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SOME PROPERTIES OF A KENMOTSU MANIFOLD WITH
A SEMI-SYMMETRIC METRIC CONNECTION

SIBEL SULAR

(Communicated by Kazim TLARSLAN)

ABSTRACT. The aim of this paper is to study generalized recurrent, gen-
eralized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric
Kenmotsu manifolds with respect to the semi-symmetric metric connec-

tion.

1. Introduction

A. Friedmann and J. A. Schouten [6] introduced the idea of a semi-
symmetric linear connection on a Riemannian manifold. The definition of
semi-symmetric metric connection was given by H. A. Hayden [7]. Later,
K. Yano [17] initiated studying of a semi-symmetric metric connection on a
Riemannian manifold. He showed that a Riemannian manifold with respect
to the semi-symmetric metric connection has vanishing curvature tensor if
and only if it is conformally flat. Then this result was generalized for van-
ishing Ricci tensor of the semi-symmetric metric connection by T. Imai ([8],
[9]). Moreover, he gave some properties of a hypersurface of a Riemann-
ian manifold admitting a semi-symmetric metric connection and obtained
the formulas of Gauss curvature and Codazzi-Mainardi. In [18], A. Yiicesan
studied submanifolds of a semi-Riemannian manifold with a semi-symmetric
metric connection. In a recent paper, M. M. Tripathi [16] studied semi-
symmetric metric connection in a Kenmotsu manifold. As a result of these
circumstances in this paper, we consider generalized recurrent, generalized
Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric Kenmotsu

manifolds with semi-symmetric metric connection.
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The paper is organized as follows: Section 2 is devoted to preliminaries.
In section 3, we prove that 8 = 2a on generalized recurrent and general-
ized Ricci-recurrent Kenmotsu manifolds with respect to the semi-symmetric
metric connection. In the last section, we show that there is no weakly sym-
metric or weakly Ricci-symmetric Kenmotsu manifolds admitting a semi-
symmetric metric connection, n > 3, unless a + o + vy or p+ pu + v is

everywhere zero, respectively.

2. Preliminaries

Let M be an n-dimensional almost contact metric manifold [1] with an
almost contact metric structure (¢, &, 7, g) consisting of a (1, 1) tensor field
©, a vector field £, a 1-form 1 and a Riemannian metric g on M satisfying

(1) P*’X =-X+nX)E, n€) =1, =0, nop=0,

(2) 9(pX, YY) = g(X,Y) = n(X)n(Y), g(X,§) =n(X),
for all vector fields X,Y on M. If an almost contact metric manifold satisfies
[10]

(3) (Vxp)Y = g(pX,Y) —n(Y)pX
and
(4) Vxé =X —n(X),

then M is called a Kenmotsu manifold, where V is Levi-Civita connection

of g. From above equations it follows that

() (VxmY = g(X,Y) = n(X)n(Y).

Moreover, the curvature tensor R and the Ricci tensor S satisfy [10]
(6) R(X,Y)E =n(X)Y —n(Y)X

and

(7) S(X,€) = —=(n = n(X).

A linear connection V in M is called semi-symmetric connection ([13],
[17]) if the torsion tensor 1" of the connection V

(8) T(X,Y)=VxY —VyX — [X,Y]
satisfies
) T(X,Y)=n{Y)X —n(X)Y.

If V is the Levi-Civita connection of an almost contact metric manifold M,
the semi-symmetric metric connection V in M is denoted by

(10) VxY = VxY +7(Y)X — g(X,Y)E.



26 SIBEL SULAR

Let R and R be the curvature tensors of V and V of an almost contact
metric manifold, respectively. Then R and R are related by ([13], [17])

(11)

R(X,Y)Z = R(X,Y)Z —a(Y, Z)X + (X, 2)Y — g(Y, Z)AX + g(X, Z) AY,

where a is a (0,2) tensor field denoted by

(12) o(X,Y) = (Vxm)¥ = n(X)n(¥) + Ln(€)g(X, )
and

(13) J(AX,Y) = a(X,Y).

Since M is a Kenmotsu manifold using (5) it follows that
(14 o(X,Y) = Sg(X,¥) ~ 2(X)n(¥)

and

(15) AX = gx —on(X)e.

In view of (14) and (15) in (11) we have
(16)1?3()(, Y)Z = R(X,Y)Z-39(Y,2)X +39(X,2)Y +2n(Y)n(Z)X
—2(X)n(2)Y +29(Y, Z)n(X)€ — 29(X, Z)n(Y)S.

In view of (16) we get

(17)  S(X,Y) =S(X,Y) = (30— 5)g(X,Y) +2(n - 2n(X)n(Y),
where S and S are Ricci tensors of M with respect to the semi-symmetric
metric connection V and Levi-Civita connection V, respectively.

Lemma 2.1. [5] In a Kenmotsu manifold M with semi-symmetric metric

connection we have

(18) R(X, Y)§ = 2R(X, Y)§
and
(19) S(X,€) = 25(X,¢€).

3. Generalized Recurrent Kenmotsu Manifolds

A non-flat n-dimensional differentiable manifold M, n > 3, is called gen-

eralized recurrent [4] if its curvature tensor R satisfies the condition
(20) (VxR)(Y, Z2)W = a(X)R(Y, Z)W + B(X)[g(Z, W)Y — g(Y,W)Z],

where V is the Levi-Civita connection and « and 3 are two 1-forms, (5 # 0),
defined by

(21) a(X) = g(X, 4), B(X)=g(X,B)
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and A, B are vector fields related with 1-forms « and 3, respectively.
A non-flat n-dimensional differentiable manifold M, n > 3, is called gen-
eralized Ricci-recurrent [4] if its Ricci tensor S satisfies the condition

(22) (VxS)(Y, Z) = a(X)S(Y, Z) + (n — 1)B(X)g(Y, Z),

where o and [ are defined as in (21).
Similarly, a non-flat n-dimensional differentiable manifold M, n > 3,
is called generalized recurrent with respect to the semi-symmetric metric

connection if its curvature tensor R satisfies the condition
(23) (VxR)(Y,Z)W = a(X)R(Y, 2)W + B(X)[g(Z, W)Y — g(Y,W)Z],

where V is the semi-symmetric metric connection and R is the curvature
tensor of V.

A non-flat n-dimensional differentiable manifold M, n > 3, is called gener-
alized Ricci-recurrent with respect to the semi-symmetric metric connection

if its Ricci tensor S satisfies the condition
(24) (VxS)(Y,2) = a(X)S(Y, Z) + (n — 1)B(X)g(Y, Z).

In [12], C. Ozgiir considered generalized recurrent Kenmotsu manifolds
and it was obtained the following results:

Theorem 3.1. [12] Let M be a generalized recurrent Kenmotsu manifold.
Then B = « holds on M.

Theorem 3.2. [12] Let M be a generalized Ricci-recurrent Kenmotsu man-
ifold. Then B = « holds on M.

Now we consider generalized recurrent and generalized Ricci-recurrent
Kenmotsu manifolds with respect to the semi-symmetric metric connection.

We begin with the following theorem:

Theorem 3.3. If a generalized recurrent Kenmotsu manifold M admits a

semi-symmetric metric connection, then 8 = 2« holds on M.

Proof. Suppose that M is a generalized recurrent Kenmotsu manifold ad-
mitting a semi-symmetric metric connection. Then from (23), it can be

written as

(25)  (VxR)(Y, )W = a(X)R(Y, Z)W + B(X)[9(Z, W)Y = g(Y,W)Z]

for all vector fields X,Y, Z, W. Taking Y =W = ¢ in (25) we have
(VxR)(€ 2)6 = a(X)R(E 2) + BX)(2)§ — Z].

By making use of (6) and (18) in the above equation we get

(26) (VxR)(& 2)€ = [B(X) — 2a(X){n(2)€ — Z}.
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On the other hand, it is obvious that

@7) o _ o L
(VxR)(§,2)§ = VxR(,Z)§ — R(VxE, Z)E — R(E,VxZ2)§ — R(§, Z)VxE.

Then in view of (6) and (18), the equation (27) yields to
(28) (VxR)(& 2)¢ = 0.

Hence comparing the right hand sides of the equations (26) and (28) we
obtain

[6(X) = 2a(X){n(2) - 2} =0,
which implies that §(X) = 2a(X) for any vector field X. Thus our theorem
is proved. O

Theorem 3.4. Let M be a generalized Ricci-recurrent Kenmotsu manifold
admitting a semi-symmetric metric connection. Then S = 2« holds on M.

Proof. Assume that M is a generalized Ricci-recurrent Kenmotsu manifold
admitting a semi-symmetric metric connection. Then from (24), we can

write
(6X§)(Y7 Z) = a(X)g(Y7 Z) + (TL - l)ﬁ(X)g(Y7 Z)

for all vector fields X, Y, Z on M. Putting Z = £ in the above equation we
get

(VxS)(Y,€) = «(X)S(Y;€) + (n = )B(X)n(Y).
Then by virtue of (7) and (19), it can be easily seen that
(29) (VxS)(Y.€) = (n = D[BX) = 2a(X)]n(Y).

On the other hand, by making use of the definition of covariant derivative of
S with respect to the semi-symmetric metric connection V, it is well-known
that

(30)  (VxS)(Y.§) = VxS(Y,§) - S(VxY.&) - S(Y, Vxo).
By the use of (4), (7), (10) and (19) in (30) we get
(31)  (Vx8)(Y,€) =2(n —3)g(X,Y) — 4(n — 2)n(X)n(Y) — 25(X,Y).

Thus comparing the right hand sides of the equations (29) and (31) we can

write
(32) (n = DBX) = 2a(X)In(Y)
= 2(n—-3)9(X,Y)—4(n—-2)n(X)n(Y)—25(X,Y).

Taking Y = £ in (32) and using (7) we obtain S(X) = 2a(X) for any vector
field X on M. Hence the proof of the theorem is completed. O



SOME PROPERTIES OF A KENMOTSU MANIFOLD 29

4. Weakly Symmetric Kenmotsu Manifolds

A non-flat n-dimensional differentiable manifold M, n > 3, is called pseu-
dosymmetric if there is a 1-form « on M such that

(VxR)(Y,Z,V) = 2a(X)R(Y,Z)V + a(Y)R(X,Z)V + a(Z)R(Y,X)V
+a(V)R(Y, 2)X + g(R(Y, Z)V, X) A,

where V is the Levi-Civita connection and X,Y, Z,V are vector fields on
M. A € TM is the vector field associated with 1-form « which is defined
by g(X,A) = a(X) in [2].

A non-flat n-dimensional differentiable manifold M, n > 3, is called
weakly symmetric ([14], [15]) if there are 1-forms «, 8, and o such that

(VxR)(Y,Z,V) = o(X)R(Y,Z)V +B(Y)R(X,Z)V +~(Z2)R(Y,X)V
(33) +o(V)R(Y, Z)X + g(R(Y, Z)V, X)P,

for all vector fields X,Y,Z,V on M. A weakly symmetric manifold M is
pseudosymmetric if § = v = 0 = %a and P = A, locally symmetric if
a=p=~v=0c=0and P=0. A weakly symmetric manifold is said to be
proper if at least one of the 1-forms «, 3,7 and ¢ is not zero or P # 0.

A non-flat n-dimensional differentiable manifold M, n > 3, is called

weakly Ricci-symmetric ([14], [15]) if there are 1-forms p, u, v such that
(34)  (Vx9(Y,2) = p(X)S(Y, Z) + p(Y)S(X, Z) + v(2)S(X,Y),
for all vector fields X,Y,Z on M. If p = 4 = v then M is called pseudo

Ricci-symmetric (see [3]).
If M is weakly symmetric, from (33), we have

(35) (Vx9)(Z,V) = a(X)S(Z,V)+B(R(X,2)V)+~(Z2)S(X,V)
+o(V)S(X,Z) +p(R(X,V)Z),

where p is defined by p(X) = ¢g(X, P) for any X € TM in [15].
Similarly, a non-flat n-dimensional differentiable manifold M, n > 3, is
called weakly symmetric with respect to the semi-symmetric metric connec-

tion if there are 1-forms «, 3,y and ¢ such that

(VXR)(Y,Z)V = a(X)R(Y,Z)V +B(Y)R(X,2)V +v(Z)R(Y, X)V

(36) +o(V)R(Y,Z)X + g(R(Y,2)V,X)P,

for all vector fields X, Y, Z,V on M.

A non-flat n-dimensional differentiable manifold M, n > 3, is called
weakly Ricci-symmetric with respect to the semi-symmetric metric connec-
tion if there are 1-forms p, i, v such that

(37)  (VxS)(Y.Z) = p(X)S(Y, Z) + p(Y)S(X, Z) + v(Z)S(X,Y),
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for all vector fields X, Y, Z on M.
If M is weakly symmetric with respect to the semi-symmetric metric
connection, by a contraction from (36), we have
(38) (VxS)(Z,V) = a(X)S(Z,V)+B(R(X,2)V)+~7(2)S(X,V)
—i—a(V)S(X, Z) —|—p(R(X, V)Z).

In [11], C. Ozgiir studied weakly symmetric and weakly Ricci-symmetric
Kenmotsu manifolds and it was obtained the following results:

Theorem 4.1. [11]There is no weakly symmetric Kenmotsu manifold M,

n > 3, unless a4+ o + vy is everywhere zero.

Theorem 4.2. [11] There is no weakly Ricci-symmetric Kenmotsu manifold
M, n >3, unless p+ p+ v is everywhere zero.

Now we consider weakly symmetric and weakly Ricci-symmetric Ken-
motsu manifolds with respect to the semi-symmetric metric connection. We
begin with the following theorem:

Theorem 4.3. There is no weakly symmetric Kenmotsu manifold M ad-
mitting a semi-symmetric metric connection, n > 3, unless a + o + 7y is

everywhere ZETO0.

Proof. Let M be a weakly symmetric Kenmotsu manifold with semi-symmetric
metric connection V. By the covariant differentiation of the Ricci tensor S
of the semi-symmetric metric connection with respect to X, we have

(39)  (VxS)(Z,V)=VxS(Z,V)=S8(VxZV)-8(Z,VxV).
Putting V = ¢ in (39) and using (4), (7), (10) and (19), it follows that
(40)  (VxS8)(Z,€) =2(n —3)g(X, Z) — 4(n — 2)n(X)n(Z) — 25(X, Z).
On the other hand, replacing V with ¢ in (38), we get

(41) (VxS)(Z,6) = a(X)S(Z,€)+BR(X,2)€) +~v(Z)S(X,¢€)
+0(€)S(X, Z) + p(R(X,€)2).

By the use of (6), (7), (17), (18) and (19) in (41) we have
(Vx8)(Z,€) = 2(1-n)a(X)n(Z) +20(X)B(Z) — 2n(Z)B(X)
(42) +2(1 = n)y(Z2)n(X) + 0(§)S(X, 2)
—(8n =5)a(§)g(X, Z) +2(n = 2)a(§)n(X)n(2)
+29(X, Z)p(§) — 2n(Z)p(X).
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Thus, comparing the right hand sides of the equations (40) and (42) we

obtain
2(n = 3)g(X, Z) —4(n - 2)n(X)n(Z) - 25(X, 2)

43) = 201 —n)a(X)n(2) + 20(X)B(2) — 20(Z)5(X)
+2(1 = n)y(Z2)n(X) + 0(§)S(X, Z) = 3n = 5)0(£)g(X, Z)
+2(n = 2)o()n(X)n(2) + 29(X, Z)p(§) — 2n(Z)p(X).

Then taking X = Z = ¢ in (43) and using (1) and (7) we get

2(1 = n)[a(§) +~(§) +o(§)] =0,

which implies that (since n > 3)

(44) a(§) +7(§) + o) =0

holds on M. Now we shall prove that a + vy + ¢ = 0 for all vector fields
holds on M. In (38) replacing Z with £ it follows that

2(n —3)g(X, V) —4(n = 2)n(X)n(V) — 25(X,V)

(45) = ( —n)a(X)n(V) + 29(X, V)B(£) — 2n(V)B(X)
Y(ES(X, V) = (Bn = 5)v(§)g(X, V) + 2(n — 2)y(En(X)n(V)

( —n)o(V)n(X) + 2n(X)p(V) = 2n(V)p(X).

Taking V' = ¢ in (45) and in view of (1) and (7) we get
0 = 2(1-n)a(X)+2n(X)B(§) — 28(X)

(46) +2(1 = n)y(§n(X) +2(1 = n)a(§)n(X)
+2n(X)p(§) — 2p(X).

Replacing X with & in (45) we have
(47) 0 = 2(1=n)a(&)n(V) +2(1 = n)y()n(V)
+2(1 =n)o(V) +2p(V) = 2n(V)p(§)-
Now taking V' = X in (47) and summing with (46), by virtue of (44) we find
(48) 0 = 2(1—n)a(X) +2n(X)B(§) — 26(X)
+2(1 = n)y(©n(X) +2(1 = n)o(X).

Replacing X with & in (43) we have

(49) 0 = 2(1=n)al§)n(2) +26(2) — 2n(Z)B(£)
+2(1 =n)y(2) +2(1 = n)a()n(2).
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Finally taking Z = X in (49) and adding (48) and (49) we have
0 = 2(1—n)n(X)[a(§) +~() +a(8)]
+2(1 = n)e(X) + 7(X) 4+ o(X)].

Since a(&) +v(€) +a(€) =0, so we obtain a(X) +~v(X) +o(X) = 0 for any
X on M. Thus the proof of the theorem is completed. O

o) ~—

Theorem 4.4. There is no weakly Ricci-symmetric Kenmotsu manifold M
with respect to the semi-symmetric metric connection, n > 3, unless p+pu—+v

s everywhere zero.

Proof. Assume that M is a weakly Ricci-symmetric Kenmotsu manifold with
a semi-symmetric metric connection V. Taking Z = £ in (37) and using (17)
and (19) we have

(50) (VxS)(Y,€) = 20(X)S(Y,€) +2u(Y)S(X.€) + v(§)S(X,Y)
—(3n =5)v(§)g(X,Y) +2(n — 2)v(§)n(X)n(Y).
On the other hand from (40) and (50) we can write
2(n = 3)g(X,Y) —4(n = 2)n(X)n(Y) — 25(X,Y)
(51) = 2p(X)S(Y,8) +2u(Y)S(X, ) + v(§)S(X,Y)
—(8n = 5)v(§)g(X,Y) +2(n — 2)v(§)n(X)n(Y).

Putting X =Y = ¢ in (51) and by making use of the relations (1) and (7)
we find

2(1 —=n)[p(&) + p(&) +v(§)] =0,

which implies that (since n > 3)

(52) p(§) + (&) +v(§) = 0.
Then taking X = ¢ in (51) we obtain
2(1 = n)n(Y)[p(§) +v(§] +2(1 —n)u(Y) = 0.
So in view of (52), the above equation turns into
2(1 = n)[=p(En(Y) + u(Y)] =0,
which shows that (since n > 3)
(53) u(Y) = p(En(Y).
Similarly putting Y = £ in (51) we also have
p(X) +n(X)[(&) +v(§)] =0.

Then by virtue of (52) we get from the last equation

(54) p(X) = p(§)n(X).
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Since (%5:5:)(5,)() = 0, then from (37), we find

n(X)[p(§) + n()] +v(X) =0,

which means that

(55) v(X) = v(§)n(X).

Thus replacing Y with X in (53) and summing of the equations (53), (54)
and (55) we get

p(X) + pu(X) +v(X) = [p(&) + u(§) +v(&)n(X)

and so by virtue of the equation (52) it is clear that
p(X) + p(X) + 0(X) = 0,

for any vector field X holds on M, which means that p+ p+ v = 0. Hence,
our theorem is proved. O
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