and Duggal introduced the notion of minimal lightlike submanifolds.
But, in the case where the codimension is greater than 1, their definition depends on
the choice of the screen distribution. So, in Section 3, modifying their definition, we
will give another definition of minimal lightlike submanifolds which is independent
of the choice of the screen distribution, the screen transversal vector bundle, and
the lightlike transversal vector bundle. In the case of lightlike hypersurfaces, those
two definitions are the same.

In Section 5, under our definition, we give a class of 4-dimensional minimal
lightlike submanifolds in the 6-dimensional semi-Euclidean space R6

3 of index 3,
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which are not totally geodesic. This construction is related to the geometry of
paracomplex submanifolds.

Remark 1.1. In a previous paper [7], we obtain a class of minimal lightlike hyper-
surfaces in the 4-dimensional semi-Euclidean space R4

2 of index 2, which are not
totally geodesic. In [8] we discuss minimal lightlike Monge hypersurfaces in semi-
Euclidean spaces. See [3] and [6] for minimal lightlike hypersurfaces in Minkowski
spaces or Lorentzian space forms.

Remark 1.2. In [5] Gorkavyy gives the other definition of minimal lightlike surfaces
in Minkowski spaces, from a view point of isometric deformations.

2. Lightlike submanifolds

In this section, following [4, Chap.5], we recall some basic facts on lightlike
submanifolds.

Let M̄ be an (m+n)-dimensional semi-Riemannian manifold with metric ḡ and
Levi-Civita connection ∇̄. Let M be an m-dimensional lightlike submanifold in M̄ ,
that is, the induced metric g = ḡ|M is degenerate. Then, the tangent bundle TM
and the normal bundle TM⊥ have a non-trivial intersection, which is the radical
distribution Rad(TM), given by

Rad(TxM) = {ξ ∈ TxM |g(ξ,X) = 0, X ∈ TxM}.
If the rank of Rad(TM) is r (≥ 1), then M is called r-lightlike.

There exists a screen distribution S(TM) which is a semi-Riemannian comple-
mentary distribution of Rad(TM) in TM , so that

TM = S(TM) ⊥ Rad(TM).

Similarly, there exists a screen transversal vector bundle s(TM⊥) which is a com-
plemetary vector bundle of Rad(TM) in TM⊥, so that

TM⊥ = s(TM⊥) ⊥ Rad(TM).

When M is r-lightlike, the ranks of S(TM) and s(TM⊥) are m − r and n − r,
respectively. If r = n, then M is called coisotropic.

For a local basis {ξi}1≤i≤r of Γ(Rad(TM)), there exists a local frame {Ni}1≤i≤r

of sections with values in the orthogonal complement of s(TM⊥) in (S(TM))⊥ such
that

ḡ(ξi, Nj) = δij , ḡ(Ni, Nj) = 0,

where δij denotes the Kronecker delta. Then, there exists a lightlike transversal
vector bundle ltr(TM) which is locally spanned by {Ni} (cf. [4, Chap.5, Th.1.3,
1.2]).

So we have the following decomposition:

TM̄ |M = S(TM) ⊥ (Rad(TM)⊕ ltr(TM)) ⊥ s(TM⊥).

The transversal vector bundle is defined by

tr(TM) = ltr(TM) ⊥ s(TM⊥),(2.1)

and we have

TM̄ |M = TM ⊕ tr(TM).(2.2)

According to the decomposition (2.2), we have the Gauss formula

∇̄XY = ∇XY + h(X,Y ), X, Y ∈ Γ(TM).
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Then ∇ is a torsion-free linear connenction on M , and h is a symmetric C∞(M)-
bilinear form on Γ(TM) with values in Γ(tr(TM)). The form h is called the second
fundamental form of M with respect to tr(TM). If h = 0 identically, then M is
called totally geodesic.

From the decomposition (2.1), we have

h(X,Y ) = hl(X,Y ) + hs(X,Y ),

where hl and hs are Γ(ltr(TM))-valued and Γ(s(TM⊥))-valued, respectively. We
call hl and hs the lightlike second fundamental form and the screen second funda-
mental form, respectively. Let {Wα} be a local orthonormal basis of Γ(s(TM⊥))
where r + 1 ≤ α ≤ n. Then we may write

hl(X,Y ) =

r∑

i=1

hl
i(X,Y )Ni, hs(X,Y ) =

n∑
α=r+1

hs
α(X,Y )Wα.

We call hl
i and hs

α the local lightlike second fundamental forms and the local screen
second fundamental forms, respectively.

Let {Xa} be a local orthonormal basis of Γ(S(TM)) where r + 1 ≤ a ≤ m.
Then {ξi, Ni, Xa,Wα} is a local quasi-orthonormal frame field corresponding to
{S(TM), s(TM⊥), ltr(TM)}. We may choose other screen distribution S′(TM),
screen transversal vector bundle s′(TM⊥), and lightlike transversal vector bundle
ltr′(TM). Let {ξi, N ′

i , X
′
a,W

′
α} be a local quasi-orthonormal frame field correspond-

ing to {S′(TM), s′(TM⊥), ltr′(TM)}. Then we may write

X ′
a =

m∑

b=r+1

Xb
a(Xb − εb

r∑

i=1

Pibξi),

W ′
α =

n∑

β=r+1

W β
α (Wβ − εβ

r∑

i=1

Qiβξi),

N ′
i = Ni +

r∑

j=1

Nijξj +

m∑
a=r+1

PiaXa +

n∑
α=r+1

QiαWα,

where {εa} and {εα} are signatures of orthonormal bases {Xa} and {Wα} respec-
tively, Xb

a, W
β
α , Nij , Pia, Qiα are local smooth functions such that (Xb

a) and (W β
α )

are (m− r)× (m− r) and (n− r)× (n− r) semi-orthogonal matrices respectively,
and

Nij +Nji +

m∑
a=r+1

εaPiaPja +

n∑
α=r+1

εαQiαQjα = 0

(cf. [4, p.163]).
Then the local lightlike and screen second fundamental forms are transformed

as h′l
i = hl

i, and

hs
α(X,Y ) =

r∑

i=1

hl
i(X,Y )Qiα +

n∑

β=r+1

h′s
β (X,Y )Wα

β

(cf. [4, p.165]). So the definition that M is totally geodesic is independent of
the choice of the screen distribution, the screen transversal vector bundle, and the
lightlike transversal vector bundle.
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3. The definition of minimality

In [2] Bejan and Duggal give the definition of minimal lightlike submanifolds as
follows:

Definition 3.1. We say that a lightlike submanifold (M, g, S(TM), s(TM⊥)) in a
semi-Riemannian manifold (M̄, ḡ) is minimal if:

(i) hs = 0 on Rad(TM), and
(ii) trace(h) = 0, where the trace is written with respect to g restricted to

S(TM).

Remark 3.1. The lightlike second fundamental form hl = 0 on Rad(TM) (see [4,
Chap.5, Prop.2.2]).

In the case where the codimension is greater than 1, the condition (ii) in Defini-
tion 3.1 depends on the choice of the screen distribution. Modifying Definition 3.1,
we shall give another definition of minimal lightlike submanifolds as follows:

Definition 3.2. We say that a lightlike submanifold (M, g, S(TM), s(TM⊥)) in a
semi-Riemannian manifold (M̄, ḡ) is minimal if:

(a) h(ξ,X) = 0 for any ξ ∈ Γ(Rad(TM)), X ∈ Γ(TM), and
(b) trace(h) = 0, where the trace is written with respect to g restricted to

S(TM).

Remark 3.2. In the case of lightlike hypersurfaces, the condition (i) in Definition
3.1 and the condition (a) in Definition 3.2 are automatically satisfied. So these two
definitions are the same in that case.

Proposition 3.1. The Definition 3.2 is independent of the choice of the screen
distribution, the screen transversal vector bundle, and the lightlike transversal vector
bundle.

Proof. By the transformation formulas in Section 2, we can see that the condition
(a) is independent of the choice of the screen distribution, the screen transversal
vector bundle, and the lightlike transversal vector bundle. So we shall show that,
under the condition (a), the condition (b) is independent of the choice of the screen
distribution, the screen transversal vector bundle, and the lightlike transversal vec-
tor bundle.

Suppose that the condition (a) is satisfied. Let {ξi, Ni, Xa,Wα} and {ξi, N ′
i , X

′
a,W

′
α}

be local quasi-orthonormal frame fields corresponding to {S(TM), s(TM⊥), ltr(TM)}
and {S′(TM), s′(TM⊥), ltr′(TM)}, respectively. Then, by the transformation for-
mulas in Section 2 together with the condition (a), we get

m∑
a=r+1

εah
′l
i (X

′
a, X

′
a) =

m∑
a=r+1

εah
l
i(X

′
a, X

′
a)

=

m∑
a=r+1

εah
l
i




m∑

b=r+1

Xb
a(Xb − εb

r∑

j=1

Pjbξj),

m∑
c=r+1

Xc
a(Xc − εc

r∑

k=1

Pkcξk)




=

m∑

a,b,c=r+1

εaX
b
aX

c
ah

l
i(Xb, Xc) =

m∑

b=r+1

εbh
l
i(Xb, Xb).
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Here, for the last equality, we use that

m∑
a=r+1

εaX
b
aX

c
a = εbδbc

by the semi-orthogonality of (Xb
a). Similarly we have

n∑

β=r+1

(
m∑

a=r+1

εah
′s
β (X

′
a, X

′
a)

)
Wα

β

=

m∑
a=r+1

εah
s
α(X

′
a, X

′
a)−

r∑

i=1

(
m∑

a=r+1

εah
l
i(X

′
a, X

′
a)

)
Qiα

=

m∑

b=r+1

εbh
s
α(Xb, Xb)−

r∑

i=1

(
m∑

b=r+1

εbh
l
i(Xb, Xb)

)
Qiα.

From these equations, we can see that, under the condition (a), the condition (b) is
independent of the choice of the screen distribution, the screen transversal vector
bundle, and the lightlike transversal vector bundle. ¤

4. Paracomplex submanifolds

In this section, following [1], we recall some basic facts on paracomplex submani-
folds, which will be necessary to construct a class of minimal lightlike submanifolds
in the next section.

Let M̄ be a manifold with an almost product structure J̄ , that is, J̄ is a tensor
field of type (1, 1) such that J̄2 = I and J̄ 6= I, where I is the identity. If there
exists a semi-Riemannian metric ḡ on M̄ such that

ḡ(X, J̄Y ) + ḡ(J̄X, Y ) = 0, X, Y ∈ Γ(TM̄),

or equivalently,

ḡ(J̄X, J̄Y ) = −ḡ(X,Y ), X, Y ∈ Γ(TM̄),

then (M̄, J̄ , ḡ) is called an almost parahermitian manifold. If J̄ is integrable, that
is, the Nijenhuis tensor of J̄ given by

N̄(X,Y ) = [J̄X, J̄Y ]− J̄ [J̄X, Y ]− J̄ [X, J̄Y ] + [X,Y ]

vanishes identically, then (M̄, J̄ , ḡ) is called a parahermitian manifold. We say that
an almost parahermitian manifold (M̄, J̄ , ḡ) is a parakähler manifold if J̄ is parallel
with respect to the Levi-Civita connection of ḡ.

Let L be a submanifold in a parakähler manifold (M̄, J̄ , ḡ). We say that L is a
paracomplex submanifold if J̄(TpL) = TpL for any p ∈ L. Set J = J̄ |L, g = ḡ|L,
and assume that g is nondegenerate. Then (L, J, g) is a parakähler manifold, and
the second fundamental form q of L satisfies

q(X,JY ) = J̄(q(X,Y )), q(JX, JY ) = q(X,Y ), X, Y ∈ Γ(TL)(4.1)

(see [1, Lemma 3.1]).
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5. A class of minimal lightlike submanifolds

In this section, we give a class of 4-dimensional lightlike submanifolds in the
6-dimensional semi-Euclidean space R6

3 of index 3, which are minimal in the sense
of Definition 3.2 but not totally geodesic.

Let (J̄ , ḡ) be the standard flat parakähler structure of R6
3. Let L be a paracom-

plex surface in R6
3 with nondegenerate induced metric and the inclusion map f . We

may choose a local frame field {e1, e2} along L such that e2 = J̄e1 and {f∗e1, f∗e2}
is orthonormal with signature (+,−).

A point on L is called a geodesic point if the second fundamental form q vanishes
at the point. We assume that L has no geodesic points, and the first normal space
N1(p) at p ∈ L defined by

N1(p) = span{q(X,Y )|X,Y ∈ TpL} ⊂ TpL
⊥

is not lightlike at each point on L. Then, by (4.1), N1(p) can be locally spanned by
local orthonormal normal vector fields {e3, e4} of signature (+,−) with e4 = J̄e3.
We may also choose local orthonormal normal vector fields {e5, e6} of signature
(+,−) along L so that e6 = J̄e5 and {e1, · · · , e6} is orthonormal.

Let ωB
A denote the connection forms which satisfy

d(f∗ei) =
2∑

j=1

ωj
i f∗ej +

6∑
α=3

ωα
i eα, 1 ≤ i ≤ 2,

and

deα =

2∑

i=1

ωi
αf∗ei +

6∑

β=3

ωβ
αeβ , 3 ≤ α ≤ 6.

By the choice of the frame, we have ωB
A = −ωA

B if |A − B| is even, ωB
A = ωA

B if
|A−B| is odd, and ω5

i = ω6
i = 0 for 1 ≤ i ≤ 2. As L is a paracomplex surface, we

can find that

ω3
1 = ω4

2 , ω4
1 = ω3

2 , ω5
3 = ω6

4 , ω6
3 = ω5

4 .

Let qαij denote the components of the second fundamental form q, where 1 ≤ i, j ≤ 2
and 3 ≤ α ≤ 6, so that

ωα
i =

2∑

j=1

qαijω
j .

Here {ω1, ω2} is the coframe field dual to {e1, e2}. Then we have

q311 = q412 = q322, q411 = q312 = q422, q5ij = q6ij = 0,

where 1 ≤ i, j ≤ 2. By the Gauss equation and these relations, the Gaussian
curvature K of L satisfies

K = 2{(q411)2 − (q311)
2}.(5.1)

We may have the following equations:

d(f∗e1) = ω2
1f∗e2 + ω3

1e3 + ω4
1e4,

d(f∗e2) = ω1
2f∗e1 + ω3

2e3 + ω4
2e4 = ω2

1f∗e1 + ω4
1e3 + ω3

1e4,

d(f∗e1 + f∗e2) = ω2
1(f∗e1 + f∗e2) + (ω3

1 + ω4
1)(e3 + e4),
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de3 = ω1
3f∗e1 + ω2

3f∗e2 + ω4
3e4 + ω5

3e5 + ω6
3e6

= −ω3
1f∗e1 + ω4

1f∗e2 + ω4
3e4 + ω5

3e5 + ω6
3e6,

de4 = ω1
4f∗e1 + ω2

4f∗e2 + ω3
4e3 + ω5

4e5 + ω6
4e6

= ω4
1f∗e1 − ω3

1f∗e2 + ω4
3e3 + ω6

3e5 + ω5
3e6,

d(e3 + e4) = (ω4
1 − ω3

1)(f∗e1 + f∗e2) + ω4
3(e3 + e4) + (ω5

3 + ω6
3)(e5 + e6),

de5 = ω3
5e3 + ω4

5e4 + ω6
5e6 = −ω5

3e3 + ω6
3e4 + ω6

5e6,

de6 = ω3
6e3 + ω4

6e4 + ω5
6e5 = ω6

3e3 − ω5
3e4 + ω6

5e5,

d(e5 + e6) = (ω6
3 − ω5

3)(e3 + e4) + ω6
5(e5 + e6).

Now we state the result as follows:

Theorem 5.1. Under the notation above, the map F : L×R×R → R6
3 defined by

F (p, s, t) = f(p) + s(e3 + e4) + t(e5 + e6), (p, s, t) ∈ L×R×R

gives a 4-dimensional lightlike submanifold which is minimal in the sense of Defi-
nition 3.2. It is not totally geodesic if L is nonflat.

Proof. Set

ẽi(p, s, t) = (ei(p), 0, 0) ∈ T(p,s,t)(L×R×R)

for 1 ≤ i ≤ 2. Then {ẽ1, ẽ2, ∂s, ∂t} is a local frame field on L×R×R, and we have

F∗ẽ1 = f∗e1+s{(ω4
1(e1)−ω3

1(e1))(f∗e1+f∗e2)+ω4
3(e1)(e3+e4)+(ω5

3(e1)+ω6
3(e1))(e5+e6)}

+t{(ω6
3(e1)− ω5

3(e1))(e3 + e4) + ω6
5(e1)(e5 + e6)},

F∗ẽ2 = f∗e2+s{(ω4
1(e2)−ω3

1(e2))(f∗e1+f∗e2)+ω4
3(e2)(e3+e4)+(ω5

3(e2)+ω6
3(e2))(e5+e6)}

+t{(ω6
3(e2)− ω5

3(e2))(e3 + e4) + ω6
5(e2)(e5 + e6)},

F∗∂s = e3 + e4 =: ξ1, F∗∂t = e5 + e6 =: ξ2.

Set

A = ω4
1(e1)− ω3

1(e1) = q411 − q311,

and note that

ω4
1(e2)− ω3

1(e2) = q412 − q312 = q311 − q411 = ω3
1(e1)− ω4

1(e1) = −A.

Then we can see that {F∗ẽ1, F∗ẽ2, F∗∂s, F∗∂t} are linearly independent, and F is
an immersion.

As the metric g on L×R×R induced by F is given by

g(X,Y ) = ḡ(F∗X,F∗Y ), X, Y ∈ Γ(T (L×R×R)),

we have

g(ẽ1, ẽ1) = 1 + 2s(ω4
1(e1)− ω3

1(e1)) = 1 + 2sA,

g(ẽ2, ẽ2) = −1− 2s(ω4
1(e2)− ω3

1(e2)) = −1 + 2sA,

g(ẽ1, ẽ2) = s{(ω4
1(e2)− ω3

1(e2))− (ω4
1(e1)− ω3

1(e1))} = −2sA,

g(ẽi, ∂s) = g(ẽi, ∂t) = g(∂s, ∂s) = g(∂s, ∂t) = g(∂t, ∂t) = 0,
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where 1 ≤ i ≤ 2. Thus the map F gives a 4-dimensional coisotropic lightlike
submanifold M , and {ξ1, ξ2} is a local basis of Γ(Rad(TM)). We choose the screen
distribution S(TM) so that it is spanned by {F∗ẽ1, F∗ẽ2}.

As in Section 2, we choose a local frame {N1, N2} of Γ(ltr(TM)). As M is
coisotropic, the second fundamental form h of M satisfies h = hl, and

hl
k(X,Y ) = ḡ(∇̄F∗XF∗Y, ξk), X, Y ∈ Γ(T (L×R×R)),

where ∇̄ is the flat connection of R6
3 and 1 ≤ k ≤ 2. Then we may have

hl
1(ẽ1, ẽ1) = −A, hl

1(ẽ2, ẽ2) = −A, hl
1(ẽ1, ẽ2) = A,

hl
2(ẽ1, ẽ1) = hl

2(ẽ2, ẽ2) = hl
2(ẽ1, ẽ2) = 0,

hl
k(X, ∂s) = hl

k(X, ∂t) = 0,

where X ∈ Γ(T (L×R×R)) and 1 ≤ k ≤ 2.
So the condition (a) in Definition 3.2 is valid. The condition (b) in Definition

3.2 is equivalent to that

g(ẽ2, ẽ2)h
l
k(ẽ1, ẽ1)− 2g(ẽ1, ẽ2)h

l
k(ẽ1, ẽ2) + g(ẽ1, ẽ1)h

l
k(ẽ2, ẽ2) = 0

for 1 ≤ k ≤ 2, which is also valid from the above computations. Therefore, M is
minimal in the sense of Definition 3.2.

If L is nonflat, then by (5.1), A is not identically zero , and M is not totally
geodesic. Thus we have proved the theorem. ¤
Remark 5.1. The above construction may be seen as a generalization of that in the
previous paper [7].

Remark 5.2. In Example 9 of [2], Bejan and Duggal give a 3-dimensional lightlike
submanifold in S3

1 × R2
1, which is minimal in the sense of Definition 3.1 but not

totally geodesic. Here S3
1 is the 3-dimensional unit pseudo-sphere of index 1, and

R2
1 is the Minkowski plane. We can see that it is also minimal in the sense of

Definition 3.2.

References

[1] Al-Aqeel, A. and Bejancu, A., On the geometry of paracomplex submanifolds, Demonstratio
Math., 34 (2001), 919-932.

[2] Bejan, C. L. and Duggal, K. L., Global lightlike manifolds and harmonicity, Kodai Math. J.,
28 (2005), 131-145.

[3] Burdujan, I., On minimal lightlike Monge hypersurfaces of a Lorentz space, An. Stiint. Univ.
Al. I. Cuza Iasi. Mat., 47 (2001), 95-103.

[4] Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Academic Publishers, 1996.

[5] Gorkavyy, V., On minimal lightlike surfaces in Minkowski space-time, Differ. Geom. Appl.,
26 (2008), 133-139.

[6] Sakaki, M., Mimimal lightlike hypersurfaces in Lorentzian space forms, Int. J. Pure. Appl.
Math., 48 (2008), 595-600.

[7] Sakaki, M., Mimimal lightlike hypersurfaces in R4
2 with integrable screen distribution, Balkan

J. Geom. Appl., 14(1) (2009), 84-90.
[8] Sakaki, M., Mimimal lightlike Monge hypersurfaces in semi-Euclidean spaces, Int. J. Pure.

Appl. Math., 54 (2009), 543-549.

Guraduate School of Science and Technology, Hirosaki University, Hirosaki 036-
8561, Japan

E-mail address: sakaki@cc.hirosaki-u.ac.jp


