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SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY

NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME
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Abstract. In this paper, we characterize pseudo and partially null osculating

curves of the first and second kind in Minkowski space-time E4
1 in terms of

their curvature functions. We give the necessary and sufficient conditions for
pseudo and partially null curves to be osculating curves. In particular, we
show that there exists a simple relationship between pseudo and partially null

osculating curves and pseudo and partially null normal and rectifying curves.
Finally, we obtain some explicit parameter equations of pseudo and partially
null osculating curves in E4

1.

1. Introduction

In the Euclidean space E3, rectifying curves are defined in [2] as the curves whose
rectifying planes always contain a fixed point. Such curves have many interesting
geometrical properties. For example, there exists a simple relationship between
rectifying curves and centrodes (Darboux vectors), which play some important roles
in mechanics, kinematics as well as in differential geometry. In Minkowski space-
time, rectifying curves are characterized in [7].

Analogously, timelike normal curves in Minkowski 3-space E3
1 are defined as the

curves whose normal planes always contain a fixed point. Therefore, the position
vector of such curves (with respect to some chosen origin), always lies in its normal
plane ([3]). In particular, timelike normal curves lie in pseudosphere in E3

1.
In elementary differential geometry, it is well-known that if osculating planes of

the curve α in E3 always contain a fixed point, then α is planar curve. The curves
whose osculating planes always contain a fixed point are called osculating curves in
[5].

In Minkowski space-time E4
1, osculating curves are defined in [6] as the curves

whose the position vector (with respect to some chosen origin) always lies in its
osculating space. If osculating space is orthogonal complement of the second bi-
normal vector field B2 of the curve α, then α is called osculating curve of the first
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kind. On the other hand, if osculating space is orthogonal complement of the first
binormal vector field B1, then α is called osculating curve of the second kind. In E4

1,
timelike osculating curves and spacelike osculating curves whose the Frenet frame
contains only non-null vectors are characterized in [6].

In this paper, we characterize pseudo and partially null osculating curves of
the first and second kind in E4

1 in terms of their curvature functions. We give
the necessary and sufficient conditions for pseudo and partially null curves to be
osculating curves. In particular, we show that there exists a simple relationship
between pseudo and partially null osculating curves and pseudo and partially null
normal and rectifying curves. Finally, we obtain some explicit parameter equations
of pseudo and partially null osculating curves in E4

1.

2. Preliminary

The Minkowski space-time E4
1 is the Euclidean 4-space E4 equipped with indef-

inite flat metric given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system of E4
1. Recall that arbitrary

vector v ∈ E4
1\{0} can be spacelike if g(v, v) > 0 , timelike if g(v, v) < 0 and null

(lightlike) if g(v, v) = 0 and v ̸= 0. In particular, the vector v = 0 is a spacelike.

The norm of a vector v is given by ||v|| =
√
|g(v, v)|. Two vectors v and w are

said to be orthogonal if g(v, w) = 0. An arbitrary curve α(s) in E4
1 can locally be

spacelike, timelike or null (lightlike), if all its velocity vectors α′(s) are respectively
spacelike, timelike or null. A spacelike or a timelike curve α(s) has unit speed, if
g(α′(s), α′(s)) = ±1 [8]. A spacelike curve in E4

1 is called pseudo null or partially
null curve, if respectively its principal normal vector is null or its first binormal
vector is null [1]. A null curve α has unit speed, if g(α′′(s), α′′(s)) = ±1.

Let {T,N,B1, B2} be the moving Frenet frame along a curve α in E4
1, consisting

of the tangent, the principal normal, the first binormal and the second binormal
vector fields respectively. If α is pseudo null curve, the Frenet formulas are ([1,9]):

(2.1)


T ′

N ′

B′
1

B′
2

 =


0 k1 0 0
0 0 k2 0
0 k3 0 −k2

−k1 0 −k3 0




T
N
B1

B2

 ,

where the first curvature k1(s) = 0, if α is straight line, or k1(s) = 1 in all other
cases. Such curve has two curvatures κ2(s) and κ3(s) and the following conditions
are satisfied

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.

If α is partially null curve, the Frenet formulas read ([1,9]):

(2.2)


T ′

N ′

B′
1

B′
2

 =


0 k1 0 0

−k1 0 k2 0
0 0 k3 0
0 −k2 0 −k3




T
N
B1

B2

 ,
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where the third curvature κ3(s) = 0 for each s. Such curve has two curvatures
κ1(s) and κ2(s) and lies fully in a lightlike hyperplane of E4

1. In particular, the
following equations hold

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.

Recall that arbitrary curve α in E4
1 is called osculating curve of the first or second

kind, if its position vector (with respect to some chosen origin) always lies in the
orthogonal complement B⊥

2 or B⊥
1 , respectively ([6]).

If α is pseudo null curve, the orthogonal complement B⊥
2 is a lightlike (de-

generate) hyperplane of E4
1, spanned by {T,B1, B2} and B⊥

1 is non-degenerate
hyperplane of E4

1, spanned by {T,N,B2}. Consequently, the position vector of
pseudo null osculating curve of the first and second kind satisfies respectively the
equations

(2.3) α(s) = λ(s)T (s) + µ(s)B1(s) + ν(s)B2(s),

(2.4) α(s) = λ(s)T (s) + µ(s)N(s) + ν(s)B2(s),

for some differentiable functions λ(s), µ(s) and ν(s) in arclength function s.
If α is partially null osculating curve of the first kind, then its position vector

satisfies the condition g(α(s), B2(s)) = 0. It follows that the position vector of
partially null osculating curve of the first kind is given by

(2.5) α(s) = λ(s)T (s) + µ(s)N(s),

where λ = g(α, T ) and µ = g(α,N) are arbitrary differentiable functions in arc-
length function s.

Moreover, if α is partially null osculating curve of the second kind, then its
position vector satisfies the equation g(α(s), B1(s)) = 0. Consequently, the position
vector of partially null osculating curve of the second kind satisfies the relation

(2.6) α(s) = λ(s)T (s) + µ(s)N(s) + ν(s)B1(s),

where λ = g(α, T ), µ = g(α,N) and ν = g(α,B2) are arbitrary differentiable
functions in arclenght function s.

3. Partially null osculating curves of the first kind in E4
1

Partially null straight lines are the simplest examples of partially null osculating
curves of the first kind. In the next theorem, we show that every planar partially
null curve in E4

1, is partially null osculating curve of the first kind.

Theorem 3.1. Let α be a unit speed partially null curve in E4
1 with the first curva-

ture k1(s) ̸= 0. Then α is osculating curve of the first kind if and only if its second
curvature k2(s) = 0 for each s.

Proof. First assume that α is partially null osculating curve of the first kind. Then
its position vector satisfies relation (2.5). Differentiating relation (2.5) with respect
to s and using Frenet equations (2.2), we obtain the system of equations

(3.1)
λ′(s)− µ(s)k1(s) = 1,
µ′(s) + λ(s)k1(s) = 0,
µ(s)k2(s) = 0.
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The third equation of (3.1) implies µ(s) = 0 or k2(s) = 0. If µ(s) = 0, by using
(3.1) we get a contradiction. Hence µ(s) ̸= 0 and k2(s) = 0.

Conversely, suppose that the second curvature k2(s) = 0 for each s. By us-
ing the Frenet formulas (2.2), we get α′(s) = T (s), α′′(s) = k1(s)N(s), α′′′(s) =
k′1(s)N(s)− k21(s)T (s). Moreover, all higher order derivatives of α are linear com-
binations of vectors T and N . By using MacLaurin expansion for α given by

α(s) = α(0) + α′(0)s+ α′′(0)
s2

2!
+ α′′′(0)

s3

3!
+ . . . ,

we conclude that α lies fully in spacelike 2-plane spanned by {T,N}. Hence its
position vector satisfies relation (2.5), which proves the theorem. �

Theorem 3.2. Let α be a unit speed partially null curve in E4
1 with the first cur-

vature k1(s) ̸= 0. Then α is osculating curve of the first kind if and only if its
position vector is given by

(3.2) α(s) = −µ′(s)

k1(s)
T (s) + µ(s)N(s),

where µ(s) ̸= 0 is arbitrary differentiable function satisfying differential equation

(3.3) µ′′(s)k1(s)− µ′(s)k′1(s) + µ(s)k31(s) + k21(s) = 0.

Proof. First assume that α is partially null osculating curve of the first kind. Ac-
cording to the proof of theorem 3.1, there holds relation (3.1) where µ(s) ̸= 0. From
the second equation of (3.1) we get

(3.4) λ(s) = −µ′(s)

k1(s)
.

Substituting (3.4) in (2.5), we obtain that position vector of α is given by (3.2).
Moreover, by using the first and second equation of (3.1), we easily get that function
µ(s) satisfies relation (3.3).

Conversely, if position vector of partially null curve α satisfies relation (3.2) we
easily get g(α(s), B2(s)) = 0, which means that α is partially null osculating curve
of the first kind. This completes the proof of theorem. �

Clearly, the solution of differential equation (3.3) depends on the equation of
the first curvature k1(s). By theorem 3.1, every partially null osculating curve α
of the first kind lies fully in spacelike 2-plane of E4

1, so it is possible to determine
its parameter equation by knowing the equation of the first curvature k1(s). Up to
isometries of E4

1, parameter equation of α can be written as

α(s) =

∫ s

0

T (s) ds+ C =

∫ s

0

1

k1(ϕ)
(cosϕ e2 + sinϕ e3) dϕ+ C,

where e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), k1(s) = ϕ′(s), C ∈ E4
1 is constant vector and

ϕ(s) is the angle between spacelike vectors T (s) and e2.

Example 3.1. Let us consider partially null curve in E4
1 given by

α(s) = (0,
√
2s sin(

√
2s) + cos(

√
2s), sin(

√
2s)−

√
2s cos(

√
2s), 0).
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By using Frenet equations (2.2), we find that Frenet vectors and curvatures of α
have the form

T (s) = (0, cos(
√
2s), sin(

√
2s), 0),

N(s) = (0,− sin(
√
2s), cos(

√
2s), 0),

B1(s) = (1, 0, 0, 1),

B2(s) = (−1

2
, 0, 0,

1

2
),

k1(s) =
1√
2s

, k2(s) = k3(s) = 0.

In particular, by using relation (3.3) we obtain µ(s) = −
√
2s. According to theorem

3.2 the position vector of α can be written as

α(s) = T (s)−
√
2sN(s).

The last equation implies g(α(s), B2(s)) = 0, which means that α is partially null
osculating curve of the first kind.

Recall that arbitrary curve α in E4
1 is called normal curve in [4] (rectifying curve

in [7]), if its position vector with respect to some chosen origin always lies in the
orthogonal complement of the tangential vector field T (principal normal vector
field N) of the curve. The next theorem gives the simple relation between partially
null osculating curves of the first kind and partially null normal curves.

Theorem 3.3. Every partially null osculating curve of the first kind with the first
curvature k1(s) ̸= 0 and zero tangential component g(α, T ) is partially null normal
curve and hence a circle.

It is proved in [7] that the only partially null rectifying curves in E4
1 are partially

null straight lines. Hence the next theorem holds.

Theorem 3.4. Every partially null rectifying curve in E4
1 is partially null osculating

curve of the first kind.

4. Partially null osculating curves of the second kind in E4
1

In this section, we characterize partially null osculating curves of the second
kind in E4

1 with the curvature functions k1(s) ̸= 0 and k2(s) ̸= 0 for each s. The
following theorem can be proved in a similar way as theorem 3.2, so we omit its
proof.

Theorem 4.1. Let α be a unit speed partially null curve in E4
1 with the curvatures

k1(s) ̸= 0 and k2(s) ̸= 0. Then α is osculating curve of the second kind if and only
if its position vector is given by

(4.1) α(s) = −µ′(s)

k1(s)
T (s) + µ(s)N(s)−

∫
µ(s)k2(s) dsB1(s),

where µ(s) ̸= 0 is arbitrary differentiable function satisfying relation (3.3).

As a consequence, we obtain the next theorem.

Theorem 4.2. Let α(s) be a unit speed partially null curve in E4
1 with the curva-

tures k1(s) ̸= 0 and k2(s) ̸= 0. If α is osculating curve of the second kind, then the
following statements hold:
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(i) the tangential and principal normal component of the position vector are
respectively given by

g(α(s), T (s)) = −µ′(s)

k1(s)
, g(α(s), N(s)) = µ(s),

where µ is arbitrary differentiable function satisfying (3.3).
(ii) the tangential and second binormal component of the position vector are

respectively given by

g(α(s), T (s)) = −µ′(s)

k1(s)
, g(α(s), B2(s)) = −

∫
µ(s) k2(s) ds,

where µ is arbitrary differentiable function satisfying (3.3).
(iii) the tangential component of the position vector and the distance function

ρ(s) = ||α(s)|| are respectively given by

g(α(s), T (s)) = −µ′(s)

k1(s)
, ρ2(s) =

µ′2(s)

k21(s)
+ µ2(s),

where µ is arbitrary differentiable function satisfying (3.3).
Conversely, if α(s) is unit speed partially null curve in E4

1 with the curvatures
k1(s) ̸= 0, k2(s) ̸= 0 and one of the statements (i),(ii) or (iii) holds, then α(s) is
osculating curve of the second kind.

Proof. Let us first assume that α is partially null osculating curve of the second
kind. By using relation (4.1), we easily obtain that statements (i),(ii) and (iii) hold.

Conversely, suppose that statement (i) holds. By taking the derivative of the
relation g(α,N) = µ with respect to s and using (2.2), we get g(α,B1) = 0,
which means that α is osculating curve of the second kind. If statement (ii) holds,
differentiating the equation g(α,B2) = −

∫
µk2 ds two times with respect to s

and using (2.2), we find g(α,B1) = 0. Hence α is osculating curve of the second
kind. Finally, if statement (iii) holds, then g(α, α) = g(α, T )2 + µ2. By taking the
derivative of the last equation two times with respect to s and using (2.2), we get
g(α,B1) = 0, which completes the proof of the theorem. �

The following theorem gives the simple relation between partially null osculating
curves of the second kind and partially null normal curves.

Theorem 4.3. Every partially null osculating curve of the second kind in E4
1 with

tangential component of the position vector g(α, T ) = 0 is partially null normal
curve.

Example 4.1. Let us consider partially null helix with null axes

α(s) = (s, s,
1

c
cos(cs),

1

c
sin(cs)), c ∈ R+

0 .

we find that Frenet vectors and curvatures of α are given by

T (s) = (1, 1,− sin(cs), cos(cs)),
N(s) = (0, 0,− cos(cs),− sin(cs)),
B1(s) = (c, c, 0, 0),

B2(s) = (−1

c
, 0,

1

c
sin(cs),−1

c
cos(cs)),

k1(s) = c, k2(s) = 1, k3(s) = 0, c ∈ R+
0 .
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It can be easily verified that g(α(s), B1(s)) = 0, so α is partially null osculating
curve of the second kind. Moreover, by using theorem 4.1 we find µ(s) = −1/c.
Then relation (4.1) imply that the position vector of α can be written as

α(s) = −1

c
N(s) +

s

c
B1(s).

Example 4.2. Let us consider partially null curve given by

β(s) = (es, es,
1

c
cos(cs),

1

c
sin(cs)), c ∈ R+

0 .

We obtain that Frenet frame of β has the form

T (s) = (es, es,− sin(cs), cos(cs)),

N(s) =
1

c
(es, es,−c cos(cs),−c sin(cs)),

B1(s) =
1 + c2

c
(1, 1, 0, 0),

B2(s) = (−e2s

2c
− c

2(1 + c2)
,−e2s

2c
+

c

2(1 + c2)
,

es

1 + c2
(cos(cs) + c sin(cs)),

es

1 + c2
(sin(cs)− c cos(cs))),

while the curvature functions are given by

k1(s) = c, k2(s) = es, k3(s) = 0, c ∈ R+
0 .

It can be easily checked that g(β(s), B1(s)) = 0, which means that β is partially
null osculating curve of the second kind. In particular, according to theorem 4.1
the position vector of β can be written as

β(s) = −1

c
N(s) +

es

c
B1(s), c ∈ R+

0 .

5. Pseudo null osculating curves of the first kind in E4
1

Let α : I → E4
1 be pseudo null osculating curve of the first kind, with curvatures

k1(s) = 1, k2(s) ̸= 0 and k3(s), where the third curvature can be equal to zero or
different from zero. Since the position vector of α satisfies relation (2.3), differen-
tiating relation (2.3) with respect to s and by applying (2.1) we obtain the system
of equations

(5.1)

λ′(s)− ν(s) = 1,
ν′(s)− µ(s)k2(s) = 0,
λ(s) + µ(s)k3(s) = 0,
µ′(s)− ν(s)k3(s) = 0.

We may distinguish two cases: (A) k3(s) = 0 and (B) k3(s) ̸= 0.

(A) k3(s) = 0.
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In this case, the system of equations (5.1) becomes

(5.2)

λ(s) = 0,
µ(s) = 0,
ν(s) = −1,
µ′(s) = 0.

Substituting relation (5.2) in relation (2.3), it follows that the position vector of α
satisfies the equation

(5.3) α(s) = −B2(s).

In this way, the following theorem is obtained.

Theorem 5.1. Let α be pseudo null curve lying fully in E4
1 with curvatures k1(s) =

1, k2(s) ̸= 0 and k3(s) = 0. If α is osculating curve of the first kind then the
following statements hold:

(i) the tangential component g(α, T ) of the position vector is zero;

(ii) the principal normal component of the position vector is given by g(α,N) =
−1;

(iii) the first binormal component g(α,B1) of the position vector is zero;

(iv) α lies in a lightcone.
Conversely, if α is pseudo null curve lying fully in E4

1 with curvatures k1(s) = 1,
k2(s) ̸= 0, k3(s) = 0 and one of statements (i), (ii), (iii) or (iv) holds, then α is
osculating curve of the first kind.

Theorem 5.1 can be proved in a similar way as theorem 4.2. Hence we omit its
proof.

Example 5.1. Let us consider pseudo null curve with the equation

α(s) = (
1√
2c

cosh(
√
cs),

1√
2c

sinh(
√
cs),

1√
2c

sin(
√
cs),− 1√

2c
cos(

√
cs)), c ∈ R+

0 .

We obtain that Frenet vectors of α have the form

T (s) = (
1√
2
sinh(

√
cs),

1√
2
cosh(

√
cs),

1√
2
cos(

√
cs),

1√
2
sin(

√
cs)),

N(s) = (

√
c√
2
cosh(

√
cs),

√
c√
2
sinh(

√
cs),−

√
c√
2
sin(

√
cs),

√
c√
2
cos(

√
cs)),

B1(s) = (
1√
2
sinh(

√
cs),

1√
2
cosh(

√
cs),− 1√

2
cos(

√
cs),− 1√

2
sin(

√
cs)),

B2(s) = (− 1√
2c

cosh(
√
cs),− 1√

2c
sinh(

√
cs),− 1√

2c
sin(

√
cs),

1√
2c

cos(
√
cs)).

In particular, the curvature functions are given by

k1(s) = 1, k2(s) = c, k3(s) = 0, c ∈ R+
0 .

It can be easily verified that g(α(s), B2(s)) = 0, which means that α is pseudo null
osculating curve of the first kind.

(B) k3(s) ̸= 0.
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In this case, the system of equations (5.1) becomes

(5.4)

(1 + k23(s))µ
′(s) + k3(s)k

′
3(s)µ(s) + k3(s) = 0,

λ(s) = −k3(s)µ(s),
ν′(s) = k2(s)µ(s),
ν(s) = µ′(s)/k3(s).

The first equation in the system of equations (5.4) is linear differential equation
whose general solution is given by

(5.5) µ(s) =
1√

1 + k23(s)
(c−

∫
k3(s)√
1 + k23(s)

ds), c ∈ R.

By using relations (5.4) and (5.5), we obtain the following theorems.

Theorem 5.2. Let α be pseudo null curve lying fully in E4
1 with curvatures k1(s) =

1, k2(s) ̸= 0 and k3(s) ̸= 0. If α is osculating curve of the first kind, then the
following statements hold:

(i) the tangential component of the position vector is given by

g(α(s), T (s)) = − k3(s)√
1 + k23(s)

(c−
∫

k3(s)√
1 + k23(s)

ds), c ∈ R;

(ii) the principal normal component of the position vector is given by

g(α(s), N(s)) = − 1

1 + k23(s)
− k′3(s)

(1 + k23(s))
3
2

(c−
∫

k3(s)√
1 + k23(s)

ds), c ∈ R;

(iii) the first binormal component of the position vector is given by

g(α(s), B1(s)) =
1√

1 + k23(s)
(c−

∫
k3(s)√
1 + k23(s)

ds), c ∈ R.

Conversely, if α is pseudo null curve lying fully in E4
1 with curvatures k1(s) = 1,

k2(s) ̸= 0, k3(s) ̸= 0 and one of statements (i), (ii) or (iii) holds, then α is
osculating curve of the first kind.

Theorem 5.3. Let α be pseudo null curve lying fully in E4
1 with curvatures k1(s) =

1, k2(s) ̸= 0 and k3(s) ̸= 0. Then α is congruent to osculating curve of the first kind
if and only if the curvature functions k2(s) and k3(s) satisfy differential equation

(5.6)
3k3(s)k

′
3(s) =

1√
1 + k23(s)

(c−
∫

k3(s)√
1 + k23(s)

ds)[k2(s)(1 + k23(s))
2

−3k3(s)k
′2
3 (s) + k′′3 (s)(1 + k23(s))], c ∈ R.

Proof. First assume that α is congruent to osculating curve of the first kind. By
using theorem 5.2 and the third equation of the system of equations (5.4), we obtain
that curvatures k2(s) and k3(s) satisfy relation (5.6).

Conversely, assume that curvature functions k2(s) and k3(s) satisfy relation (5.6).
Let us consider the vector X(s) ∈ E4

1 given by

X(s) = α(s) +
k3(s)√
1 + k23(s)

(c−
∫

k3(s)√
1 + k23(s)

ds)T (s)

− 1√
1 + k23(s)

(c−
∫

k3(s)√
1 + k23(s)

ds)B1(s)

+
1

1 + k23(s)
− k′3(s)

(1 + k23(s))
3
2

(c−
∫

k3(s)√
1 + k23(s)

ds)B2(s), c ∈ R.
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By using relations (2.1) and (5.6), we find X ′(s) = 0. Consequently, X(s) is a
constant vector in E4

1, which means that α is congruent to osculating curve of the
first kind. This proves the theorem. �

6. Pseudo null osculating curves of the second kind in E4
1

Let α be pseudo null osculating curve of the second kind in E4
1, with curvatures

k1(s) = 1, k2(s) ̸= 0 and k3(s), where k3(s) can be equal to zero or different from
zero (as in the section 5). By taking the derivative of relation (2.4) with respect to
s and applying (2.1), we obtain the system of equations

(6.1)

λ′(s)− ν(s) = 1,
λ(s) + µ′(s) = 0,
µ(s)k2(s)− ν(s)k3(s) = 0,
ν′(s) = 0.

We may distinguish two cases: (A) k3(s) = 0 and (B) k3(s) ̸= 0.

(A) k3(s) = 0.

In this case, the system of equations (6.1) read

(6.2)

λ(s) = 0,
µ(s) = 0,
ν(s) = −1,
ν′(s) = 0.

Substituting relation (6.2) in relation (2.4), we find that position vector of pseudo
null osculating curve α of the second kind satisfies the relation

α(s) = −B2(s),

which is equivalent to relation (5.3). In this way, the following theorem is obtained.

Theorem 6.1. Every pseudo null osculating curve of the second kind with curva-
tures k1(s) = 1, k2(s) ̸= 0 and k3(s) = 0 is pseudo null osculating curve of the first
kind and vice versa.

Corollary 6.1. Every pseudo null osculating curve of the first or second kind with
curvatures k1(s) = 1, k2(s) ̸= 0 and k3(s) = 0 is pseudo null normal curve.

(B) k3(s) ̸= 0.

In this case, the last equation of the system of equations (6.1) implies ν(s) ∈ R.
If ν(s) = 0, by using (6.1) we obtain a contradiction. Hence ν(s) = c0 ∈ R0. In
particular, substituting ν(s) = c0 in (6.1) we find

(6.3)

λ(s) = −c0(k3(s)/k2(s))
′,

µ(s) = c0k3(s)/k2(s),
ν(s) = c0,
λ′(s)− c0 = 1, c0 ∈ R0.

Next, we may distinguish two cases:

(B.1) k3(s)/k2(s) = constant; (B.2) k3(s)/k2(s) ̸= constant.

(B.1) k3(s)/k2(s) = c1 ∈ R0.

Then relation (6.3) implies that the position vector can be written as

(6.4) α(s) = −c1N(s)−B2(s), c1 ∈ R0.

In particular, the following theorem holds.
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Theorem 6.2. Let α(s) be unit speed pseudo null curve in E4
1 with curvatures

k1(s) = 1, k2(s) ̸= 0, k3(s) ̸= 0 and zero tangential component g(α, T ) of the
position vector. Then α is congruent to osculating curve of the second kind if and
only if the ratio of its third and second curvature is a constant function

(6.5) k3(s)/k2(s) = c1, c1 ∈ R0.

Proof. First assume that α is congruent to osculating curve of the second kind.
Since g(α, T ) = 0, by using the first equation of relation (6.3), we obtain that
relation (6.5) holds.

Conversely, assume that the third and second curvature satisfy relation (6.5).
Let us consider the vector X ∈ E4

1 given by

X(s) = α(s) + c1N(s) +B2(s), c1 ∈ R0.

By taking the derivative of the last relation with respect to s and using (2.1),
we find X ′(s) = 0. Therefore, X(s) is a constant vector, which means that α is
congruent to osculating curve of the second kind. �

By using relation (6.3), we obtain the following relationship between pseudo null
osculating curves of the second kind and pseudo null normal curves.

Theorem 6.3. Every pseudo null osculating curve of the second kind in E4
1 with

curvatures k1(s) = 1, k2(s) ̸= 0, k3(s) ̸= 0 and k3(s)/k2(s) = constant is pseudo
null normal curve.

Example 6.1. Let us consider pseudo null curve with the equation

α(s) =
3√
10

(
1

9
cosh(3s),

1

9
sinh(3s), sin(s),− cos(s)).

The Frenet frame of α is given by

T (s) =
3√
10

(
1

3
sinh(3s),

1

3
cosh(3s), cos(s), sin(s)),

N(s) =
3√
10

(cosh(3s), sinh(3s),− sin(s), cos(s)),

B1(s) =
1√
10

(3 sinh(3s), 3 cosh(3s),− cos(s),− sin(s)),

B2(s) =
5

3
√
10

(− cosh(3s),− sinh(3s),− sin(s), cos(s)).

The curvatures of α read

k1(s) = 1, k2(s) = 3, k3(s) =
4

3
.

Since k3(s)/k2(s) = 4/9, relation (6.4) implies that the position vector satisfies the
equation

α(s) = −4

9
N(s)−B2(s).

By using the last equation, it can be easily verified that g(α(s), T (s)) = 0. Accord-
ing to theorem 6.2, α is pseudo null osculating curve of the second kind.

(B.2) k3(s)/k2(s) ̸= constant.

Then relation (6.3) implies that the position vector of the curve α is given by

α(s) = −c0(k3(s)/k2(s))
′T (s) + c0(k3(s)/k2(s))N(s) + c0B2(s), c0 ∈ R0.
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In this case, we obtain the last theorem which can be proved in a similar way as
theorem 6.2.

Theorem 6.4. Let α(s) be unit speed pseudo null curve in E4
1 with curvatures

k1(s) = 1, k2(s) ̸= 0, k3(s) ̸= 0 and non-zero tangential component g(α, T ) of the
position vector. Then α is congruent to osculating curve of the second kind if and
only if its third and second curvature satisfy the relation

k3(s)/k2(s) = as2 + bs+ c,

where a, b, c ∈ R and a, b not both equal to zero.

References

[1] Bonnor, W. B., Curves with null normals in Minkowski space-time. A random walk in rela-
tivity and cosmology, Wiley Easten Limitid, 33-47 (1985).

[2] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying
plane?,Amer. Math. Monthly, 110, 147-152 (2003).
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