SOME TYPES OF WEAKLY SYMMETRIC RIEMANNIAN MANIFOLDS

BANDANA DAS AND A. BHATTACHARYYA
(Communicated by Murat TOSUN)

Abstract

In this paper we study quasi-conformally flat and pseudo projectively flat weakly symmetric Riemannian manifolds. Here we prove a quasiconformally flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of hyper quasi-constant curvature and this manifold of non-vanishing scalar curvature is a quasi-Einstein manifold and manifold of quasi-constant curvature with respect to the 1-form T defined by $T(X)=B(X)-D(X) \neq 0$, $\forall X$. Also we obtain that a pseudo-projectively flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of pseudo quasi-constant curvature and with non-vanishing scalar curvature is a quasi-Einstein manifold and manifold of pseudo quasi-constant curvature with respect to above 1-form T.

1. Introduction

L.Tamassy and T.Q.Binh [6] introduced weakly symmetric Riemannian manifold. A non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called weakly symmetric if the curvature tensor R of type $(0,4)$ satisfies the condition

$$
\begin{gather*}
\left(\nabla_{X} R\right)(Y, Z, U, V)=A(X) R(Y, Z, U, V)+B(Y) R(X, Z, U, V) \\
+C(Z) R(Y, X, U, V)+D(U) R(Y, Z, X, V) \\
+E(V) R(Y, Z, U, X) \tag{1.1}
\end{gather*}
$$

\forall vector fields $X, Y, Z, U, V \in \chi\left(M^{n}\right)$, where A, B, C, D and E are 1-forms (nonzero simultaneously) and ∇ is the operator of covariant differentiation with respect to the Riemannian metric g. The 1-forms are called the associated 1-forms of the manifold and an n-dimensional manifold of this kind is denoted by $(W S)_{n}$. U.C. De and S . Bandyopadhyay in [3] proved that if the associated 1-forms satisfy $B=C$ and $D=E$, the defining condition of a $(W S)_{n}$ reduces to the following form

$$
\begin{gather*}
\left(\nabla_{X} R\right)(Y, Z, U, V)=A(X) R(Y, Z, U, V)+B(Y) R(X, Z, U, V) \\
+B(Z) R(Y, X, U, V)+D(U) R(Y, Z, X, V) \\
+D(V) R(Y, Z, U, X) \tag{1.2}
\end{gather*}
$$

[^0]According to Yano and Sawaki [8] a quasi-conformal curvature tensor C^{\star} is defined by

$$
\begin{gather*}
C^{\star}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X \\
-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
-\frac{\gamma}{n}\left[\frac{a}{n-1}+2 b\right][g(Y, Z) X-g(X, Z) Y] \tag{1.3}
\end{gather*}
$$

where a, b are constants and R, Q, γ are the Riemannian curvature tensor of type $(1,3)$, the Ricci operator defined by $g(Q X, Y)=S(X, Y)$ and the scalar curvature respectively.

Chen and Yano in [2] introduced a Riemannian manifold $\left(M^{n}, g\right)(n>3)$ of quasiconstant curvature which is conformally flat, and its curvature tensor R of type $(0,4)$ has the form

$$
\begin{gather*}
R(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+b[g(X, W) A(Y) A(Z)-g(X, Z) A(Y) A(W) \\
\quad+g(Y, Z) A(X) A(W)-g(Y, W) A(X) A(Z)] \tag{1.4}
\end{gather*}
$$

where a, b are non-zero scalars.
According to Shaikh and Jana [4], a Riemannian manifold $\left(M^{n}, g\right)(n>3)$ is said to be of hyper quasi-constant curvature if it is conformally flat, and its curvature tensor R of type $(0,4)$ satisfies the condition

$$
\begin{gather*}
R(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+g(X, W) P(Y, Z)-g(X, Z) P(Y, W) \\
+g(Y, Z) P(X, W)-g(Y, W) P(X, Z) \tag{1.5}
\end{gather*}
$$

where a is non-zero scalar and P is a tensor of type $(0,2)$.
From [5] a pseudo projective curvature tensor \bar{P} is defined by

$$
\begin{gather*}
\bar{P}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \\
-\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] \tag{1.6}
\end{gather*}
$$

where a, b are constants such that $a, b \neq 0 ; R, S, r$ are the Riemannian curvature tensor, the Ricci tensor and scalar curvature, respectively.

In this present paper we like to introduce pseudo quasi-constant curvature.
Definition 1.1. A Riemannian manifold $\left(M^{n}, g\right)(n>3)$ is said to be of pseudo quasi-constant curvature if it is pseudo projectively flat and its curvature tensor R of type $(0,4)$ satisfies

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+P(Y, Z) g(X, W)-P(X, Z) g(Y, W) \tag{1.7}
\end{gather*}
$$

where a is constant and P is a tensor of type (0,2).

Section 2 is concerned with preliminary results of $(W S)_{n}$. In section 3 and 4 we study quasi-conformally flat $(W S)_{n}$ and pseudo-projectively flat $(W S)_{n}$.

2. Preliminaries

Let $\left\{e_{i}\right\} i=1,2, \ldots, n$ be an orthonormal basis of the tangent spaces in a neighbourhood of a point of the manifold. Then setting $Y=V=e_{i}$ in (1.2), and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{gather*}
\left(\nabla_{X} S\right)(Z, U)=A(X) S(Z, U)+B(Z) S(X, U) \\
+D(U) S(X, Z)+B(R(X, Z) U) \\
+D(R(X, U) Z) \tag{2.1}
\end{gather*}
$$

where S is the Ricci tensor of type $(0,2)$.
From (2.1) it follows that a $(W S)_{n}(n>2)$ is weakly Ricci symmetric (briefly $\left.(W R S)_{n}(n>2)\right)[7]$ if

$$
\begin{equation*}
B(R(X, Z) U)+D(R(X, U) Z)=0, \forall X, U, Z \in \chi\left(M^{n}\right) \tag{2.2}
\end{equation*}
$$

From (2.1) it follows that

$$
\begin{equation*}
d r(X)=r A(X)+2 B(Q X)+2 D(Q X) \tag{2.3}
\end{equation*}
$$

where r is the scalar curvature of the manifold.
From [4] we have, if a $(W S)_{n}(n>2)$ is of non-zero constant scalar curvature, the 1-form A can be expressed as

$$
\begin{equation*}
A(X)=-\frac{2}{r}[B(Q X)+D(Q X)], \forall X \tag{2.4}
\end{equation*}
$$

If a $(W S)_{n}(n>2)$ is of zero scalar curvature then from (2.4) we get the relation

$$
\begin{equation*}
B(Q X)+D(Q X)=0, \forall X \tag{2.5}
\end{equation*}
$$

Then from (2.1) we obtain

$$
\begin{equation*}
T(Q X)=\frac{r}{2} T(X) \tag{2.6}
\end{equation*}
$$

where the vector field ρ is defined by

$$
\begin{equation*}
T(X)=g(X, \rho)=B(X)-D(X), \forall X \tag{2.7}
\end{equation*}
$$

Also from [4] we get in a $(W S)_{n}(n>2)$ the relation

$$
\begin{equation*}
T(Z) S(X, U)-T(U) S(X, Z)-T(R(Z, U) X)=0 \tag{2.8}
\end{equation*}
$$

holds for all vector fields X, Z, U and T is a 1-form.

3. QUASI-CONFORMALLY FLAT $(W S)_{n}$

Let $\left(M^{n}, g\right)(n>3)$ be a quasi-conformally flat $(W S)_{n}$. Then from(1.3), we obtain

$$
\dot{R}(X, Y, Z, U)=-\frac{b}{a}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U)+g(Y, Z) S(X, U)
$$

$$
\begin{equation*}
-g(X, Z) S(Y, U)]+\frac{\gamma}{n}\left[\frac{1}{n-1}+\frac{2 b}{a}\right][g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] \tag{3.1}
\end{equation*}
$$

where $g(R(X, Y) Z, U)=\dot{R}(X, Y, Z, U)$.
Putting $X=U=e_{i}$ in (3.1) where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking the summation over i, where $1 \leq i \leq n$, we get

$$
\begin{equation*}
S(Y, Z)=\alpha g(Y, Z) \tag{3.2}
\end{equation*}
$$

where $\alpha=\frac{\gamma}{1+\frac{b}{a}(n-2)}\left[-\frac{b}{a}+\frac{1}{n}\left(1+\frac{2 b(n-1)}{a}\right)\right]$
Here we can say that quasi conformally flat $(W S)_{n}$ is an Einstein manifold.
Now from (3.2), we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\alpha^{\prime} d \gamma(X) g(Y, Z) \tag{3.3}
\end{equation*}
$$

where $\quad \alpha^{\prime}=\frac{1}{1+\frac{b(n-2)}{a}}\left[-\frac{b}{a}+\frac{1}{n}\left(1+\frac{2 b(n-1)}{a}\right)\right]$
Similarly we can get

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(Y, X)=\alpha^{\prime} d \gamma(Z) g(Y, X) \tag{3.4}
\end{equation*}
$$

Now subtracting (3.4) from (3.3), we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X)=\alpha^{\prime}[d \gamma(X) g(Y, Z)-d \gamma(Z) g(Y, X)] \tag{3.5}
\end{equation*}
$$

Interchanging X and U in (2.1), and then subtracting the resultant from (2.1), we obtain by virtue of (3.5) that
$[A(X)-D(X)] S(U, Z)-[A(U)-D(U)] S(X, Z)+B(R(X, U) Z)+2 D(R(X, U) Z)$

$$
\begin{equation*}
=\alpha^{\prime}[d \gamma(X) g(Z, U)-d \gamma(U) g(Z, X)] \tag{3.6}
\end{equation*}
$$

Let $\rho_{1}, \rho_{2}, \rho_{3}$ be the associated vector fields corresponding to the 1-forms A, B, D respectively; i.e.,
$g\left(X, \rho_{1}\right)=A(X) ; g\left(X, \rho_{2}\right)=B(X) ; g\left(X, \rho_{3}\right)=D(X)$.
Substituting U by ρ_{2} in (3.6), and then using (2.3), we get

$$
\begin{gather*}
{[A(X)-D(X)] B(Q Z)-\left[A\left(\rho_{2}\right)-D\left(\rho_{2}\right)\right] S(X, Z)} \\
+R\left(X, \rho_{2}, Z, \rho_{2}\right)+2 R\left(X, \rho_{2}, Z, \rho_{3}\right)=\alpha^{\prime}[B(Z)[\gamma A(X)+2 B(Q X)+2 D(Q X)] \\
\left.-g(X, Z)\left[\gamma A\left(\rho_{2}\right)+2 B\left(Q \rho_{2}\right)+2 D\left(Q \rho_{2}\right)\right]\right] \tag{3.7}
\end{gather*}
$$

If the manifold has non-zero constant scalar curvature, then by virtue of (2.4) equation (3.7) yields that

$$
\left[A\left(\rho_{2}\right)-D\left(\rho_{2}\right)\right] S(X, Z)-[A(X)-D(X)] B(Q Z)
$$

$$
\begin{equation*}
+R\left(\rho_{2}, X, Z, \rho_{2}\right)+2 R\left(\rho_{2}, X, Z, \rho_{3}\right)=0 \tag{3.8}
\end{equation*}
$$

Again since the manifold is quasi-conformally flat, we have from (3.1)

$$
\begin{gather*}
R\left(\rho_{2}, X, Z, \rho_{2}\right)+2 R\left(\rho_{2}, X, Z, \rho_{3}\right)=-\frac{b}{a}\left[S(X, Z)\left[B\left(\rho_{2}\right)+2 D\left(\rho_{2}\right)\right]\right. \\
\quad-B(Q Z)[B(X)+2 D(X)]+g(X, Z)\left[B\left(Q \rho_{2}\right)\right. \\
\left.\left.\quad+2 D\left(Q \rho_{2}\right)\right]-B(Z)[B(Q X)+2 D(Q X)]\right] \\
+\frac{\gamma}{n}\left[\frac{1}{n-1}+\frac{2 b}{a}\right]\left[g(X, Z)\left[B\left(\rho_{2}\right)+2 D\left(\rho_{2}\right)\right]-B(Z)[B(X)+2 D(X)]\right] \tag{3.9}
\end{gather*}
$$

Using (3.9) in (3.8) we obtain

$$
\begin{gather*}
S(X, Z)=\alpha_{1} g(X, Z)+\alpha_{2} B(X) B(Z)+\alpha_{3} B(Z) D(X) \\
+\alpha_{4} B(X) \bar{B}(Z)+\alpha_{5} D(X) \bar{B}(Z)+\alpha_{6} B(Z) \bar{B}(X) \\
+\alpha_{7} B(Z) \bar{D}(X)+\alpha_{8} A(X) \bar{B}(Z) \tag{3.10}
\end{gather*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{8}$ are scalars in terms of $\gamma, B\left(\rho_{2}\right), D\left(\rho_{2}\right)$ and $\bar{B}(X)=B(Q X)$, $\bar{D}(X)=D(Q X) \quad \forall X$.

This leads to the following:
Theorem 3.1. In a quasi-conformally flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature the Ricci tensor S has the form (3.10).

Again using (2.4) in (3.10), we have

$$
\begin{align*}
& S(X, Z)=\alpha_{1} g(X, Z)+\alpha_{2} B(X) B(Z)+\alpha_{3} B(Z) D(X) \\
& \quad+\alpha_{4} B(X) \bar{B}(Z)+\alpha_{5} D(X) \bar{B}(Z)+\alpha_{6} B(Z) \bar{B}(X) \\
& \quad+\alpha_{7} B(Z) \bar{D}(X)+\alpha_{8}\left(-\frac{2}{\gamma}\right)[\bar{B}(X)+\bar{D}(X)] \bar{B}(Z) \tag{3.11}
\end{align*}
$$

Putting (3.11) in (3.1) we obtain

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
\quad+g(X, W) P(Y, Z)-g(X, Z) P(Y, W) \\
+g(Y, Z) P(X, W)-g(Y, W) P(X, Z) \tag{3.12}
\end{gather*}
$$

where

$$
\begin{align*}
P(Y, Z)=(& B D)(Y, Z)=\beta_{1} B(Y) B(Z)+\beta_{2} B(Z) D(Y) \\
& +\beta_{3} B(Y) \bar{B}(Z)+\beta_{4} \bar{B}(Z) D(Y) \\
& +\beta_{5} \bar{B}(Y) B(Z)+\beta_{6} B(Z) \bar{D}(Y) \\
& +\beta_{7} \bar{B}(Z) \bar{D}(Y)+\beta_{8} \bar{B}(Y) \bar{B}(Z) \tag{3.13}
\end{align*}
$$

and $a ; \beta_{1}, \beta_{2}, \cdots, \beta_{8}$ are non-zero scalars.
From (3.12), it follows that the manifold is of hyper quasi-constant curvature.
Thus we can state the following:
Theorem 3.2. A quasi-conformally flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of hyper quasi-constant curvature.

Now putting $U=\rho$ in (2.8) and then using (2.6), we get

$$
\begin{equation*}
\frac{\gamma}{2} T(X) T(Z)-T(\rho) S(X, Z)+R(\rho, Z, X, \rho)=0 \tag{3.14}
\end{equation*}
$$

Let us now suppose that a $(W S)_{n}(n>3)$ is quasi-conformally flat, and of non-zero scalar curvature. Then (3.1) yields

$$
\begin{gather*}
R(\rho, Z, X, \rho)=-\frac{b}{a}\left[T(\rho) S(X, Z)-\gamma T(X) T(Z)+\frac{\gamma}{2} T(\rho) g(X, Z)\right] \\
+\frac{\gamma}{n}\left[\frac{1}{n-1}+\frac{2 b}{a}\right][T(\rho) g(X, Z)-T(X) T(Z)] \tag{3.15}
\end{gather*}
$$

Using (3.15) in (3.14), it follows that

$$
\begin{gather*}
\left(1+\frac{b}{a}\right) T(\rho) S(X, Z)=\left[\frac{\gamma}{2}+\frac{b \gamma}{a}-\frac{\gamma}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\right] T(X) T(Z) \\
+\left[-\frac{b \gamma}{2 a}+\frac{\gamma}{n}\left[\frac{1}{n-1}+\frac{2 b}{a}\right]\right] T(\rho) g(X, Z) \tag{3.16}
\end{gather*}
$$

We shall now show that $T(\rho) \neq 0$. For if $T(\rho)=0$, then (3.16) implies
$\gamma\left[\frac{1}{2}+\frac{b}{a}-\frac{1}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\right] T(X) T(Z)=0$
Since $T(X) \neq 0$ for all X, and $n>3$, the above relation yields $\gamma=0$, a contradiction to the assumption that the manifold is of non-zero scalar curvature.
Thus we have $T(\rho) \neq 0$.
Consequently, (3.16) yields

$$
\begin{equation*}
S(X, Z)=\tilde{\alpha} g(X, Z)+\tilde{\beta} T(X) T(Z) \tag{3.17}
\end{equation*}
$$

where $\tilde{\alpha}, \tilde{\beta}$ are non-zero scalars and
$\tilde{\alpha}=\frac{1}{\left(1+\frac{b}{a}\right)}\left[-\frac{b \gamma}{2 a}+\frac{\gamma}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\right]$
and
$\tilde{\beta}=\frac{1}{\left(1+\frac{b}{a}\right) T(\rho)}\left[\frac{\gamma}{2}+\frac{b \gamma}{a}-\frac{\gamma}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\right]$
Again by [1], a Riemannian manifold is said to be quasi-Einstein, if its Ricci tensor is of the form

$$
\begin{equation*}
S=p g+q \omega \otimes \omega \tag{3.18}
\end{equation*}
$$

where p, q are scalars of which $q \neq 0$ and ω is a 1 -form.
In virtue of (3.17) and (3.18) we can state the following theorem:
Theorem 3.3. A quasi-conformally flat $(W S)_{n}(n>3)$ of non-vanishing scalar curvature is a quasi-Einstein manifold with respect to the 1-form T defined by $T(X)=B(X)-D(X) \neq 0 \forall X$.

Again, using (3.17) in (3.1), it follows that

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=l[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
\quad+\delta[g(X, W) T(Y) T(Z)-g(X, Z) T(Y) T(W) \\
\quad+g(Y, Z) T(X) T(W)-g(Y, W) T(X) T(Z)] \tag{3.19}
\end{gather*}
$$

where l and δ are non-zero scalars and
$l=\left[-\frac{2 b}{a} \tilde{\alpha}+\frac{\gamma}{n}\left(\frac{1}{n-1}+\frac{2 b}{a}\right)\right]$ and $\delta=-\frac{b}{a} \tilde{\beta}$
comparing (3.19) and (1.4), we can state the following theorem:
Theorem 3.4. A quasi-conformally flat $(W S)_{n}(n>3)$ of non-vanishing scalar curvature is a manifold of quasi-constant curvature with respect to the 1-form T defined by $T(X)=B(X)-D(X) \neq 0 \forall X$.

Using the expression of T in (3.19), it can be easily seen that

$$
\dot{R}(X, Y, Z, W)=l[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]+g(X, W)\{\delta B D\}(Y, Z)
$$

$-g(X, Z)\{\delta B D\}(Y, W)+g(Y, Z)\{\delta B D\}(X, W)-g(Y, W)\{\delta B D\}(X, Z)$
where $\{\delta B D\}=\delta(B B-B D-D B+D D)$
Comparing the above relation with (3.12), we can state:
Corollary 3.1. A quasi-conformally flat $(W S)_{n}(n>3)$ of non-zero scalar curvature is a manifold of hyper quasi-constant curvature.

4. Pseudo-Projectively flat $(W S)_{n}$

Let $\left(M^{n}, g\right)(n>3)$ be a pseudo-projectively flat $(W S)_{n}$. Then from (1.6)we obtain

$$
\begin{align*}
& \dot{R}(X, Y, Z, U)=-\frac{b}{a}[S(Y, Z) g(X, U)-S(X, Z) g(Y, U)] \\
& \quad+\frac{r}{a n}\left[\frac{a}{(n-1)}+b\right][g(Y, Z) g(X, U)-g(X, Z) g(Y, U)] \tag{4.1}
\end{align*}
$$

Putting $X=U=e_{i}$ in (4.1) where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking the summation over i, where $1 \leq i \leq n$, we get

$$
\begin{equation*}
S(Y, Z)=\alpha g(Y, Z) \tag{4.2}
\end{equation*}
$$

where $\alpha=\frac{r}{n}$
The above equation (4.2) indicates, a pseudo-projectively flat manifold is an Einstein manifold.

Now from (4.2) we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\alpha_{1} d r(X) g(Y, Z) \tag{4.3}
\end{equation*}
$$

where $\alpha_{1}=\frac{1}{n}$
Similarly we can get

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(Y, X)=\alpha_{1} d r(Z) g(Y, X) \tag{4.4}
\end{equation*}
$$

Now subtracting (4.4) from (4.3), we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Z} S\right)(Y, X)=\alpha_{1}[d r(X) g(Y, Z)-d r(Z) g(Y, X)] \tag{4.5}
\end{equation*}
$$

Interchanging X and U in (2.1), and then subtracting the resultant from (2.1), we obtain by virtue of (4.5) that

$$
[A(X)-D(X)] S(U, Z)-[A(U)-D(U)] S(X, Z)
$$

(4.6) $\quad+B(R(X, U) Z)+2 D(R(X, U) Z)=\alpha_{1}[g(Z, U) d r(X)-g(Z, X) d r(U)]$

Let $\rho_{1}, \rho_{2}, \rho_{3}$ be the associated vector fields corresponding to the 1-forms A, B, D respectively;
i.e., $g\left(X, \rho_{1}\right)=A(X) ; g\left(X, \rho_{2}\right)=B(X) ; g\left(X, \rho_{3}\right)=D(X)$.

Substituting U by ρ_{2} in (4.6), and then using (2.3), we get

$$
\begin{align*}
& {[A(X)-D(X)] B(Q Z)-\left[A\left(\rho_{2}\right)-D\left(\rho_{2}\right)\right] S(X, Z)} \\
& +R\left(X, \rho_{2}, Z, \rho_{2}\right)+2 R\left(X, \rho_{2}, Z, \rho_{3}\right)=\alpha_{1}[B(Z)[r A(X)+2 B(Q X)+2 D(Q X)] \\
& \left..7) \quad-g(X, Z)\left[r A\left(\rho_{2}\right)+2 B\left(Q \rho_{2}\right)+2 D\left(Q \rho_{2}\right)\right]\right] \tag{4.7}
\end{align*}
$$

If the manifold has non-zero constant scalar curvature, then (4.7) yields by virtue of (2.4) that

$$
\begin{gather*}
{\left[A\left(\rho_{2}\right)-D\left(\rho_{2}\right)\right] S(X, Z)-[A(X)-D(X)] B(Q Z)} \\
+R\left(\rho_{2}, X, Z, \rho_{2}\right)+2 R\left(\rho_{2}, X, Z, \rho_{3}\right)=0 \tag{4.8}
\end{gather*}
$$

Again since the manifold is pseudo-projectively flat, we have from (4.1)

$$
\begin{gather*}
R\left(\rho_{2}, X, Z, \rho_{2}\right)+2 R\left(\rho_{2}, X, Z, \rho_{3}\right)=-\frac{b}{a}\left[S(X, Z)\left[B\left(\rho_{2}\right)+2 D\left(\rho_{2}\right)\right]\right. \\
-B(Q Z)[B(X)+2 D(X)]]+\frac{r}{a n}\left[\frac{a}{(n-1)}+b\right]\left[g(X, Z)\left[B\left(\rho_{2}\right)+2 D\left(\rho_{2}\right)\right]\right. \\
-B(Z)[B(X)+2 D(X)]] \tag{4.9}
\end{gather*}
$$

Using (4.9) in (4.8), it follows that

$$
\begin{align*}
& S(X, Z)=\alpha_{2} g(X, Z)+\alpha_{3} B(X) B(Z)+\alpha_{4} B(Z) D(X) \\
& \quad+\alpha_{5} B(X) \bar{B}(Z)+\alpha_{6} D(X) \bar{B}(Z)+\alpha_{7} A(X) \bar{B}(Z) \tag{4.10}
\end{align*}
$$

where $\alpha_{2}, \alpha_{3}, \cdots, \alpha_{7}$ are scalars in terms of $r, B\left(\rho_{2}\right), D\left(\rho_{2}\right)$ and $\bar{B}(X)=$ $B(Q X), \bar{D}(X)=D(Q X) \forall X$.

This leads to the following theorem:
Theorem 4.1. In a pseudo-projectively flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature the Ricci tensor S has the form (4.10).

Again using (2.4) in (4.10) we have

$$
\begin{align*}
S(X, Z)= & \alpha_{2} g(X, Z)+\alpha_{3} B(X) B(Z)+\alpha_{4} B(Z) D(X) \\
& +\alpha_{5} B(X) \bar{B}(Z)+\alpha_{6} D(X) \bar{B}(Z) \\
& +\alpha_{7}\left[-\frac{2}{r}\right][\bar{B}(X)+\bar{D}(X)] \bar{B}(Z) \tag{4.11}
\end{align*}
$$

Putting (4.11) in (4.1) we obtain

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+P(Y, Z) g(X, W)-P(X, Z) g(Y, W) \tag{4.12}
\end{gather*}
$$

where

$$
\begin{align*}
P(Y, Z)=(& \beta D)(Y, Z)=\beta_{1} B(Y) B(Z)+\beta_{2} B(Z) D(Y) \\
& +\beta_{3} B(Y) \bar{B}(Z)+\beta_{4} \bar{B}(Z) D(Y) \\
& +\beta_{5} \bar{B}(Y) \bar{B}(Z)+\beta_{6} \bar{B}(Z) \bar{D}(Y) \tag{4.13}
\end{align*}
$$

and $a ; \beta_{1}, \beta_{2}, \cdots, \beta_{6}$ are non-zero scalars.
From (4.12), it follows that the manifold is of pseudo quasi-constant curvature. Thus we can state the following theorem:
Theorem 4.2. A pseudo- projectively flat $(W S)_{n}(n>3)$ of non-zero constant scalar curvature is a manifold of pseudo quasi-constant curvature.

Now putting $U=\rho$ in (2.8) and then using (2.6), we get

$$
\begin{equation*}
\left(\frac{r}{2}\right) T(X) T(Z)-T(\rho) S(X, Z)+R(\rho, Z, X, \rho)=0 \tag{4.14}
\end{equation*}
$$

Let us now suppose that a $(W S)_{n}(n>3)$ is pseudo projectively flat and non-zero scalar curvature. Then (4.1) yields

$$
\begin{align*}
& \dot{R}(\rho, Z, X, \rho)=-\frac{b}{a}\left[T(\rho) S(X, Z)-\frac{r}{2} T(X) T(Z)\right] \\
& \quad+\frac{r}{a n}\left[\frac{a}{(n-1)}+b\right][g(X, Z) T(\rho)-T(X) T(Z)] \tag{4.15}
\end{align*}
$$

Using (4.15) in (4.14) it follows that

$$
\begin{gather*}
\left(1+\frac{b}{a}\right) T(\rho) S(X, Z)=\frac{r}{a n}\left[\frac{a}{(n-1)}+b\right] T(\rho) g(X, Z) \\
\quad+\left[\frac{r}{2}+\frac{b r}{2 a}-\frac{r}{a n}\left(\frac{a}{(n-1)}+b\right)\right] T(X) T(Z) \tag{4.16}
\end{gather*}
$$

We shall now show that $T(\rho) \neq 0$. For if $T(\rho)=0$, then (4.16) implies that
$r\left[\frac{1}{2}+\frac{b}{2 a}-\frac{1}{a n}\left(\frac{a}{(n-1)}+b\right)\right] T(X) T(Z)=0$
Since $T(X) \neq 0$ for all X, and $n>3$, the above relation yields $r=0$, a contradiction to the assumption that the manifold is of non-zero scalar curvature. Thus we have $T(\rho) \neq 0$.

Consequently (4.16) yields

$$
\begin{equation*}
S(X, Z)=\tilde{\alpha}_{1} g(X, Z)+\tilde{\beta}_{1} T(X) T(Z) \tag{4.17}
\end{equation*}
$$

where $\tilde{\alpha}_{1}, \tilde{\beta}_{1}$ are non-zero scalars and
$\tilde{\alpha}_{1}=\frac{1}{\left(1+\frac{b}{a}\right)}\left[\frac{r}{a n}\left(\frac{a}{(n-1)}+b\right)\right]$
and
$\tilde{\beta}_{1}=\frac{1}{\left(1+\frac{b}{a}\right) T(\rho)}\left[\frac{r}{2}+\frac{b r}{2 a}-\frac{r}{a n}\left(\frac{a}{(n-1)}+b\right)\right]$
Hence by virtue of (3.18) we can state:
Theorem 4.3. A pseudo-projectively flat $(W S)_{n}(n>3)$ of non-vanishing scalar curvature is a quasi-Einstein manifold with respect to the 1-form T defined by $T(X)=B(X)-D(X) \neq 0, \forall X$.

Again, using (4.17) in (4.1), it follows that

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=\gamma_{1}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
\quad+\delta_{1} T(Y) T(Z) g(X, W)-\delta T(X) T(Z) g(Y, W) \tag{4.18}
\end{gather*}
$$

where γ, δ are non-zero scalars, when
$\gamma_{1}=-\frac{b}{a} \tilde{\alpha}_{1}+\frac{r}{a n}\left(\frac{a}{(n-1)}+b\right)$ and $\delta_{1}=-\frac{b}{a} \tilde{\beta}_{1}$
Comparing (4.18) and (1.4), we can state the following theorem:
Theorem 4.4. A pseudo-projectively flat $(W S)_{n}(n>3)$ of non-vanishing scalar curvature is a manifold of pseudo quasi-constant curvature with respect to the 1 form T defined by $T(X)=B(X)-D(X) \neq 0, \forall X$.

Using the expression of T in (4.18), it can be easily seen that
$\dot{R}(X, Y, Z, W)=\gamma_{1}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]$
$+\left\{\delta_{1} B D\right\}(Y, Z) g(X, W)-\left\{\delta_{1} B D\right\}(X, Z) g(Y, W)$
where $\left\{\delta_{1} B D\right\}=\delta_{1}(B B-B D-D B+D D)$.
Comparing the above relation with (4.12), we can state:
Corollary 4.1. A pseudo-projectively flat $(W S)_{n}(n>3)$ of non-zero scalar curvature is a manifold of pseudo quasi-constant curvature.

References

[1] Chaki, M. C. and Maity, R. K., On quasi-Einstein manifold, Publ. Math. Debrecen 51/12(1997), 35-42.
[2] Chen, B. Y. and Yano, K., Hyperspaces of a conformally flat space, Tensor N. S. 26(1972), 318-322.
[3] De, U. C. and Bandyopadhyay, S., On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54(1999), 377-381.
[4] Shaikh, A. A. and Jana, S. K., On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 71/1-2(2007), 27-41.
[5] Tarafdar, M., Bhattacharyya, A. and Debnath, D., A type of pseudo projective ϕ recurrent trans-Sasakian manifold, Anal. Stii. Ale. Univ. "Al.I.Cuza", Iasi. Tomul LII, S. I. Matematică, f. 2(2006), 417-422.
[6] Tamassy, L. and Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 50(1989), 663-670.
[7] Tamassy, L. and Binh, T. Q., On weakly symmetrics of Einstein and Sasakian Manifolds, Tensor N. S. 53(1993), 140-148.
[8] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2(1968), 161-184.

Department of Mathematics, Jadavpur University, KOLKATA-700032, INDIA
E-mail address: badan06@yahoo.co.in
Department of Mathematics, Jadavpur University, KOLKATA-700032, INDIA
E-mail address: arin1968@indiatimes.com

[^0]: 2000 Mathematics Subject Classification. 53B35, 53C25.
 Key words and phrases. Pseudo projectively flat manifold, hyper-quasi-constant curvature, pseudo quasi-constant curvature.

