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Abstract. Every non-degenerated Lagrangian immersion in a para-Kähler
manifold carries a natural Codazzi structure. For n ≥ 1, we construct a

2n-dimensional para-Kähler manifold M such that every centro-affine hyper-
surface immersion f : M → Rn+1, equipped with its affine metric, is isometric

to a Lagrangian immersion f̃ : M → M. On the other hand, every Lagrangian

immersion f̃ : M → M corresponds to a unique homothetic family of centro-
affine hypersurface immersions f : M → Rn+1. The Codazzi structure defined
by the affine connection and the affine metric of f coincides with the Codazzi

structure generated by the Lagrangian immersion f̃ . The construction is com-
patible with the duality defined by the conormal map. The immersion f is a

proper affine sphere if and only if the Lagrangian immersion f̃ is minimal. The

velocity field of the affine normal flow generated by f and that of the mean

curvature flow generated by f̃ are related. The pseudo-Riemannian metric and
the symplectic form on M are generated in the infinitesimal limit by a real-

valued symmetric function (· ; ·) on M×M. The manifold M is constructed as
a subset of the product RPn × RPn of the real projective space and its dual,
and the function (· ; ·) is defined by the projective cross-ratio.

1. Introduction

In affine differential geometry, many efforts have been devoted to the study of
affine maximal surfaces, see e.g., [3]. An n-dimensional hypersurface immersion
f : M ⊂ Rn+1 is affine maximal if it is a critical point of the volume functional,
where the volume is computed with respect to the Blaschke metric on M . This
metric is the affine metric induced on M by the affine normal field as transversal
vector field. Affine maximal surfaces are characterized by the vanishing of the affine
mean curvature. Other choices of the transversal vector field on M lead to other
affine metrics and hence other volume functionals and notions of minimal surfaces.

None of these surfaces are, however, minimal in the classical sense, i.e., sub-
manifolds of a Riemannian or pseudo-Riemannian manifold with vanishing mean
curvature. In [19] Vrancken constructed a (2n+1)-dimensional pseudo-Riemannian
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manifold M̃ (as a certain hypersurface in R2n+2, equipped with a flat pseudo-
Riemannian metric of neutral signature) carrying a distribution ζ of rank 2n and
an operator P acting on ζ, with the following properties1. An n-dimensional immer-
sion f̃ : M → M̃ that is integral with respect to ζ is isometric to some n-dimensional
centro-affine immersion f : M → Rn+1, and the operator P takes the second fun-
damental form generated on M by f̃ to the difference tensor generated on M by
f . In [19] such immersions f̃ are called horizontal. In this way, a horizontal im-
mersion corresponds to a proper affine hypersphere if and only if it is minimal. On
the other hand, every n-dimensional centro-affine immersion can be represented (at

least locally) as a horizontal immersion f̃ : M → M̃ . Thus M̃ serves in some sense
as a model for the n-dimensional centro-affine immersions.

In this contribution, we carry out a construction that bears some similarities with
the construction in [19], but which generates additional differential-geometric ob-
jects that can be related to objects appearing in centro-affine differential geometry,
among them the affine connection and its dual connection with respect to the affine
metric. Among the most appealing properties of our construction is its symmetry
with respect to the duality defined by the conormal map and its transparent geomet-
ric interpretation. Actually, we will construct a 2n-dimensional symplectic manifold
M, which we call the cross-ratio manifold, with symplectic form ω, equipped with a
compatible pseudo-Riemannian metric g, such that the n-dimensional centro-affine
immersions in Rn+1 correspond to the Lagrangian immersions in M, i.e., those on
which ω vanishes identically. Every centro-affine immersion in Rn+1 determines a
unique Lagrangian immersion in M, while every Lagrangian immersion determines
the centro-affine immersion up to homothety. Thus the correspondence between
centro-affine immersions in Rn+1 and Lagrangian immersions in M is quite explicit.

The correspondence between centro-affine and horizontal immersions in [19], on
the contrary, is based on structural existence theorems and hence is one-to-one only
for isometry classes. Actually, one can show that the distribution ζ in [19] defines

a contact structure on M̃ , and then the horizontal immersions are characterized by
the property of being Legendrian. This hints at some relation between the model
of Vrancken and ours, but we will not pursue this question in the present paper.

Carrying a pseudo-Riemannian metric and a parallel symplectic form, the cross-
ratio manifold belongs to the class of Fedosov manifolds. The metric and the
symplectic form interact, however, in a very special way, much similar to the way
these objects do in Kähler manifolds. Manifolds of this type are known under
the name para-Kähler manifolds. The class of para-Kähler manifolds has been
explicitly introduced by Libermann in [13]. We shall show below that the cross-
ratio manifold is isomorphic to a member of the one-parametric family of reduced
paracomplex projective spaces, which were introduced and studied in [9]. A recent
survey on para-Kähler manifolds can be found in [7]. A compact introduction can
also be found in [1, Section 5]. For an introduction to affine differential geometry,
we refer to the excellent textbook [15].

1Actually, in [19] the distribution ζ is neither defined nor explicitly used. We introduced it
here in order to restate the results of [19] in a style that is adapted to our own exposition. The

distribution ζ is to be seen as the orthogonal complement of the tangent vector field Pf defined
in [19].
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The affine connection and the affine metric of an equiaffine hypersurface immer-
sion in Rn+1 form a Codazzi structure [15, Theorem 2.1, p.32], i.e., a pair (∇, h) con-
sisting of a torsion-free affine connection and a symmetric second order tensor such
that∇h is symmetric in all three indices. For a recent survey on Codazzi tensors see
[17]. For centro-affine immersions, which are a particular case of equiaffine immer-
sions, the affine connection is projectively flat [15, Proposition 3.1, p.14 and p.38].
The correspondence between the Lagrangian immersions in M and the centro-affine
hypersurface immersions in Rn+1 can accordingly be generalized in two directions.
There exists a correspondence between general n-dimensional immersions in M,
i.e., not necessarily Lagrangian, and the projectively flat n-dimensional manifolds.
On the other side, there exists a correspondence between Lagrangian immersions
in general 2n-dimensional para-Kähler manifolds and n-dimensional Codazzi man-
ifolds, i.e., manifolds carrying a Codazzi structure. These relations are detailed in
the companion paper [11]. Namely, every Lagrangian immersion in a para-Kähler
manifold, if it satisfies a certain regularity condition, carries two natural affine con-
nections. These connections together with the pseudo-Riemannian metric induced
on the immersion form a dual pair of Codazzi structures. The cubic form of this
structure is obtained from the second fundamental form of the immersion by mul-
tiplication with the symplectic form ω. In particular, the cubic form satisfies the
apolarity condition if and only if the immersion is minimal.

The benefits of the theory presented in this paper are two-fold. On the one
hand, centro-affine geometry can now be viewed as a particular instance of para-
Kählerian, or, more general, pseudo-Riemannian geometry. Methods from these
areas can be applied to specific problems in centro-affine geometry, such as classify-
ing centro-affine immersions satisfying certain symmetries. On the other hand, the
well-developed theory of centro-affine geometry can serve as a source of inspiration
and a touchstone for research in the newly emerging area of Lagrangian immersions
in para-Kähler manifolds.

1.1. Basic construction. In this subsection we shall motivate and sketch the
construction of the cross-ratio manifold M. A detailed description will be given in
Subsection 3.1. Consider a smooth centro-affine hypersurface immersion f : M →
Rn+1. For each point y ∈ M , the position vector f(y) is by definition nonzero
and transversal to the image of the tangent space TyM under the differential of f .
Hence the position vector and this image define a point (x, p) in the direct product
RPn×RPn of the n-dimensional real projective space and its dual, with the property
that x and p are not orthogonal to each other. In this way, the immersion f defines
an immersion f̃ of M into the set

(1.1) M = {(x, p) ∈ RPn × RPn |x ̸⊥ p} .

We will now use and elaborate on a generalization of the projective cross-ratio.
This generalization was apparently first introduced in [2]. A pair of points z =
(x, p), z′ = (x′, p′) in general position in M determines two points x, x′ in projective
space and two points p, p′ in the dual projective space. Note that points in the dual
projective space can be considered as hyperplanes in the primal projective space. If
we draw a projective line l through x, x′ and consider the intersection points u, u′ of
l with the hyperplanes defined by p, p′, then together with the original points x, x′

we obtain four collinear points on l. We then assign the cross-ratio (u, x′;u′, x) of
the four points obtained in this way to the pair of points (z, z′) ∈ M ×M. From
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[2, Theorem 2.10] it follows that this function extends continuously to a symmetric
function (· ; ·) : M×M → R.

We show in Subsection 3.1 that on small scales (z; z′) behaves up to higher-order
terms as a bilinear function in the arguments x′−x, p′−p, thus defining an invariant
bilinear form Q on M. The symmetric and the skew-symmetric part of Q define
a pseudo-Riemannian metric g and a symplectic form ω on M, respectively, which
are mutually compatible. The n-dimensional immersions f̃ : M → M which can be
obtained in the way described above from n-dimensional centro-affine hypersurface
immersions f : M → Rn+1 turn out to be precisely the Lagrangian immersions.

1.2. Outline. We shall now give an overview over the contents of the paper.
In Section 2 we consider para-Kähler manifolds in general. In Subsection 2.1

we provide their definition and consider some of their general properties. In view
of the applications to affine differential geometry, we restate some results from
[11] on Lagrangian immersions into para-Kähler manifolds in Subsection 2.2. In
particular, we describe the natural Codazzi structure on such immersions. The
study of Lagrangian immersions in para-Kähler manifolds has been initiated by
B.-Y. Chen in [4].

In Section 3 we introduce and study the cross-ratio manifold M as a special
para-Kähler manifold. As mentioned in the previous subsection, we show in Sub-
section 3.1 that the pseudo-Riemannian metric g and the symplectic form ω on the
cross-ratio manifold are defined by the infinitesimal limit of an invariant symmetric
function on M×M. We also establish that M is highly symmetric, and is in fact
a homogeneous para-Kähler Einstein manifold, namely isomorphic to a member of
the family of reduced para-complex projective spaces. In Subsection 3.2 we extend
the results in [9, Section 2] on the geodesics and totally geodesic submanifolds of the
reduced para-complex projective spaces, applied to the cross-ratio manifold M. In
particular, we show that Lagrangian immersions in M at every point have tangent
and normal totally geodesic submanifolds.

In Section 4 we investigate the relation between Lagrangian immersions into the
cross-ratio manifold M and n-dimensional centro-affine immersions into Rn+1. In
Subsection 4.1 we establish the equivalence of objects encountered in centro-affine
differential geometry, such as the primal and dual affine connections, the affine met-
ric, the cubic form and the Tchebycheff form, with objects defined on Lagrangian
immersions in M and described in Section 2. In Subsection 4.2 we consider the
centro-affine pendants to the objects constructed in Subsection 3.2. We show that
for each point of a centro-affine immersion, there exist two distinguished quadrics
which are tangent to the immersion at this point. These quadrics are generated by
the tangent and normal totally geodesic submanifolds at the corresponding point of
the Lagrangian immersion in M. In Subsection 4.3 we study the relation between
centro-affine surface flows in Rn+1 and Lagrangian surface flows in M, and in Sub-
section 4.4 we specialize the results to the affine normal flow in Rn+1 and the mean
curvature flow in M.

Finally, in Section 5 we summarize our results and provide an outlook on possible
future research directions and applications.

2. Para-Kähler manifolds

We define para-Kähler manifolds and consider some of their elementary proper-
ties in Subsection 2.1. The subject of Subsection 2.2 are Lagrangian immersions
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into para-Kähler manifolds. The notations introduced in this section will be used
also in the rest of the paper. Throughout this section, M will denote a general
para-Kähler manifold. In the next section we specialize M to be the cross-ratio
manifold (1.1) again. Most of the results in this section are restatements from [11],
for proofs we refer to this companion paper.

2.1. Definition and elementary properties. A symplectic manifold is a differ-
entiable manifold carrying a symplectic form ω, i.e., a closed, non-degenerate, skew-
symmetric 2-form. A Fedosov manifold is a symplectic manifold with a torsion-free
affine connection ∇ such that the symplectic form ω is parallel with respect to this
connection, ∇ω = 0. A para-complex manifoldM is a 2n-dimensional manifold with
a smooth tensor field J of type (1, 1) such that J is an involution of the tangent
space TzM at each z ∈ M, J2 = 1, and such that the eigenspaces corresponding
to the eigenvalues ±1 of J form two involutive n-dimensional distributions. We
will denote these distributions by DP, DX, respectively, and the projections of the
tangent bundle TM on these distributions by ΠX,ΠP, respectively. The field J
is called the para-complex structure of the manifold. A para-Kähler manifold is a
para-complex Fedosov manifold such that the eigenspace distributions of its para-
complex structure J are isotropic with respect to the symplectic form ω, and whose
affine connection ∇ is the Levi-Civita connection of the pseudo-Riemannian metric
g defined by

(2.1) g(X,Y ) = ω(JX, Y ), ω(X,Y ) = g(JX, Y ).

for every two vector fieldsX,Y onM. Here and in the rest of the paper we denote by
parentheses the value of covariant tensors on vectors or vector fields. It is not hard
to see that g is necessarily of neutral signature and non-degenerate. The integral
submanifolds of the distributions DX, DP locally form two Lagrangian foliations,
which is why a para-Kähler structure is sometimes called a bi-Lagrangian structure.

The cross-ratio manifold will be shown to be a particular para-Kähler manifold.
Our motivation to consider the whole class of para-Kähler manifolds first is that
many objects appearing in affine differential geometry have analogs on a generic
Lagrangian immersion in an arbitrary para-Kähler manifold. It is a natural question
to ask whether the relations between the cross-ratio manifold and centro-affine
hypersurface immersions presented in this paper can be generalized to other kinds
of transversal vector fields, involving other para-Kähler manifolds, and we hope
that the material of this section provides a valuable point of departure for future
research in this direction.

The para-complex structure J of a para-Kähler manifold M equips M with a
local product structure. Namely, for every ẑ ∈ M, there exists a neighbourhood
U ⊂ M of ẑ and a diffeomorphism φ : U → UX × UP onto the product of simply
connected open sets UX, UP ⊂ Rn, with the following property. Let φX : U → UX,
φP : U → UP be the components of φ, then the distributions DX, DP are the
kernels of the differentials DφX, DφP, respectively. Let x, p be coordinates on
UX, UP, respectively, and z = (x, p) coordinates on M. We will call such charts
on M adapted to the para-complex structure. In any such chart, the matrix of the
para-complex structure J is given by

(2.2) J =

(
I 0
0 −I

)
,
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where I is the n × n identity matrix. In the sequel we work only with adapted
coordinate charts.

We introduce the following index notation. Indices running from 1 to n will be
denoted by lower-case Latin letters, indices running from n+1 to 2n by upper-case
Latin letters, and indices running from 1 to 2n will be denoted by lower-case Greek
letters. The use of the letters will be consistent, e.g., the indices denoted by α will
consist of two groups of indices, denoted by a and A, respectively. The components

of a vector field X in an adapted chart can then be written as Xα =

(
Xa

XA

)
.

Likewise, we have zα =

(
za

zA

)
for the coordinates of the chart. From (2.2) we

then have in index notation Jb
a = δba, J

B
a = Jb

A = 0, JB
A = −δBA , δ denoting the

Kronecker symbol. We shall also deal with immersions f̃ : M → M of lower-
dimensional manifolds into M. In this case, the coordinates y on the manifold M
will be indexed by upper-case Greek letters. The Einstein summation convention
will be applied to all four kinds of indices. For instance, the contraction of a 1-
form w with a vector field X on M is given by w(X) = wαX

α = waX
a + wAX

A.
Expressions of the type waX

A will also occur and have to be understood as the
sum

∑n
k=1 wkX

k+n.

The metric g and the symplectic form ω of M can be recovered from their sum
Q = g + ω as the symmetric and skew-symmetric part of Q, respectively. Note
that the covariant second order tensor Q encodes the para-complex structure J as
well, since the distributions DP, DX are the right and left kernel of Q, respectively
[11, Lemma 2.1]. It follows that in an adapted chart we have Qab = QAb =
QAB = 0, and Q is determined by a smooth field Q of nondegenerate bilinear
forms onDP×DX by the relationQ(X,Y ) = Q(ΠX(X),ΠP(Y )) for all vector fields
X,Y . Equivalently, the remaining coefficients QaB of Q equal the corresponding
coefficients of Q. For convenience, we will index the rows of the matrix of Q from 1
to n and the columns from n+1 to 2n, such that QaB = QaB . Let Q

Ab denote the
coefficients of the inverse matrix Q−1, such that QaBQ

Bc = δca and QAbQbC = δAC .
The matrices of the tensors Q, g, ω and the inverse of the metric tensor are then
given by

(2.3) Qαβ =

(
0 QaB

0 0

)
, gαβ =

1

2

(
0 QaB

QbA 0

)
,

(2.4) ωαβ =
1

2

(
0 QaB

−QbA 0

)
, gαβ = 2

(
0 QBa

QAb 0

)
.

The para-complex structure J can then be written as Jβ
α = ωαγg

γβ . The lowering
and raising of indices is as usual performed by the metric tensor and its inverse.

The condition ∇ω = 0 leads to restrictions on the functions QaB(z). Namely,
these functions must locally be of the form

(2.5) QaB(z) =
∂2q

∂za∂zB
,

where the scalar field q is called the para-Kähler potential [6, Section 2.2]. This
potential is unique up to transformations of the form

(2.6) q(z) 7→ q(z) + f(x) + h(p)
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for arbitrary smooth functions f, h on UX and UP, respectively, where x = φX(z),
p = φP(z). Conversely, let M be a para-complex manifold such that the eigendis-
tributions DP, DX of the para-complex structure J are involutive. If a field Q of
bilinear forms on DP ×DX is locally given by (2.5) for some smooth scalar func-
tion q such that the matrix of Q is everywhere invertible, then (2.3),(2.4) defines a
para-Kähler structure on M [6, Section 2.2, Theorem 2].

The Christoffel symbols of the Levi-Civita connection ∇ of g are given by [1, eq.
(6)]

(2.7) Γc
ab = QDc ∂QaD

∂zb
, ΓC

AB = QCd ∂QdA

∂zB
,

while the other components of the Christoffel symbol vanish [1, Lemma 5.3]. Let
us compute the curvature tensor of the metric g. By [18, eq. (1.27)] the curvature
tensor of a Fedosov manifold obeys the relation2 ωαµR

µ
βγδ = ωβµR

µ
αγδ, which in view

of (2.1) is equivalent to Jµ
αRµβγδ = Jµ

βRµαγδ. The skew-symmetry of the curvature
tensor with respect to the first pair of indices now yields Rabγδ = RABγδ = 0, and
the only nonzero components of the curvature tensor are given by (see also [1, Prop.
5.5, eq. (9)])

RaBcD = −RBacD = −RaBDc = RBaDc =
1

2
QaE

∂ΓE
DB

∂zc

=
1

2

(
∂2QaD

∂zB∂zc
− ∂QaE

∂zc
QEf ∂QfD

∂zB

)
.(2.8)

2.2. Lagrangian immersions. In this subsection we consider Lagrangian immer-
sions f̃ : M → M of an n-dimensional manifold M into a para-Kähler manifold M.
The pseudo-Riemannian metric g on M induces a pseudo-Riemannian metric on M ,
which we denote by ĝ. This metric will be used to raise and lower indices of tensors
on M . Besides the metric, there are several other differential-geometric objects
which arise naturally on such Lagrangian immersions. Similar objects are known
from affine differential geometry, which is the main motivation for this subsection.

The following result is a simple consequence of (2.1), see also [4].

Lemma 2.1. Let z ∈ M and let L ⊂ TzM be an n-dimensional subspace of the
tangent space at z. Then the following conditions are equivalent.

i) L is a Lagrangian subspace, i.e., the symplectic form ω vanishes on L.
ii) The para-complex structure J maps L to its orthogonal subspace L⊥.
iii) The orthogonal subspace L⊥ is Lagrangian.

Let now f̃ : M → M be a Lagrangian immersion of some n-dimensional manifold
M into M, i.e., such that the differential Df̃ of f̃ maps TyM to a Lagrangian
subspace Ly ⊂ Tf̃(y)M for every y ∈ M . Denote by L⊥

y the orthogonal subspace to

Ly, and let NM be the normal bundle over M , i.e., a vector bundle such that the
fiber over y ∈ M is given by NyM = L⊥

y . We also introduce the tangent bundle

T̃M with fiber T̃yM = Ly, which is canonically isomorphic by the differential of

f̃ to the usual tangent bundle TM with fiber TyM . For a vector field X on M ,

we denote by X̃ the corresponding cross-section of T̃M . Thus X̃ can be seen as a

2Note that a general Fedosov manifold need not have a metric tensor. Therefore in the literature

on Fedosov manifolds the raising and lowering of indices is performed by means of the symplectic
form ω, yielding a somewhat different definition of the purely covariant curvature tensor.
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TM-valued vector field on M , i.e., a map associating to every point y ∈ M a vector
in Tf̃(y)M.

For a Lagrangian immersion f̃ : M → M, the pseudo-Riemannian metric ĝ on
M equals the pullback f̃∗Q on M of the tensor Q = g+ω. By (2.3) it follows that
(cf. [11, eq. (13)])

(2.9) ĝ =

(
∂x

∂y

)T

Q
∂p

∂y
.

Definition 2.1. We call a Lagrangian immersion f̃ : M → M regular if for every
y ∈ M the subspaces Ly, L

⊥
y ⊂ Tf̃(y)M are mutually transversal, i.e., the pseudo-

Riemannian metric ĝ on M is non-degenerate.
For regular Lagrangian immersions the orthogonal projections on the tangent

and the normal bundles T̃M and NM of a TM-valued vector field X̃ on M are
hence well-defined.

Lemma 2.2. [11, Lemma 2.13] A Lagrangian immersion f̃ : M → M is regular if

and only if the distributions DX, DP are transversal to f̃ .
Suppose now that the distribution DX is transversal to the immersion f̃ . Con-

sider an adapted coordinate chart U on M. Let UM ⊂ M be an open subset such
that f̃ [UM ] ⊂ U . Then the composition φX ◦ f̃ |UM

: UM → UX is a local diffeomor-
phism. By possibly shrinking UM , we can assume without restriction of generality
that φX ◦ f̃ |UM

is injective, thereby introducing the coordinates x on UM . We shall
call such a chart on M an adapted chart. The adapted charts form an atlas on M .
In a similar manner, we can introduce the coordinates p on M if the distribution
DP is transversal to the immersion f̃ .

Let f̃ : M → M be a regular Lagrangian immersion. The Levi-Civita connection
∇̂ induced on M by the pseudo-Riemannian metric ĝ can be considered as an affine
connection in the sense of affine differential geometry, induced by the normal bundle
NM as transversal subspace distribution. Besides ∇̂, we shall consider two other
affine connections ∇X and ∇P, namely those induced by the distributions DX

and DP, respectively, as transversal subspace distributions. By Lemma 2.2 these
distributions are indeed transversal. The next result gives an explicit expression of
∇X.

Lemma 2.3. [11, Lemma 2.10] Let f̃ : M → M be a Lagrangian immersion.

Suppose that the distribution DX is transversal to f̃ . Then in an adapted chart
on M , the Christoffel symbols of the affine connection ∇X are given by Γc

ab =

QDc ∂QaD

∂zb .

A similar result holds for ∇P.
A Codazzi structure on a differentiable manifold M is a pair (∇, h), consisting of

a torsion-free affine connection and a (pseudo-)metric h, such that the tensor ∇h is

totally symmetric [16, Def. 2.8, p.33]. If ∇̂ is the Levi-Civita connection of h, then

there exists a unique torsion-free connection ∇̄ on M such that ∇̂ = 1
2 (∇ + ∇̄).

The connection ∇̄ is called the dual connection of ∇ with respect to h [15, p.21].
If (∇, h) is a Codazzi structure, then (∇̄, h) is also a Codazzi structure, which is
called dual to the original one [15, Cor.4.4, p.21].

Theorem 2.1. [11, Theorem 2.14] Let f̃ : M → M be a Lagrangian immersion.
Then the following assertions hold.
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i) Suppose that the distribution DX is transversal to the immersion f̃ . Then
(∇X, ĝ) is a Codazzi structure on M .

ii) Suppose that the distribution DP is transversal to the immersion f̃ . Then
(∇P, ĝ) is a Codazzi structure on M .

iii) Assume that the conditions of both parts i) and ii) of the theorem are satisfied.
Then the Codazzi structures (∇X, ĝ), (∇P, ĝ) are dual to each other.

In [11, Corollary 3.4] we showed also the converse result, namely that, given
an arbitrary differential manifold M and a Codazzi structure on M , there exists
a para-Kähler manifold M and a regular Lagrangian immersion f̃ : M → M such
that the given Codazzi structure can be realized as the pair (∇X, ĝ).

Definition 2.2. Let f̃ : M → M be a regular Lagrangian immersion. We call the
symmetric tensor C = ∇Xĝ the cubic form of the Lagrangian immersion f̃ .

Definition 2.3. Let f̃ : M → M be a Lagrangian immersion. Let X̃ be a TM-
valued vector field on M . To the field X̃ we associate the 1-form ωX̃ on M by

(2.10) ωX̃(Y ) = ω(X̃, Ỹ ),

where Y is an arbitrary vector field on M .
The form ωX̃ depends only on the equivalence class of X̃ modulo the addition of

a tangential component. Indeed, let X̃ be a cross-section of T̃M . Then ω(X̃, Ỹ ) =

0 for every vector field Y on M , because f̃ is Lagrangian. Hence ωX̃ vanishes
identically.

We can generalize Definition 2.3 to forms of order k on M which have values in
TM. Let ζ be such a form. Then ζ can be associated to a form ωζ of order k + 1
on M by

(2.11) ωζ(X1, . . . , Xk, Y ) = ωζ(X1,...,Xk)(Y ) = ω(ζ(X1, . . . , Xk), Ỹ ),

where X1, . . . , Xk, Y are arbitrary vector fields on M .
The second fundamental form IIf̃ of a regular Lagrangian immersion f̃ is a

symmetric quadratic form on M with values in the normal bundle NM . Its value
on two vector fieldsX,Y onM is defined as the orthogonal projection onNM of the
covariant derivative ∇X̃ Ỹ , where X̃, Ỹ have to be thought as smoothly extended

to some neighbourhood of the immersion f̃ [12, Section VII.3]. As described above,
to the second fundamental form we can associate a 3-form ωIIf̃

on M .

Lemma 2.4. [11, Theorem 2.16] Let f̃ : M → M be a regular Lagrangian immer-
sion. Then the cubic tensor and the 3-form ωIIf̃

on M are related by C = −2ωIIf̃
.

Definition 2.4. Let f̃ : M → M be a regular Lagrangian immersion. We call the
1-form TΨ = CΛ

ΛΨ obtained by contraction of the cubic form C with the metric ĝ

the Tchebycheff form of the Lagrangian immersion f̃ .
From Lemma 2.4 it follows that

(2.12) T = −2ως ,

where ς is the mean curvature vector field of the immersion f̃ (recall that the mean
curvature vector is the contraction of the second fundamental form with the metric
ĝ).

Corollary 2.1. A regular Lagrangian immersion f̃ : M → M into a para-Kähler
manifold M is minimal if and only if its Tchebycheff form vanishes.
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Proof. By definition, minimal surfaces are characterized by the vanishing of the
mean curvature vector field. Hence every minimal regular Lagrangian immersion
must have a vanishing Tchebycheff form.

Let us prove the converse implication. If the Tchebycheff form vanishes, then
ω(ς, X̃) = 0 for every cross-section X̃ of T̃M . Since the immersion f̃ is Lagrangian,

it follows that ς itself must be a cross-section of T̃M . But ς is a normal vector
field by definition. The assertion of the corollary now follows from the regularity of
f̃ . �

Finally, we shall explicitly compute the cubic form C and the Tchebycheff form
T of a regular Lagrangian immersion f̃ : M → M in an adapted chart UM on M .
The immersion f̃ defines a vector-valued function p̄ on UM by f̃(x) = (x, p̄(x)),

x ∈ UM . By (2.9) the matrix of ĝ equals the product Q ∂p̄
∂x . Denote the elements

of the matrix ∂p̄
∂x by ΥL

c , with column index L = n + 1, . . . , 2n and row index

c = 1, . . . , n. The elements of the derivative ∂2p̄
∂x2 will correspondingly be denoted

by Υ′L
bc. By virtue of Lemma 2.3 the covariant derivative of the metric is then given

by

∇X
c ĝab =

(
∂QaK

∂zc
+

∂QaK

∂zL
ΥL

c

)
ΥK

b +QaKΥ′K
bc

−QaKΥK
d QLd ∂QbL

∂zc
−QdKΥK

b QLd ∂QaL

∂zc

=
∂QaK

∂zL
ΥK

b ΥL
c +QaKΥ′K

bc −QaKΥK
d QLd ∂QbL

∂zc
.

Since the immersion is regular, the inverse metric exists and is given by ĝ−1 =
∂x
∂p̄Q

−1. Denote the elements of the derivative ∂x
∂p̄ by Υ̃c

K . Then the Tcheby-

cheff form, which by definition is given by the contraction of the cubic form ∇Xĝ,
amounts to

ĝca∇X
c ĝab =

∂QaK

∂zL
ΥK

b QLa +Υ′K
bcΥ̃

c
K −QLd ∂QbL

∂zd
(2.13)

= −∂QLa

∂zL
QaKΥK

b +Υ′K
bcΥ̃

c
K +QbL

∂QLd

∂zd
.

3. The cross-ratio manifold

We shall now abandon the consideration of para-Kähler manifolds in general.
Instead we construct and study a para-Kähler structure on the manifold (1.1). In
this and in the next section, M will denote this particular manifold, the cross-ratio
manifold.

3.1. Construction. The purpose of this subsection is to elaborate an explicit ex-
pression of the objects (2.3),(2.4) the Levi-Civita connection ∇ and its curvature
on M.

As outlined in Subsection 1.1, M is a dense open subset of the product X×P,
whereX is the n-dimensional real projective space RPn, andP is the dual projective
space RPn. Denote by πX, πP the projections of M onto the factors. The space
X is defined as the set of 1-dimensional subspaces of the real vector space Rn+1,
whereas P is the set of 1-dimensional subspaces of its dual Rn+1. The coordinate
indices on the real vector spaces Rn+1, Rn+1 will run from 0 to n.
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Definition 3.1. For a projective point x ∈ X, we will call a nonzero vector x̃ ∈
x ⊂ Rn+1 on the line x a representative of x. Similarly, for p ∈ P a nonzero point
p̃ ∈ p ⊂ Rn+1 will be called a representative of p.

There does not exist a scalar product between points x ∈ X, p ∈ P, and the
scalar product of representatives x̃, p̃ of x, p is determined only up to multiplication
with a nonzero real number. Therefore between points in X and P there exists only
an orthogonality relation, x ∈ X being orthogonal to p ∈ P iff their representatives
are orthogonal.

Let us define an atlas of affine coordinate charts on X × P. Choose any point
ẑ = (x̂, p̂) ∈ M and a basis in Rn+1 such that x̂ is represented by the basis vector
e0 ∈ Rn+1 and p̂ is represented by the basis vector e0 ∈ Rn+1 in the corresponding
dual basis. Let z = (x, p) ∈ X × P be such that x ̸⊥ p̂ and x̂ ̸⊥ p. Then x and p
have representatives x̃ = (1, x1, . . . , xn)T ∈ Rn+1 and p̃ = (1, p1, . . . , pn)

T ∈ Rn+1,
respectively. We then assign to z the coordinate vector (x1, . . . , xn, p1, . . . , pn)

T =
(z1, . . . , z2n)T . We will say that the affine coordinate chart obtained in this way is
centered on ẑ. Indeed, the point ẑ lies at the origin of this chart.

The product X×P and hence M carries a natural para-complex structure. The
distributions DP, DX of this structure are defined as the kernels of the differen-
tials DπP, DπX, respectively. The affine charts on X × P defined in the previous
paragraph are adapted to this para-complex structure (see Subsection 2.1), because
the coordinates x = (x1, . . . , xn)T and p = (p1, . . . , pn)

T define affine charts on the
factor manifolds X and P, respectively. The scalar product of the representatives
x̃, p̃ of x and p is then given by ⟨x̃, p̃⟩ = 1 + pTx = 1 + pax

a. Note that those
points which satisfy the relation 1 + pTx = 0 do not belong to M, and the in-
troduced charts are, strictly speaking, not charts on M. With a little abuse of
notation we will nevertheless speak of affine charts on M, and as long as we respect
the condition 1 + pTx ̸= 0 this detail has no relevance. Note also that the set
{(x, p) ∈ R2n | 1 + pTx > 0} is starlike and hence connected.

As announced in Subsection 1.1, the para-Kähler structure on M arises as the
infinitesimal limit of a symmetric function (· ; ·) : M × M → R derived from a
generalization of the projective cross-ratio. The central idea in [2] is to generalize
the cross-ratio, an (R ∪ {∞})-valued function on quadruples of collinear points in
projective space, to a function taking a pair of points in projective space and a pair
of points in the dual projective space as arguments. Let (x, x′, p, p′) ∈ X×X×P×P
be a quadruple of points with representatives x̃, x̃′, p̃, p̃′, respectively, such that
neither x nor x′ are orthogonal to both p and p′, and neither p nor p′ are orthogonal
to both x and x′. Then the ratio

[x′, x, p, p′] =
⟨x̃′, p̃⟩⟨x̃, p̃′⟩
⟨x̃′, p̃′⟩⟨x̃, p̃⟩

is a well-defined number in R ∪ {∞}, i.e., it is not dependent on the choice of the
representatives x̃, x̃′, p̃, p̃′ [2, p.4].

Let now z = (x, p), z′ = (x′, p′) be two points in M. We define the two-point
function (· ; ·) : M×M → R by

(3.1) (z; z′) = 1− [x′, x, p, p′].

Clearly this function is symmetric in the arguments z, z′. The relations x ̸⊥ p and
x′ ̸⊥ p′ assure that (z; z′) cannot assume the value ∞. The equivalence of this
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definition with the construction given in Subsection 1.1 is assured by [2, Theorem
2.10] and the symmetries of the cross-ratio.

We shall now give an explicit expression for function (3.1). Choose an affine
coordinate chart on M such that both z = (x, p), z′ = (x′, p′) are contained in it.
Then

(3.2) (z; z′) = 1− (1 + pTx′)(1 + p′
T
x)

(1 + p′Tx′)(1 + pTx)
= (x′ − x)T

(1 + p′
T
x)I − p′xT

(1 + pTx)(1 + p′Tx′)
(p′ − p).

If we now fix the first argument z and consider (z; z′) as a scalar function f(z′) =

f(x′, p′) on M, then the gradients ∂f
∂x′ ,

∂f
∂p′ vanish at z′ = z and hence the second

derivative

(3.3) Q(z) =
∂2(z; z′)

∂x′∂p′

∣∣∣∣
z′=z

defines an invariant bilinear form Q : TxX× TpP → R on M. From (3.2) it follows
that the matrix of this form is given by

(3.4) Q(z) =
(1 + pTx)I − pxT

(1 + pTx)2
.

We then have detQ = (1 + pTx)−(n+1), and Q is non-degenerated for all z ∈ M,
with inverse Q−1 = (1 + pTx)(I + pxT ). Moreover, if we define the scalar q(z) =

log |1 + pTx|, then Q = ∂2q
∂x∂p .

This allows us to define a para-Kähler structure (2.3),(2.4) on the manifold M,
with the scalar q = log |1+pTx| playing the role of the para-Kähler potential. Note
that q is not an invariant scalar field. It depends on the affine chart chosen on M
and undergoes a transformation (2.6) if we pass to an affine chart centered on a
different point. From (3.4) we obtain for the elements of Q and its inverse

(3.5) QaB(z) =
(1 + pcx

c)δba − pax
b

(1 + pcxc)2
, QAb = (1 + pcx

c)(δba + pax
b).

Recall that by the notation convention introduced in Subsection 2.1 we have b =
B − n and a = A− n.

Definition 3.2. We will call the manifold M defined by (1.1) and equipped with
the structures (2.3) defined by (3.3), (3.1) the cross-ratio manifold.

In [9] Gadea and Montesinos Amilibia introduced a one-parametric family of
para-Kähler manifolds Pn(B)/Z2, the reduced para-complex projective spaces, and
an isomorphic family of spaces P (Rn+1 ⊕ Rn+1)/Z2. A comparison of (3.5) with
[9, eq. (1.3)] and of (2.2) with [9, eq. (1.4)] yields the following result.

Theorem 3.1. The cross-ratio manifold M is canonically isomorphic to the space
P (Rn+1⊕Rn+1)/Z2 with parameter value c = 4, which in turn is isomorphic to the
reduced para-complex projective space Pn(B)/Z2 with parameter value c = 4.

While the underlying differentiable manifold, which is common for all spaces
P (Rn+1 ⊕ Rn+1)/Z2, is constructed in [9] in a way resembling definition (1.1), the
para-Kähler structure is defined by a very different procedure.

Let us now compute the Levi-Civita connection and the curvature of the pseudo-
Riemannian metric g. Inserting (3.5) into (2.7) and (2.8), one easily verifies

(3.6) Γc
ab = −zBδca + zAδcb

1 + pdxd
, ΓC

AB = −zbδCA + zaδCB
1 + pdxd

,
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RaBcD = −RBacD = −RaBDc = RBaDc = −1

2
(QaBQcD +QaDQcB) ,

the other components of Γγ
αβ and Rαβγδ being zero. From the last relation we get

the following expression for the curvature tensor3,

Rαβγδ = gβδgαγ − ωβδωαγ − gαδgβγ + ωαδωβγ − 2ωαβωγδ.

By (2.1), the Ricci tensor is then given by

Rβδ = gαγRαβγδ = 2(n+ 1)gβδ.

Corollary 3.1. The cross-ratio manifold M is a pseudo-Einstein manifold.

Definition 3.3. We call a diffeomorphism f : M → M an automorphism if it
preserves the bilinear form Q encoding the para-Kähler structure.

Clearly f is an automorphism if and only if it is at the same time an isometry
and a symplectomorphism. The following result shows that the cross-ratio manifold
is homogeneous.

Theorem 3.2. The automorphism group of M is given by the projective general
linear group PGL(n + 1,R). This group acts transitively and faithfully on M and
preserves the two-point function (3.1).

Proof. The group PGL(n+1,R) is the automorphism group of the projective space
X = RPn, upon which it acts by projective transformations. Since points in the
dual projective space P can be interpreted as hyperplanes in X, the action on X
induces also an action on P and hence on the product X×P. This action preserves
the projective cross-ratio as well as the orthogonality relation between points in
primal and dual projective space. Thus PGL(n + 1,R) indeed acts on the set M
and preserves the function (3.1). Moreover, since PGL(n + 1,R) acts on X and
P separately, it preserves the distributions DP, DX introduced in Section 2 and
hence by (3.3) also the form Q. The group PGL(n + 1,R) acts transitively on
M, because for every two pairs of complementary linear subspaces (in this case, of
dimensions n and 1, respectively) in Rn+1 with consistent dimensions there exists
a linear transformation that takes one pair to the other. Since PGL(n+ 1,R) acts
faithfully on X, it acts also faithfully on M.

Let us now show that PGL(n + 1,R) exhausts the automorphism group of M.
Consider an affine chart on M and an automorphism f : M → M. Our aim is to
show that f is an element of PGL(n + 1,R). By the transitivity of the action of
PGL(n + 1,R), we can without restriction of generality assume that f leaves the
origin of the affine coordinate chart fixed. By (3.5), the form Q is at the origin

given by the matrix

(
0 I
0 0

)
. Let

(
A11 A12

A21 A22

)
be the matrix representation of the

differential of f at the origin, partitioned into blocks of size n×n. Since f preserves
the form Q, we have(

AT
11 AT

21

AT
12 AT

22

)(
0 I
0 0

)(
A11 A12

A21 A22

)
=

(
AT

11A21 AT
11A22

AT
12A21 AT

12A22

)
=

(
0 I
0 0

)
.

It follows that A12 = A21 = 0 and A22 = A−T
11 . Note that there exists an element of

PGL(n+1,R) which leaves the origin of the affine chart fixed and whose differential

3The expression for the curvature tensor given in [9, p.267] differs from ours by a sign, which
can be explained by a nonstandard definition of the curvature operator in [10, p.86].
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at the origin equals that of f , namely, the transformation x 7→ A11x, p 7→ A−T
11 p.

Hence we can assume without restriction of generality that the differential of f
at the origin is given by the identity matrix. But then f must equal the identity
mapping on a whole neighbourhood of the origin. Namely, it must leave fixed all
geodesics going through the origin. The proof is completed by noting that M is
connected, which implies that f must equal the identity on the whole manifold
M. �

The fact that the cross-ratio manifold is homogeneous is not new. In [9, p.265]
the reduced para-complex projective spaces Pn(B)/Z2 are characterized as homo-
geneous spaces SL(n+1,R)/S(GL(1,R)×GL(n,R)). However, for odd n the group
SL(n+1,R) acts neither faithfully on Pn(B)/Z2 (the element −I leaves the whole
space fixed) nor does it exhaust the full automorphism group (the transformation
diag(1,−I) induces a nontrivial automorphism).

The spaces Pn(B)/Z2 and hence also the cross-ratio manifold are symmetric
spaces [9, p.265], i.e., for every z ∈ M there exists an involutive automorphism
with z as an isolated fixed point.

Remark 3.1. For any given affine chart on M, it is also of interest to consider the
map z = (x, p) 7→ (p, x). The pseudo-Riemannian metric g and the symplectic
form ω transform under this map as g 7→ g, ω 7→ −ω. This map is hence not an
automorphism, but it is an isometry and it preserves the two-point function (3.1)
as well as the property of an immersion to be Lagrangian.

The topology of the spaces Pn(B)/Z2 and hence also the cross-ratio manifold
has been determined in [9, Prop. 1.1] to be that of the tangent bundle T RPn. The
cross-ratio manifold M is thus homeomorphic to the tangent bundles TX and TP.

3.2. Geodesics. In this subsection we consider properties of the geodesic flow in
M. In particular, we will show that totally geodesic submanifolds are either locally
products of subspaces in X and P or isotropic with respect to the symplectic form
ω. The material in this subsection builds on the results in [9, Section 2].

Fix an affine chart onM. Consider the geodesic γ(t) through the origin, γ(0) = 0,
with nonzero velocity vector γ̇(0) = v. By [9, p.268, eq. (2.5)]4 we have γ(t) = λ(t)v
with

λ(t) =


t, g(v, v) = 0,

1√
g(v,v)

tan(
√
g(v, v)t), g(v, v) > 0,

1√
−g(v,v)

tanh(
√
−g(v, v)t), g(v, v) < 0.

Here g(v, v) is the squared length of the vector v. We obtain the following classifi-
cation of the geodesics in M.

If g(v, v) = 0, i.e., the vector v is isotropic, then we have two subcases. If
va ̸= 0 and vA ̸= 0, i.e., v does not belong to the distributions DP or DX, then
the projections of the geodesic γ on X and P are given by a projective line minus
a point. If va = 0 (vA = 0), then the projection of γ on X (P) becomes a point.
In both cases, the limits limt→±∞ γ(t) exist and coincide in X×P.

If g(v, v) > 0, then γ is closed and projects to a whole projective line in both X
and P. The period of one orbit is given by π√

g(v,v)
.

4The definition of λ in this formula should read sgn(α(ν))
√

|α(ν)| instead of
√

α(ν).
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If g(v, v) < 0, then γ projects to segments of projective lines in X and P whose
complements have a nonempty interior. The limits limt→±∞ γ(t) exist in X × P
and do not coincide.

Definition 3.4. Depending on whether the sign of g(v, v) is 0, 1 or −1, we call the
corresponding geodesics of parabolic, elliptic and hyperbolic type, respectively.

In all cases the geodesics are complete, and hence M is complete.

We shall now pass to the study of totally geodesic submanifolds. For a point
z ∈ M and a k-dimensional subspace L ⊂ TzM, letMz

L be the geodesic submanifold
formed by the geodesics going through z with velocities in L. The following result
is a direct consequence of the above considerations.

Lemma 3.1. Pass to an affine chart on M centered on ẑ ∈ M, and let L ⊂ TẑM
be a k-dimensional subspace, given by the column space of a 2n×k matrix F . Then
the intersection of M ẑ

L with the affine chart is given by the set Mo = {z = (x, p) =
Fy | y ∈ Rk, 1 + pTx > 0}.

By [12, Theorem 4.3, p.237], the property ofMz
L to be a totally geodesic manifold

depends only on the subspace L. In [9, Theorem 2.2], the subspaces L possessing
the property of generating a totally geodesic submanifold are characterized. Either
such a subspace L is the product LX×LP of two subspaces LX ⊂ TxX, LP ⊂ TpP,
where z = (x, p), or it can be decomposed into the direct sum of three subspaces
which are related by some technical condition. For convenience we will say that the
subspaces of the latter type are ”Type 1” subspaces. The subspaces of Type 1 can
be only of dimension not exceeding n [9, p.270], whereas the subspaces of product
type can have arbitrary dimension.

Below we will give a similar, but slightly different and more transparent char-
acterization of totally geodesic subspaces. Namely, we show that such a subspace
has to be either of the product type described in the previous paragraph, or it has
to be isotropic with respect to the symplectic form ω. Rather than performing the
tedious linear-algebraic exercise of showing that subspaces of Type 1 are isotropic,
and isotropic subspaces which are not of product type have to be of Type 1, we find
it more instructive to present an independent proof that uses the isotropic property
directly.

Lemma 3.2. Let ẑ ∈ M, let L ⊂ TẑM be a k-dimensional linear subspace, and let
M ẑ

L be the geodesic manifold through ẑ with velocities in L. If the symplectic form
ω vanishes on the subspace L, then M ẑ

L is totally geodesic.

Proof. Fix an affine chart on M centered on ẑ and let the 2n × k-matrix Fα
Λ =(

F a
Λ

FA
Λ

)
, Λ = 1, . . . , k, be such that its columns form a basis of L. By Lemma 3.1,

the intersection of M ẑ
L with the affine chart is given by the set Mo = {z = (x, p) =

Fy | y ∈ Rk, 1 + pTx > 0}. Define M = {y ∈ Rk | 1 + pTx > 0, (x, p) = Fy} and
consider Mo as an immersion of M into M, defined by y 7→ Fy. Every vector field
X on M then defines a tangent vector field X̃ on Mo by X̃α = Fα

ΛX
Λ. We suppose

that such vector fields are smoothly extended to a neighbourhood of Mo in M.
Totally geodesic submanifolds are characterized by the vanishing of the second

fundamental form. The second fundamental form of Mo vanishes if and only if for
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all vector fields X,Y on M we have that ∇X̃ Ỹ is tangent to Mo. We have

∇α
X̃
Ỹ =

∂Ỹ α

∂zβ
X̃β + Γα

βγX̃
βỸ γ = Fα

Λ

∂Y Λ

∂yΘ
XΘ + Γα

βγF
β
ΛF

γ
ΞX

ΛY Ξ.

The first summand is clearly in the image of F . By virtue of (3.6) the second
summand, which we denote by uα, at z = (x, p) = Fy equals

ua = −(1 + pTx)−1 (GΛΘF
a
Ξ +GΞΘF

a
Λ)X

ΛY ΞyΘ,

uA = −(1 + pTx)−1
(
GΘΛF

A
Ξ +GΘΞF

A
Λ

)
XΛY ΞyΘ,

where GΛΘ =
∑n

i=1 F
i
ΛF

i+n
Θ . With Gsym

ΛΘ = 1
2 (GΛΘ + GΘΛ), G

asym
ΛΘ = 1

2 (GΛΘ −

GΘΛ), F̄
α
Λ = Jα

β F
β
Λ =

(
F a
Λ

−FA
Λ

)
we have uα = Uα

ΛΘΞX
ΛY ΞyΘ, where

Uα
ΛΘΞ =

(
GΛΘF

a
Ξ +GΞΘF

a
Λ

GΘΛF
A
Ξ +GΘΞF

A
Λ

)
= (Gsym

ΛΘ Fα
Ξ +Gsym

ΞΘ Fα
Λ )+

(
Gasym

ΛΘ F̄α
Ξ +Gasym

ΞΘ F̄α
Λ

)
.

Note that the term in the first parentheses on the right-hand side is in the image of
F for all values of the indices Λ, Θ, Ξ. Thus ∇X̃ Ỹ is tangent to Mo for all vector
fields X,Y on M if and only if the object

(3.7) Gasym
ΛΘ F̄α

Ξ +Gasym
ΞΘ F̄α

Λ

is in the image of F for all values of the indices Λ,Θ,Ξ.

Now note that the form ω is given by the matrix 1
2

(
0 I
−I 0

)
at the origin. Hence

ω vanishes on L if and only if Gasym
ΛΘ = 0. But in this case (3.7) vanishes. Thus

the isotropy of L implies that the second fundamental form vanishes identically on
Mo, and hence on M ẑ

L, because Mo is dense in M ẑ
L. This completes the proof. �

Corollary 3.2. Let f̃ : M → M be a Lagrangian immersion. Then for every point
y ∈ M there exist Lagrangian totally geodesic submanifolds ST , SN ⊂ M which are
tangent and orthogonal, respectively, to the immersion f̃ at the point f̃(y).

Proof. Let Ly = T̃yM , L⊥
y = NyM be the tangent and normal subspaces at y.

Then the geodesic submanifold M
f̃(y)
Ly

is totally geodesic by the previous lemma

and tangent to the immersion f̃ at f̃(y) by construction. Likewise, the geodesic

submanifold M
f̃(y)

L⊥
y

is totally geodesic by Lemma 2.1 and the previous lemma and

orthogonal to the immersion f̃ at f̃(y) by construction. It rests to show that M
f̃(y)
Ly

and M
f̃(y)

L⊥
y

are Lagrangian. This follows from the fact that ω is parallel, because

if the tangent space of a connected totally geodesic submanifold is isotropic with
respect to ω at some point, it has to be isotropic everywhere. �

Lemma 3.3. Let S ⊂ M be a connected totally geodesic submanifold. Then either
the form ω vanishes on S, or there exist projective subspaces XS ⊂ X, PS ⊂ P such
that S ⊂ XS ×PS and at each point z = (x, p) ∈ S we have TzS = TxXS ×TpPS.

Proof. Assume that the form ω does not vanish on S in the neighbourhood of some
point ẑ = (x̂, p̂) ∈ S. Let L ⊂ TẑM be the tangent space to S at ẑ. Then S locally
coincides with the geodesic manifold M ẑ

L. Pass to an affine chart centered on ẑ and
assume the notations in the proof of Lemma 3.2. Since L is not isotropic, we can
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find values of the indices Λ,Θ such that Gasym
ΛΘ ̸= 0. Fixing Λ,Θ at these values

and letting Ξ run from 1 to k, one easily verifies that expression (3.7) runs through
a basis of the image of F̄ .

Now since S is totally geodesic, the second fundamental form of S vanishes, and
(3.7) must be in the image of F for all values of the indices Λ,Θ,Ξ. Therefore
the images of F and F̄ = JF coincide, and must be an invariant subspace of the
inversion J . Any such invariant subspace can be represented as the sum of subspaces
LX ⊂ J+, LP ⊂ J− of the eigenspaces of J corresponding to the eigenvalues +1,−1,
respectively. These eigenspaces are precisely the subspaces of TẑM defined by the
distributions DP, DX. It follows that there exist projective subspaces XS ⊂ X,
PS ⊂ P and a neighbourhood U ⊂ M of ẑ such that S ∩ U = (XS × PS) ∩ U .
But then S ⊂ XS × PS , because S is connected. The proof is completed by a
dimensional argument. �

Clearly a connected submanifold possessing the local product structure described
in Lemma 3.3 is totally geodesic. Thus we get the following pendant of [9, Theorem
2.3, (iv)].

Theorem 3.3. Let S ⊂ M be a connected submanifold, coinciding with a geodesic
manifold Mz

L for some z ∈ S and L = TzS. Then S is totally geodesic if and only
if at least one of the following two conditions holds.

i) The form ω vanishes on S.
ii) There exist projective subspaces XS ⊂ X, PS ⊂ P such that S ⊂ XS × PS

and at each point z = (x, p) ∈ S we have TzS = TxXS × TpPS.

3.3. Example. In this subsection we consider the 2-dimensional cross-ratio man-
ifold, i.e., for n = 1. The projective line RP 1 is homeomorphic to S1, hence the
product manifoldX×P is homeomorphic to the 2-dimensional torus. Let us param-
eterize X and P by angles ϕ, ξ ∈ (−π/2, π/2], such that the representatives x̃ ∈ R2,

p̃ ∈ R2 of x ∈ X, p ∈ P have the form r

(
cosϕ
sinϕ

)
, r

(
cos ξ
sin ξ

)
, respectively. Then the

complement of M in X × P is given by all pairs (ϕ, ξ) with |ϕ − ξ| = π/2 and is
homeomorphic to S1. The manifold M itself is homeomorphic to TX ∼= S1 × R.
Let z = (ϕ, ξ), z′ = (ϕ′, ξ′). The two-point function (3.1) is given by

(z; z′) =
sin(ϕ′ − ϕ) sin(ξ′ − ξ)

cos(ξ − ϕ) cos(ξ′ − ϕ′)
,

and the bilinear form Q is given by Q = Qϕξ = cos−2(ξ− ϕ), all other components
of Q being zero. The Christoffel symbols (3.6) amount to

Γϕ
ϕϕ = −Γξ

ξξ = 2 tan(ϕ− ξ),

all other Christoffel symbols being zero. The geodesics going through (0, 0) are
explicitly given by(

arctan t
0

)
,

(
0

arctan t

)
,

(
arctan(c−1 tan(ct))
arctan(c tan(ct))

)
,

(
arctan(c−1 tanh(ct))
− arctan(c tanh(ct))

)
,

up to multiplication of the time parameter by a constant factor. Here c ̸= 0 is a
parameter.

By Theorem 3.1 and [8] the two-dimensional cross-ratio manifold is isomor-
phic to the ruled hyperboloid H =

{
(x, y, z) ∈ R3 |x2 + y2 − z2 = 1

4

}
, whose para-

Kähler structure is defined by the almost para-complex structure determined by the
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straight lines and the pseudo-Riemannian metric induced by the pseudo-Riemannian
metric dx2 + dy2 − dz2 on R3.

4. A model of centro-affine immersions

In this section we investigate the relations between the Lagrangian immersions
into the cross-ratio manifold with the centro-affine hypersurface immersions into
Rn+1. In the first subsection we establish the coincidence of the Codazzi structures
defined by the two immersions. In Subsection 4.2 we consider the centro-affine
pendants of the totally geodesic Lagrangian submanifolds of Corollary 3.2. In
Subsection 4.3 we investigate the relation between centro-affine hypersurface flows
in Rn+1 and Lagrangian surface flows in M. Finally, in Subsection 4.4 we consider
the relation between the affine normal flow in Rn+1 and the mean curvature flow
in M.

4.1. Equivalence theorems. Let f : M → Rn+1 be a centro-affine hypersurface
immersion. In the way outlined in Subsection 1.1 we construct from f an immersion
f̃ : M → M into the cross-ratio manifold. Then we show that the immersion f̃ is
Lagrangian, the pseudo-Riemannian metric ĝ induced on M by f̃ coincides with the
centro-affine metric defined by f , and the connection ∇X on M coincides with the
centro-affine connection induced by f . In the opposite direction, we show that f̃
determines f up to homothety, and the two-point function (3.1) defines an invariant
for centro-affine immersions.

Let M be an n-dimensional manifold and f : M → Rn+1 a centro-affine immer-
sion. We adopt the convention that the transversal vector field equals the negative
of the position vector. Let π : Rn+1 \ {0} → X be the map taking a nonzero vector
to its linear span, which is an element of the projective space X. By definition the
map π ◦ f : M → X is a local diffeomorphism. By virtue of this diffeomorphism,
the atlas of affine charts on X induces an atlas of charts on M . Assume that some
neighbourhood UM ⊂ M can be covered by such a chart and choose a corresponding
affine chart on M. Let y ∈ UM and f(y) = (r0, r1, . . . , rn)T . Then the coordinate
vector (y1, . . . , yn)T of y is defined by

(4.1) yΛ =
rΛ

r0
.

Let us further consider r0 as a function of y on UM , denote this function by r̃0

and put u = −(r̃0)−1. Then we can express the map f in terms of the function r̃0,
namely

(4.2) f(y) = (r̃0(y), r̃0(y)y1, . . . , r̃0(y)yn)T .

Assume without restriction of generality that r̃0 > 0 on UM .
If the function r̃0 would be identically equal to 1, then f [UM ] would be a subset

of the affine hyperplane r0 = 1. The induced affine connection would be flat,
and since the coordinate system would parameterize the hyperplane affinely, the
Christoffel symbols of the connection would identically vanish. It then follows from
[15, (3.14), p.16] that the Christoffel symbols of the actual centro-affine connection
∇′ induced on M by the immersion f are given by

(4.3) Γ′Φ
ΛΞ = ρΛδ

Φ
Ξ + ρΞδ

Φ
Λ ,
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where ρ = −u∂r̃0

∂y is the differential of the scalar log r̃0. The centro-affine metric h

induced on M by the immersion f is given by [14, eq. (7)]5

(4.4) h = u−1 ∂
2u

∂y2
= −(r̃0)−1 ∂

2r̃0

∂y2
+ 2(r̃0)−2

(
∂r̃0

∂y

)T
∂r̃0

∂y
.

We now construct an immersion f̃ : M → M from f . For y ∈ UM we define
f̃(y) = z = (x, p) by

(4.5) x = y, p = −

(
∂r̃0

∂y

)T
r̃0 + ∂r̃0

∂y y
.

We then have ∂r̃0

∂y + pT ∂(r̃0y)
∂y = 0, and the linear hyperplane in Rn+1 which is the

kernel of the nonzero linear functionals in p is just the tangent plane to f [M ] at y.

It follows that f̃ is independent of the chosen affine chart and that x ̸⊥ p, i.e., f̃(y)

is indeed an element of M. Clearly the differential of f̃ is full rank, and f̃ is indeed
an immersion.

Theorem 4.1. Assume above definitions. The immersion f̃ : M → M is La-
grangian, the pseudo-Riemannian metric ĝ induced on M by f̃ is equal to the centro-
affine metric h, and the connection ∇X on M equals the centro-affine connection
∇′.

Proof. Assume above notations. Then we have

∂2r̃0

∂y2
=

−
(
r̃0 +

(
∂r̃0

∂y

)T
y

)
∂2r̃0

∂y2 +
(

∂r̃0

∂y

)T (
2∂r̃0

∂y + yT ∂2r̃0

∂y2

)
(
r̃0 +

(
∂r̃0

∂y

)T
y

)2

and

1 + pTx =
r̃0

r̃0 +
(

∂r̃0

∂y

)T
y

.

5In the reference the metric differs form ours in sign, because the transversal vector field was
assumed equal to the position vector, see [14, eq. (4)].
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By (3.5) and (4.5) the pullback Q̂ of the bilinear form Q on M is then given by
the formula

Q̂ΛΞ =
∂zα

∂yΛ
Qαβ

∂zβ

∂yΞ
=

∂za

∂yΛ
QaB

∂zB

∂yΞ

= δaΛ
(1 + pcx

c)δba − pax
b

(1 + pcxc)2

∂r̃0

∂yb

(
2 ∂r̃0

∂yΞ + yΦ ∂2r̃0

∂yΦ∂yΞ

)
−
(
r̃0 + ∂r̃0

∂yΦ y
Φ
)

∂2r̃0

∂yb∂yΞ(
r̃0 + ∂r̃0

∂yΦ yΦ
)2

=
−r̃0 ∂2r̃0

∂yΛ∂yΞ + (1 + pcx
c) ∂r̃0

∂yΛ

(
2 ∂r̃0

∂yΞ + yΦ ∂2r̃0

∂yΦ∂yΞ

)
(r̃0)2

−pΛ
−r̃0yΦ ∂2r̃0

∂yΦ∂yΞ + 2yΦ ∂r̃0

∂yΦ
∂r̃0

∂yΞ

(r̃0)2

=
−r̃0 ∂2r̃0

∂yΛ∂yΞ + 2 ∂r̃0

∂yΛ
∂r̃0

∂yΞ

(r̃0)2
,

which is identical to hΛΞ by (4.4). Thus the skew-symmetric part of Q̂ vanishes
identically on M , while the symmetric part equals the affine metric h. This proves
the first two assertions of the theorem.

Now let us compute the Christoffel symbols of the connection ∇X. By Lemma
2.3 and (3.6) these are given by

ΓΦ
ΛΞ = −pΞδ

Φ
Λ + pΛδ

Φ
Ξ

1 + pTx
=

∂r̃0

∂yΞ δ
Φ
Λ + ∂r̃0

∂yΛ δ
Φ
Ξ

r̃0
,

which coincides with expression (4.3). This completes the proof. �

If the centro-affine immersion f is non-degenerate, i.e., the affine metric is eve-
rywhere full rank, then by Definition 2.1 the corresponding Lagrangian immersion
f̃ is regular. Theorem 4.1 then says that the Codazzi structures induced by the
immersions f and f̃ on M coincide. This has the following implications.

Corollary 4.1. Let f : M → Rn+1 be a non-degenerate centro-affine hypersurface
immersion and f̃ : M → M the corresponding regular Lagrangian immersion into
the cross-ratio manifold. Then the affine connection which is induced on M by
the image f∗ : M → Rn+1 of the immersion f under the conormal map equals
the connection ∇P. The cubic form induced on M by f coincides with the cubic
form given by Definition 2.2, and the Tchebycheff form T induced by f equals the
Tchebycheff form given by Definition 2.4. In particular, if f is an affine hypersphere
with centre in the origin, then the Lagrangian immersion f̃ is minimal.

Proof. The coincidence of ∇P with the dual affine connection follows from the fact
that the latter is dual to the affine connection ∇′ with respect to the affine metric
h, and ∇P is dual to ∇X with respect to the pseudo-Riemannian metric ĝ. But
since ĝ = h and ∇X = ∇′ by the preceding theorem, ∇P must equal the dual affine
connection.

The cubic forms are given by the covariant derivatives∇Xĝ and∇′h, respectively,
and must hence coincide by Theorem 4.1. The Tchebycheff forms, which are the
contractions of the cubic forms with the respective metrics, then also coincide. The
last assertion of the theorem follows from Corollary 2.1. �
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Formula (4.5) determines the Lagrangian immersion f̃ : M → M as a function
of the centro-affine immersion f : M → Rn+1. The following result specifies what
happens if we go the opposite way.

Theorem 4.2. Let M be a simply connected n-dimensional smooth differentiable
manifold, and let f̃ : M → M be a Lagrangian immersion into the cross-ratio
manifold such that the map πX ◦ f̃ : M → X is a local diffeomorphism. Then there
exists a centro-affine immersion f : M → Rn+1 such that f̃ can be recovered from
f by formula (4.5). The immersion f is determined up to multiplication of the
position vector by a nonzero global constant.

Proof. Let UM ⊂ M be a simply connected open set such that f̃ maps UM injec-
tively to some affine chart on M. We shall now determine a scalar function r̃0 on
UM and locally construct the centro-affine immersion f with the desired properties
from r̃0 by (4.2). In order for f to be a valid centro-affine immersion, the function

r̃0 must be nonzero everywhere. In order for f to recover f̃ via formula (4.5), the
function r̃0 must satisfy the integrability condition for this equation. Resolving
(4.5) with respect to r̃0, we get

(4.6)

(
∂ log |r̃0|

∂x

)T

= −(I + pxT )−1p = −(1 + pTx)−1p.

This equation is integrable if and only if the right-hand side is the gradient of some
scalar function, which happens if and only if

(4.7)
∂

∂x

(
−p

1 + pTx

)
=

ppT −
(
(1 + pTx)I − pxT

)
∂p
∂x

(1 + pTx)2

is symmetric. But by (3.4) the expression (1+pT x)I−pxT

(1+pT x)2
∂p
∂x is the matrix of the

pullback Q̂ of the bilinear form Q on M , and its being symmetric is equivalent
to the immersion f̃ being Lagrangian. Thus a solution for log |r̃0| exists and is
determined up to an additive constant. It follows that r̃0 is nonzero and determined
up to a nonzero multiplicative constant.

This proves the assertion of the theorem for the set UM . But since M is simply
connected and can be covered with sets having the properties of UM , the centro-
affine immersion f can be constructed globally. �

We shall now consider the two-point function (3.1). A centro-affine immersion
f : M → Rn+1 defines a two-point function (· ; ·) : M ×M → R by

(4.8) (y; y′) = (f̃(y); f̃(y′)),

where f̃ : M → M is the Lagrangian immersion induced by f . Clearly this function
is a centro-affine invariant.

Theorem 4.3. The two-point function (· ; ·) defined by (4.8) is symmetric and
compatible with the centro-affine metric h, i.e.,

(4.9) (y; y) = 0,
∂(y; y′)

∂y′

∣∣∣∣
y′=y

= 0,
∂2(y; y′)

∂y′2

∣∣∣∣
y′=y

= h

for all y ∈ M .
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Proof. Symmetricity of (4.8) follows from the symmetricity of (3.1). Compatibility

with the affine metric follows from definition (3.3), the fact that f̃ is Lagrangian,
which implies that the pullback of the form Q on M equals the pseudo-Riemannian
metric ĝ, and Theorem 4.1 which states that ĝ = h. �

Function (4.8) allows to measure distances on centro-affine immersions with def-
inite centro-affine metric by much simpler means than the geodesic length, yet
staying compatible with the metric. In fact, since the affine metric is generated by
(4.8) via (4.9), the expression

√
|(y; y′)| can be considered as the natural distance

measure, while the geodesic length just integrates the behaviour of (4.8) on small
scales. It should be noted, however, that (4.8) does not generate a true distance
function.

4.2. Tangent and normal geodesic manifolds. Recall that by Corollary 3.2
at every point y ∈ M of a regular Lagrangian immersion f̃ : M → M there
exist tangent and normal totally geodesic Lagrangian submanifolds ST , SN . We
will consider them as immersions given by the identity inclusion. Let now f :
M → Rn+1 be a non-degenerate centro-affine immersion and f̃ the corresponding
regular Lagrangian immersion. By Theorem 4.2 the submanifolds ST , SN at a point
y ∈ M correspond, a priori at least locally, to families of centro-affine immersions
fT : ST → Rn+1, fN : SN → Rn+1. The members of each family are related by
homothety, and in each of these two families there is a distinguished representative
defined by fT (f̃(y)) = fN (f̃(y)) = f(y). The study of these induced centro-affine
immersions is the subject of this subsection. We will work with the same charts
and parameterizations as in the previous subsection.

Let f : M → Rn+1 be a non-degenerate centro-affine immersion, f̃ the corre-
sponding regular Lagrangian immersion, and ŷ ∈ M an arbitrary point. Pass to
an affine chart on M centered on ẑ = f̃(ŷ), introduce a corresponding coordinate
system in Rn+1, and define a chart on M by (4.1) on a neighbourhood UM ⊂ M
of ŷ. Then r̂ = f(ŷ) is given by the basis vector e0. Locally around ŷ the im-

mersion f̃ is defined by a function p = p(x). Denote the derivative ∂p
∂x at the

origin by B. Since f̃ is regular and Lagrangian, the matrix B is non-singular and
symmetric. By Lemma 3.1, the intersection of the affine chart on M with the to-
tally geodesic manifold ST is given by So

T = {z = (x,Bx) |x ∈ Rn, xTBx > −1},
and, by virtue of Lemma 2.1, the intersection of this chart with SN is given by
So
N = {z = (x,−Bx) |x ∈ Rn, xTBx < 1}.
The immersions fT : ST → Rn+1, fN : SN → Rn+1 can be represented by

non-zero scalar functions r̃0 in analogy with (4.2). Note that fT (ŷ) = fN (ŷ) =
f(ŷ) = e0, and hence both these functions satisfy r̃0(ŷ) = 1. By (4.6) we then get
log |r̃0| = −1

2 log(1± xTBx), or equivalently, (r̃0)2 ± (r̃0y)TB(r̃0y) = 1, where the
sign depends on whether we consider ST or SN . By (4.2) the position vectors r in
the images fT [ST ], fN [SN ] obey

rT
(
1 0
0 ±B

)
r = 1.

The matrices diag(1,±B) define two non-degenerate quadratic forms BT , BN on
Rn+1. The immersions fT , fN are then the connected components containing f(ŷ)
of the 1-level set of these forms, and they are actually embeddings. That fT , fN are
quadrics follows already by the Pick-Berwald theorem (see [15, Remark 4.3, p.53])
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from the fact that ST , SN are totally geodesic, and hence their second fundamental
form and the cubic form vanish.

Note that by (4.6) and (4.7) the position vectors of the immersion f itself satisfy
the relation r̃0 = 1− 1

2y
TBy +O(||y||3), hence (r̃0)−2 = 1 + yTBy +O(||y||3) and

rT
(
1 0
0 B

)
r = 1 +O(||y||3).

In the neighbourhood of ŷ = 0 the immersions f and fT thus coincide up to an
error term of third order. On the other hand, the arithmetic mean of the quadratic
forms BT , BN is a rank one form, such that the 1-level set of this form contains
the tangent plane to f [M ] at y = ŷ. This yields the following coordinate-free
characterization of the centro-affine immersions fT , fN induced by the tangential
and normal totally geodesic submanifolds.

Theorem 4.4. Let f : M → Rn+1 be a non-degenerate centro-affine immersion, let
f̃ : M → M be the corresponding regular Lagrangian immersion into the cross-ratio
manifold and let y ∈ M . Let ST , SN be the tangential and normal totally geodesic
Lagrangian submanifolds to f̃ [M ] at y, and let fT : ST → Rn+1, fN : SN →
Rn+1 be the unique centro-affine hypersurface immersions such that fT (f̃(y)) =

f(y), fN (f̃(y)) = f(y), and the Lagrangian immersions f̃T : ST → M, f̃N :
SN → M induced by fT , fN are the identity inclusions. Then the images of the
immersions fT , fN are the connected components containing f(y) of the level sets
WT = {r | rTBT r = 1}, WN = {r | rTBNr = 1} of two quadratic forms on Rn+1

and fT , fN are embeddings. The form BT is the unique quadratic form such that
the level set WT approximates the image f [M ] at y up to an error term of third
order, and BN is defined by the condition that the level set {r | 1

2r
T (BT +BN )r = 1}

contains the tangent plane to f [M ] at y.

Proof. It suffices to pass to an affine chart on M centered on f̃(y) and to a corre-
sponding chart on M and to apply above considerations. �

4.3. Velocity fields of surface flows. Let f : M → Rn+1 be a centro-affine
hypersurface immersion, embedded in a smooth 1-parametric family ft of hyper-
surface immersions such that f0 = f . To this family corresponds a 1-parametric
family f̃t : M → M of regular Lagrangian immersions, such that f̃0 = f̃ is the
Lagrangian immersion generated by f . In this subsection we show that the TM-

valued velocity field ξ̃ = ∂f̃t
∂t

∣∣∣
t=0

on M depends only on the initial immersion f and

the Rn+1-valued velocity field ξ = ∂ft
∂t |t=0, and compute this dependence explicitly.

We will then give a simple characterization of the TM-valued vector fields ξ̃ on M
which can be obtained in this manner.

Let ŷ ∈ M be an arbitrary point and let UM ⊂ M be a neighbourhood of ŷ
such that f [UM ] can be represented as the graph of a function F in an appropriate
basis of Rn+1. By choosing a corresponding chart on UM , we can assume that the
immersion f can be represented like f(y) = (F (y), yT )T for y ∈ UM . Pass to the
affine chart on M corresponding to the chosen basis of Rn+1. Then it is not hard
to see that the Lagrangian immersion f̃ is given by f̃(y) = z = (x, p) with

(4.10) x =
y

F (y)
, p = −

(
∂F

∂y

)T

.
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Lemma 4.1. Assume above notations. Let f : M → Rn+1 be a centro-affine
immersion given by f(y) = (F (y), yT )T , y ∈ UM ⊂ M , and let f̃ be the cor-
responding Lagrangian immersion given by (4.10). Let further {ft}t∈I⊂R be a
1-parametric smooth family of centro-affine immersions such that f0 = f , and
ξ = (ξ0, . . . , ξn)T = ∂ft

∂t |t=0 the corresponding velocity field. If f̃t is the correspond-

ing family of Lagrangian immersions in M, then the velocity field ξ̃ = ∂f̃t
∂t |t=0 is

given by

(4.11) ξ̃a =
ξa

F
− ξ0ya

F 2
, ξ̃A = − ∂ξ0

∂ya
+

∂ξb

∂ya
∂F

∂yb
.

Proof. Let us introduce functions F̄ : I × UM → R, ȳ : I × UM → Rn by ft(y) =

(F̄ (t, y), ȳT (t, y))T . Then ∂F̄ (t,y)
∂t |t=0 = ξ0(y), ∂ȳ(t,y)

∂y |t=0 = I, ∂ȳa(t,y)
∂t |t=0 = ξa(y).

By (4.10) we have f̃t(y) = z̄(t, y) = (x̄(t, y), p̄(t, y)), where

x̄(t, y) =
ȳ(t, y)

F̄ (t, y)
, p̄(t, y) = −

(
∂ȳ(t, y)

∂y

)−T (
∂F̄ (t, y)

∂y

)T

.

Evaluation of the expressions ξ̃a = ∂z̄a(t,y)
∂t

∣∣∣
t=0

, ξ̃A = ∂z̄A(t,y)
∂t

∣∣∣
t=0

then leads to the

formulas asserted in the lemma. �

Given a centro-affine immersion f : M → Rn+1 and the corresponding La-
grangian immersion f̃ : M → M, relation (4.11) defines a linear operator Vf :

ξ 7→ ξ̃, taking smooth Rn+1-valued vector fields on M to smooth TM-valued vec-
tor fields. If a Rn+1-valued vector field ζ on M is tangential to the immersion f ,
then it can be lifted to a vector field Z on M and its coordinate vector is given by

ζ = ∂f
∂yZ =

(
∂F
∂y

I

)
Z. The corresponding TM-valued vector field is then given by

ζ̃ = Vf (ζ) =

(
I
F − y ∂F

∂y

F 2

−∂2F
∂y2

)
Z =

∂z

∂y
Z = Z̃.

It follows that ζ̃ is a cross-section of T̃M , namely it is the image of Z under the
differential of f̃ . Denote the restriction of the operator Vf to the subspace of
tangential vector fields by Vt

f . Thus Vt
f is the canonical isomorphism between

Rn+1-valued vector fields which are tangent to the immersion f , and TM-valued
vector fields which are tangent to the immersion f̃ .

The operator Vf between Rn+1-valued and TM-valued vector fields on M can
thus be lifted to an operator relating equivalence classes modulo additive compo-
nents that are tangential to the immersions f and f̃ , respectively. This is nothing
else than the infinitesimal version of the relation between surface flows in Rn+1

and M, because the time derivative of the surface flow is determined only by the
corresponding equivalence class of the velocity field. Since the immersion f is
centro-affine, every Rn+1-valued vector field ξ on M can be decomposed into a
tangential component ζ and a radial component sf , which is proportional to the
position vector with proportionality factor s. The equivalence class of ξ can then
be characterized by the scalar field s.
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Theorem 4.5. Assume above notations. Let f : M → Rn+1 be a centro-affine
hypersurface immersion and let ξ be a Rn+1-valued vector field on M . Decompose
ξ into a tangential component ζ and a radial component sf , which is proportional
to the position vector f with coefficient s. Let f̃ : M → M be the corresponding
Lagrangian immersion and ξ̃ = Vf (ξ). Then the 1-form ωξ̃ given by Definition 2.3

equals 1
2ds. The kernel of the operator Vf is given by the radial vector fields of the

form λf , where the scalar λ is constant on every connected component of M .

Proof. Let us compute the vector field η̃ = Vf (sf) corresponding to the radial
component of ξ. By virtue of (4.11) and (4.10) we have

η̃ =

(
0

−(F − ∂F
∂y y)

(
∂s
∂y

)T) =

(
0

−F (1 + pTx)
(

∂x
∂y

)T (
∂s
∂x

)T)(4.12)

=

(
0

−(1 + pTx)(I + pxT )
(
∂s
∂x

)T) .

Let now X be a vector field on M . Denote ζ̃ = Vf (ζ). Then ω(ζ̃, X̃) = 0, because

both ζ̃, X̃ are tangential and the immersion f̃ is Lagrangian. Hence by virtue of
ξ̃ = η̃ + ζ̃ we have

ω(ξ̃, X̃) = ω(η̃, X̃) = ωαβ η̃
α ∂zβ

∂yΛ
XΛ =

1

2

(
QaB η̃

a ∂z
B

∂yΛ
−QbAη̃

A ∂zb

∂yΛ

)
XΛ,

where the last relation is due to (2.4). Inserting the value for η̃ and using (3.4), we
get

ω(ξ̃, X̃) =
1

2

∂s

∂x
(I + xpT )

(1 + pTx)I − xpT

1 + pTx

∂x

∂yΛ
XΛ =

1

2

∂s

∂yΛ
XΛ.

Hence ωξ̃ = 1
2ds.

Let us compute the kernel of Vf . For any vector field ξ in this kernel, ξ̃ = 0
and the form ωξ̃ = 1

2ds vanishes. Hence the radial component sf of ξ must be such
that s is constant on every connected component of M . Let now ξ = sf be a radial
vector field with such a scalar s. Since the operator Vt

f is injective, there exists a

unique tangent vector field ζ such that Vf (sf + ζ) = 0. But by (4.12) the relation
Vf (sf+ζ) = 0 is satisfied by the tangent field ζ = 0. This completes the proof. �

Corollary 4.2. Assume above notations. Let f : M → Rn+1 be a centro-affine
hypersurface immersion and let f̃ : M → M be the corresponding Lagrangian im-
mersion into the cross-ratio manifold. A smooth TM-valued vector field ξ̃ on M
is of the form (4.11) for some Rn+1-valued vector field ξ on M if and only if the
1-form ωξ̃ is exact.

Proof. Let first ξ be a Rn+1-valued vector field on M and set ξ̃ = Vf (ξ). By
Theorem 4.5 the corresponding form ωξ̃ is exact.

On the other hand, let ξ̃′ be a smooth TM-valued vector field on M such that
ωξ̃′ is exact. Then ωξ̃′ can be expressed as 1

2ds for some scalar field s. Define the

radial vector field ξ = sf and let ξ̃ = Vf (ξ). Let ωξ̃ be the corresponding 1-form
on M . By construction and by virtue of Theorem 4.5 we then have ωξ̃′ = ωξ̃,

and ω(ξ̃′ − ξ̃, X̃) = 0 for all cross-sections X̃ of T̃M . Since f̃ is Lagrangian, the

difference ζ̃ = ξ̃′ − ξ̃ must then also be a cross-section of T̃M , and hence has a
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preimage ζ = (Vt
f )

−1(ζ̃). Then Vf (ξ + ζ) = ξ̃ + ζ̃ = ξ̃′, which completes the
proof. �

Exchanging the roles of Rn+1 and its dual Rn+1, we can carry out the same
construction for centro-affine hypersurface immersions f∗ : M → Rn+1. Then
there exists a linear operator V∗

f taking Rn+1-valued vector fields ξ∗ on M to TM-

valued vector fields ξ̃∗ = V∗
f (ξ

∗). The restriction of V∗
f to tangent vector fields is

a canonical isomorphism between the spaces of vector fields which are tangent to
the immersions f∗ and f̃∗, respectively. The kernel of V∗

f consists of those radial
vector fields s∗f∗ such that the scalar coefficient s∗ is constant on every connected
component of M .

Corollary 4.3. Assume above notations and fix a volume form on Rn+1 which is
compatible with the affine structure. Let ft : M → Rn+1 be a smooth family of
non-degenerate centro-affine hypersurface immersions and let f∗

t : M → Rn+1 be

the image of ft under the conormal map. Let further ξ = ∂ft
∂t

∣∣∣
t=0

and ξ∗ =
∂f∗

t

∂t

∣∣∣
t=0

be the corresponding velocity fields at t = 0. Decompose these fields as ξ = sf0 + ζ,
ξ∗ = s∗f∗

0 +ζ∗ into radial and tangent components. Then the proportionality factors
at the position vectors obey the relation s+ s∗ = 0.

Proof. Clearly both families ft, f
∗
t give rise to the same family of Lagrangian im-

mersions, so f̃t = f̃∗
t . It follows that ξ̃ = ξ̃∗. However, the 1-forms ωξ̃, ωξ̃∗ have

opposite sign, because ω changes sign under the map (x, p) 7→ (p, x) (see Remark
3.1). By Theorem 4.5 it then follows that ds + ds∗ = 0 and hence s + s∗ is con-
stant on every connected component of M . The value of this constant on a given
connected component cannot depend on the vector field ξ, because it must remain
invariant under deformations of ξ whose support has a complement with nonempty
interior, and hence under any deformations of ξ. Since s∗ ≡ 0 whenever s ≡ 0, it
follows that s+ s∗ = 0. �

4.4. Affine normal flow and mean curvature flow. In this subsection we apply
the results of the previous subsection to determine the relation between the affine
normal vector field ξ of a non-degenerate centro-affine immersion f : M → Rn+1

and the mean curvature vector field ς of the corresponding regular Lagrangian
immersion f̃ : M → M.

The mean curvature flow of para-Kähler pseudo-Einstein manifolds was inves-
tigated in [5]. It was shown that this flow is well-defined for positive time up to
some final, possibly infinite, time T > 0, and that it preserves the property of the
surface to be Lagrangian. Theorem 4.2 then implies that for regular Lagrangian
immersions the mean curvature flow is, at least locally, generated by some surface
flow in Rn+1. By (2.12) and Corollary 4.2 we have the following result.

Corollary 4.4. Let f̃ : M → M be a regular Lagrangian immersion into the
cross-ratio manifold. Then the Tchebycheff form T of f̃ is exact.

We adopt the same notations, parametrization of M and representation of f
as in the previous subsection. Suppose that in some subset UM ⊂ M we have
f(y) = (F (y), yT )T for some smooth function F and for all y ∈ UM . Then f̃ is
given by (4.10). We assume that Rn+1 is endowed with a volume element det such
that det(e0, . . . , en) = 1. The affine normal field ξ = (ξ0, . . . , ξn)T = (ξ0, ξ̄T )T of f
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obeys the relations [15, (3.4), p.48]

ξ̄ = −
(
∂2F

∂y2

)−1(
∂ϕ

∂y

)T

, ξ0 =
∂F

∂y
ξ̄ + ϕ,

where ϕ =
∣∣∣det ∂2F

∂y2

∣∣∣ 1
n+2

.

Let us compute the corresponding form ωξ̃ using Theorem 4.5. We decompose
ξ into a tangential part and a radial part,

ξ =

(
∂F
∂y

I

)
Z + s

(
F
y

)
.

From this we get

(4.13) s =
ξ0 − ∂F

∂y ξ̄

F − ∂F
∂y y

=
ϕ

F − ∂F
∂y y

.

Note that the scalar field s is nowhere zero and remains invariant only under
equiaffine coordinate changes, i.e., those which preserve the volume element in
Rn+1. Under a general coordinate change, s will be multiplied with a nonzero con-
stant. From Theorem 4.5 it now follows that the coordinate vector of the form ωξ̃

is given by

2ωξ̃ =

(
∂s

∂y

)T

=
(F − ∂F

∂y y)
(

∂ϕ
∂y

)T
+ ϕ∂2F

∂y2 y

(F − ∂F
∂y y)

2
(4.14)

=

1
n+2 (F − ∂F

∂y y)⟨(
∂2F
∂y2 )

−1, ∂3F
∂y3 ⟩+ ∂2F

∂y2 y

(F − ∂F
∂y y)

2
ϕ,

where ⟨(∂
2F

∂y2 )
−1, ∂3F

∂y3 ⟩ denotes the vector obtained by contraction of the third de-

rivative of F with the inverse of the second.
On the other hand, let us compute the Tchebycheff form given by Definition 2.4.

Expression (2.13) becomes

(4.15)
∂yc

∂xb

[
−∂QLa

∂zL
QaK

∂pk

∂yc
+

∂

∂yc

(
∂pk

∂xd

)
∂xd

∂pk
+QaL

∂QLd

∂zd
∂xa

∂yc

]
.

Note that (2.13) expresses the Tchebycheff form in x-coordinates. To obtain its

expression in y-coordinates, one has to remove the factor ∂yc

∂xb . Differentiating (3.5),
we get

∂QAb

∂zc
= pc(δ

b
a+pax

b)+(1+pdx
d)paδ

b
c,

∂QAb

∂zC
= xc(δba+pax

b)+(1+pdx
d)δcax

b,

∂QAb

∂zb
= (n+ 1)(1 + pbx

b)pa,
∂QAb

∂zA
= (n+ 1)(1 + pax

a)xb.
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From (4.10) we get

∂x

∂y
= F−2

(
F · I − y

∂F

∂y

)
,

∂y

∂x
= F

(
I +

(
F − ∂F

∂y
y

)−1

y
∂F

∂y

)
,

∂p

∂x
= −F

∂2F

∂y2

(
I +

(
F − ∂F

∂y
y

)−1

y
∂F

∂y

)
,

∂x

∂p
= −F−2

(
F · I − y

∂F

∂y

)(
∂2F

∂y2

)−1

,

Q = F

(
F − ∂F

∂y
y

)−1
(
I +

(
F − ∂F

∂y
y

)−1

y
∂F

∂y

)T

.

Inserting these expressions into the brackets in (4.15), we obtain after some calcu-
lations

(4.16) T = (n+ 2)

(
F − ∂F

∂y

)−1
∂2F

∂y2
y +

⟨(
∂2F

∂y2

)−1

,
∂3F

∂y3

⟩
.

From (4.13),(4.14) it then follows that

(4.17) 2ωξ̃ =
s

n+ 2
T

and from (2.12),(4.14) that

(4.18) T = −2ως = (n+ 2)d log |s|.

This again proves Corollary 4.4 by providing an explicit expression of the Tcheby-
cheff form in terms of the affine normal field.

We shall now show that the velocity field of the Lagrangian surface flow in M
defined by the affine normal flow can be chosen to be pointwise proportional to the
mean curvature vector field, and construct a surface flow in Rn+1 which produces
the mean curvature flow in M.

Theorem 4.6. Let f : M → Rn+1 be a non-degenerate centro-affine immersion,
and let f̃ : M → M be the corresponding Lagrangian immersion. Let further
ξ : M → Rn+1 be the affine normal field of f with respect to some fixed volume
element in Rn+1 which is compatible with the affine structure, and let ξ̃ = Vf (ξ)
as defined in Subsection 4.3. Decompose ξ into a tangential component ζ and a
radial component sf , which is proportional to the position vector with proportion-
ality factor s. Then the normal component of ξ̃ is given by ξ̃N = − s

n+2 ς, where

ς is the mean curvature vector field of f̃ . Define further the Rn+1-valued vector
field ξ′ = −(n + 2)s−1 log |s|ξ and let ξ̃′ = Vf (ξ

′). Then the mean curvature flow

coincides with the surface flow induced in M by the velocity field ξ̃′.

Proof. Assume the notations of the theorem. Since ξ = ζ + sf , it follows that
ξ′ = −(n+ 2)s−1 log |s|ζ − (n+ 2) log |s|f , and the radial part of ξ′ is proportional
to the position vector with proportionality factor −(n + 2) log |s|. From Theorem
4.5 and relation (4.18) it then follows that ως = ωξ̃′ . Hence the velocity fields ς and
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ξ̃′ are identical modulo an additive tangential component, and the surface flows
induced by these velocity fields coincide.

From (4.17) and (2.12) we have ωξ̃ = − s
n+2ως , and hence the vector fields

ξ̃ and − s
n+2 ς coincide modulo an additive tangential component. In particular,

the normal component ξ̃N must be equal to − s
n+2 ς, because ς is a normal vector

field. �

Corollary 4.5. Assume above notations and fix a volume form on Rn+1 which
is compatible with the affine structure. Let f : M → Rn+1 be a non-degenerate
centro-affine hypersurface immersion, and let f∗ : M → Rn+1 be the image of
f under the conormal map. Let further ξ, ξ∗ be the corresponding affine normal
fields. Decompose these fields as ξ = sf + ζ, ξ∗ = s∗f∗ + ζ∗ into radial and
tangent components. Then the proportionality factors at the position vectors obey
the relation ss∗ = const.

Proof. By Theorem 4.6, the velocity fields ξ′ = −(n + 2)s−1 log |s|ξ, ξ∗′ = −(n +
2)(s∗)−1 log |s∗|ξ∗ are such that Vf (ξ

′),Vf (ξ
∗′) are in the same equivalence class

modulo additive tangential components, namely they are both equivalent to the
mean curvature vector field ς. By Theorem 4.5 and Remark 3.1, the differentials of
the proportionality factors −(n+2) log |s|, −(n+2) log |s∗| of the radial components
of the fields ξ′, ξ∗′ add up to zero, which yields the desired assertion. �

A direct calculation shows that in fact ss∗ = ±1, depending on the definition of
the affine normal field. Corollary 4.3 then implies that the velocity fields ξ′, ξ∗′ in
the above proof define surface flows in Rn+1,Rn+1, respectively, which are related
by the conormal map. The affine normal fields ξ, ξ∗, on the contrary, do not pos-
sess such a symmetry. This suggests that the surface flows defined by ξ′, ξ∗′ are
worthwhile objects to study in centro-affine geometry.

5. Conclusions

In this paper we constructed a special para-Kähler pseudo-Einstein manifold,
the cross-ratio manifold (Subsections 1.1 and 3.1). The name cross-ratio mani-
fold reflects that the para-Kähler structure is determined by the behaviour of the
projective cross-ratio on small scales. Manifolds which are isomorphic to the cross-
ratio manifold were studied before. In particular, one of the reduced para-complex
projective spaces Pn(B)/Z2 defined in [9] is in this isomorphism class (Theorem
3.1).

In [9] it is emphasized that a family of reduced para-complex projective spaces
can be naturally associated to every real vector space E. The same holds also for
the cross-ratio manifold, when the real projective spaces X = RPn, P = RPn in the
construction presented in Subsection 3.1 are replaced by the isomorphic projective
spaces P (E), P (E∗) over the (n+ 1)-dimensional real vector space E and its dual,
respectively. The cross-ratio manifold associated to E has an intimate relation with
the centro-affine geometry of E. This is the main result of the paper and is detailed
in Section 4. Namely, the Lagrangian immersions in the cross-ratio manifold ex-
haustively model the geometry of centro-affine hypersurface immersions in E. Every
Lagrangian immersion corresponds to a one-parametric family of centro-affine hy-
persurface immersions related by homothety, and every centro-affine hypersurface
immersion corresponds to a unique Lagrangian immersion (Subsection 4.1).
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In particular, the dual pair of Codazzi structures formed by the primal and dual
centro-affine connections and the centro-affine metric of a centro-affine hypersurface
immersion appear in a natural way on the corresponding Lagrangian immersion in
the cross-ratio manifold (Theorem 4.1). The cubic form of the centro-affine immer-
sion is proportional to the second fundamental form of the Lagrangian immersion
(see Lemma 2.4 for the exact relation), which explains why the behaviour of the
cubic form in many respects resembles that of the second fundamental form of
Euclidean geometry. In the same way, the Tchebycheff form of the centro-affine im-
mersion is proportional to the mean curvature vector of the Lagrangian immersion
(see eq. (2.12) for the exact relation), which yields a transparent characterization of
the proper affine hyperspheres as minimal Lagrangian immersions in the cross-ratio
manifold.

The close relation between the centro-affine hypersurface immersions in a real
vector space E and the Lagrangian immersions in the cross-ratio manifold con-
structed from E offers a two-fold advantage. Firstly, centro-affine geometry can
now be studied as a particular instance of Riemannian geometry, and methods
from Riemannian geometry can be applied to centro-affine geometry. Moreover,
the structure defined on the cross-ratio manifold by the projective cross-ratio (see
(3.1) and (3.2)) can be pulled back to centro-affine immersions, providing a new
centro-affine invariant (Theorem 4.3). Secondly, centro-affine geometry can serve
as an inspiration and a starting point for the emerging theory of Lagrangian sub-
manifolds in para-Kähler spaces. We have made some steps in this direction in the
companion paper [11].

In Subsection 3.2 we established a close link between totally geodesic submani-
folds of the cross-ratio manifold and the behaviour of the symplectic form on these
submanifolds. In particular, a geodesic submanifold is totally geodesic if and only
if it either possesses a certain product structure (this was already established in
[9]), or is isotropic with respect to the symplectic form. This implies that isotropic
submanifolds of the cross-ratio manifold can locally be well approximated by to-
tally geodesic submanifolds. The cubic form on Lagrangian submanifolds serves as
a measure of this deviation, which offers the possibility of obtaining results on the
global structure and topology of such manifolds if bounds on the cubic form are
known.

In Subsection 4.3 we investigated the relation between surface flows in E and in
the cross-ratio manifold associated to E. In Subsection 4.4 we concretized these
results to the relation between the affine normal flow in E and the mean curvature
flow in the cross-ratio manifold. In particular, we showed that the mean curvature
flow also corresponds to a surface flow in E (Theorem 4.6), and that this flow, in
contrast to the affine normal flow, can be chosen to be symmetric with respect to
the duality defined by the conormal map.

Graph immersions can be modeled in a similar way as centro-affine immersions.
In this case the role of the cross-ratio manifold is played by the flat para-Kähler
space. This will be the subject of a future publication.
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