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Abstract. The paper presents a geometric solution to the problem of ex-
tracting the geometric invariants of a quadric that is represented in parametric

rational quadratic triangular Bézier form. The starting point of the presented
method is the algorithm given in [3], that established whether a given rational
quadratic Bézier triangle describes a quadric, and in the affirmative case also
determined the quadric’s affine type; on this basis, the present algorithm ad-

ditionally determines the quadric’s axes, thus providing the coordinate system
with respect to which the patch’s underlying quadric has normal form.

1. Introduction

Both, rational triangular parametric Bézier surfaces as well as quadric surfaces
are important primitives in Computer Aided Geometric Design applications, see,
e.g., [11].

On the one hand, among n–sided parametric surface patches [12, 24] the most
promising and flexible shape for the description of complex geometries seems to be
the triangular one, see, e.g., [13]. Rational triangular Bézier patches are more flex-
ible than polynomial Bézier triangles and contain the latter ones as special cases.
The higher flexibility is due to the so–called weights, which are additional design
elements; see e.g. [1, 2, 22] for a geometrical interpretation of these weights.
On the other hand, quadric surfaces, i.e., spheres, cones, cylinders, ellipsoids, hy-
perboloids, and paraboloids, are very popular in applications such as mechanical
engineering and architecture due to their appealing and practical shapes as well as
their simple implicit and parametric representations.

In order to benefit from the advantages of both of the above mentioned sur-
face representations several authors have addressed the problem of relating quadric
surfaces and rational parametric Bézier triangles. It turned out, that the lowest
degree for a rational triangular parametric Bézier surface to describe a quadric is
two. These quadratic rational Bézier triangles in general describe so–called Steiner
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surfaces, which are algebraic surfaces of order four that comprise the second order
quadric surfaces, see, e.g., [21, 19, 10, 9].

Unlike the curve case, where there is a one–to–one correspondence between ra-
tional parametric curves of degree two and second order algebraic curves or conic
section, see, e.g, [11], in the surface case the control points and the weights of
the rational quadratic Bézier triangle thus have to satisfy certain conditions for
the patch to represent a quadric. One necessary condition for a rational quadratic
Bézier triangle to describe a non–degenerate quadric consists in its boundary conics
meeting in one point, the center of the stereographic projection that is reciprocal
to the parametrisation. All existing criteria, see [7, 8, 18, 14, 17, 15, 16] are of
theoretical nature or involve implicitization of the quadric, see [21].

An easy, practical and geometry driven algorithm for the problem of determining
whether a given rational triangular quadratic Bézier patch lies on a quadric surface
or not has been presented in [3], and has thoroughly been investigated from the
numerical point of view in [4]. The decision of whether the given patch represents
a quadric or not is based on the theoretical classification [10] of rational triangular
Bézier surfaces of degree two. Once a given patch is found to describe a quadric,
the quadric’s affine type is established. First, the Gaussian curvature is used for a
rough classification yielding the projective type of the quadric. Next, the type of
the quadric’s intersection with the plane at infinity helps to determine the desired
affine type.

The purpose of the present article is to complete the algorithm from [3] by, in the
case of a quadric patch, additionally providing the quadric’s axes. In this way it is
thus possible to first test whether a given rational quadratic triangular Bézier patch
represents a quadric, and then to step by step geometrically recover its geometric
invariants that allow to fully describe the patch’s underlying quadric.

The paper is organized as follows. In section 2 we formulate the problem and
summarize the results from [3] as far as they are necessary for the extraction of the
quadric’s geometric invariants. Then, in section 3, based on a result from classical
geometry, we determine the axes directions of the underlying quadric. On this
basis, section 4 is then devoted to determining the position of the origin o such
that, in the coordinate system given by o and the three axes directions, the quadric
has normal form. In section 5 we illustrate the algorithm for several significant
examples, and we conclude in section 6.

2. Formulation of the problem and preliminaries

We are given a non–planar rational triangular Bézier patch of degree 2

(2.1) B : x(u, v, w) =

∑
i+j+k=2

wijkbijkB
2
ijk(u, v, w)∑

i+j+k=2

wijkB
2
ijk(u, v, w)

∈ IR3

where (u, v, w) are barycentric coordinates (u + v + w = 1), and B2
ijk(u, v, w) =

2!/(i!j!k!)uivjwk are Bernstein polynomials. bijk = (b1ijk, b
2
ijk, b

3
ijk)

T ∈ IR3 are the

control points and wijk ∈ IR+ \ {0} the weights. In the remainder of this paper
the normalization u+ v +w = 1 may be omitted if necessary, the coordinates thus
being interpreted as homogeneous (complex) coordinates (u : v : w) of the entire
projective plane.



GEOMETRIC INVARIANTS OF PARAMETRIC TRIANGULAR QUADRIC PATCHES 65

In general, such a patch describes an algebraic surface of order four, the so–
called Steiner surface. These Steiner surfaces comprise quadric surfaces for special
configurations of the control points and the weights, see [3] and references cited
therein. In [3] a simple and practical algorithm has been presented in order to
decide, from the given parametrisation (2.1), whether the patch describes a quadric
or not, and if so, to determine the quadric’s affine type. For a patch, that we know
to lie on a quadric, a natural problem then consists in determining the quadric’s axes
directions d1,d2,d3 as well as the position of the origin o such that, with respect
to the coordinate system {o;d1,d2,d3}, the underlying quadric is in canonical
position (see [23] for a list of the canonical or normal forms of quadrics in Euclidean
3–space.) In order to solve the problem of determining the quadric’s axes directions
and the appropriate position of the origin from the given parametrisation (2.1) we
will base our considerations on the classification presented in [3]. We thus suppose
the parameter representation (2.1), which may be written as

(2.2) x(u, v, w) =
(x1(u, v, w)

x0(u, v, w)
,
x2(u, v, w)

x0(u, v, w)
,
x3(u, v, w)

x0(u, v, w)

)T

,

to desribe a quadric surface Q. It may be interpreted as a rational quadratic map
from the uvw–parameter plane ϵ onto the quadric Q, and thus as the inverse of a
stereographic projection σ of Q onto ϵ (see [3]). According to [18], only in the case
of degenerate quadrics (Gaussian curvature K = 0) there exist exceptional rational
quadratic Bézier patches which do not define a stereographic projection; this case
is omitted here.

In the case of a non–degenerate quadric (Gaussian curvature K ̸= 0) the stere-
ographic projection σ is characterized by the projection center z ∈ Q and two
degeneration points or base points p1,p2. Their connecting line is referred to as
degeneration line or base line L12 of σ and is obtained as intersection of the tangent
plane Tz of Q in z with ϵ. p1 and p2 lie on the intersection lines t1 and t2 of Q and
Tz respectively. With exception of the degeneration points p1,p2 and the projec-
tion center z the map σ establishes a one–to–one correspondence between points on
the quadric Q and points in the parameter plane ϵ. Analytically, the exceptional
role of the points pi(ui, vi, wi) ∈ ϵ (i = 1, 2) is equivalent to the fact, that all four
conic sections xj(u, v, w) = 0, j = 0, 1, 2, 3 intersect in the points p1,p2.

The situation in the case of a degenerate quadric Q (Gaussian curvature K = 0)
is obtained from the above one by simply considering that the tangent plane Tz

in z (̸= singularity of Q) intersects Q in a double line t and thus the above two
degeneration points p1,p2 become one double point p := t∩ϵ and the degeneration
line L touches Q in p.

For the following considerations it is sometimes convenient to projectively expand
Euclidean 3–space into projective 3–space IP 3. By doing so a point x(x, y, z) will be
represented by homogeneous coordinatesX(x0, x1, x2, x3), and the relation between
the affine and the projective coordinates is given by

(2.3) x =
x1

x0
, y =

x2

x0
, z =

x3

x0

for x0 ̸= 0. The points with x0 = 0 form a plane, the so–called plane at infinity,
which we will refer to by η. Thus, projective 3–space IP 3 is obtained from Euclidean
3–space by adding η to it. We denote points and directions in Euclidean 3–space
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by bold face letters p,q,y,d, . . ., and points in projective 3–space by capital bold
face letters P,Q,X,Y, . . ..

Depending on the position of the plane at infinity η with respect to the quadric
Q (η/Q) and with respect to the center z of the stereographic projection (η/z) an
affine classification of the quadric Q has been derived in [3]. It depends on the type
of the stereographic projection σ(kη) of the quadric’s conic at infinity kη = Q ∩ η,
which, being a conic itself, is given by the equation

(2.4) σ(kη) : x0(u, v, w) =
∑

i+j+k=2

wijkB
2
ijk(u, v, w) = 0.

This classification is summarized in tables 1 and 2. Table 1 contains all possible
cases for non–degenerate quadrics, i.e., ellipsoids, hyperboloids and paraboloids,
whereas table 2 displays all possible configurations for degenerate quadrics, i.e.,
cones and cylinders. In table 1, last column, K denotes the Gaussian curvature
whose sign is the same in all points of the quadric. In table 2, s denotes the vertex
of the cone or cylinder, where s /∈ ϵ, and η/s stands for η’s position with respect to
s.

Based on this affine classification in the following section we solve the problem of
determining the axes directions of the quadric Q given in its parameter form (2.1).

3. Determination of the principal axes directions

3.1. General situation. The solution of the problem of determining the axes di-
rections of a quadric given in parameter form will be based on a result from classical
geometry. We thus first provide the necessary elements for a correct understanding
of the situation.

As we have seen in the previous section the plane at infinity η intersects the
quadric Q in a conic section, the quadric’s conic at infinity, referred to as kη. The
plane at infinity η also contains the so–called absolute conic

(3.1) ka : x2
1 + x2

2 + x2
3 = 0, x0 = 0,

which is entirely imaginary.
Given four non–colinear points P1,P2,P3,P4 on a conic section c we may con-

struct the intersection points I1 = P1P2 ∩ P3P4, I2 = P1P3 ∩ P2P4, I3 =
P1P4 ∩ P2P3 of the diagonals of the quadrilateral P1P2P3P4. The points Ik
and Ij , k ̸= j ∈ {1, 2, 3} are so–called conjugate points with respect to the conic c.
Ik is called pole of the line IjIl (k ̸= j, k ̸= l, j ̸= l) with respect to c, and IjIl is
the polar (line) of the point Ik with respect to c. The triangle ∆IjIkIl is called a
polar triangle with respect to c. For further information on the theory of poles and
polars with respect to conic sections see, e.g., [19, 23].

Based on these preliminaries we thus recall the following theorem from classical
projective geometry.

Theorem 3.1. The task of determining the principal axes of a quadric Q is equiv-
alent to determining the common polar triangle of the quadric’s conic at infinity kη
and the absolute conic ka. The corner points of this triangle determine the principal
axes directions of Q.

Figure 1 illustrates the possible configurations in the plane at infinity. In the
general situation (Figure 1, left) Q’s conic at infinity kη and the absolute conic ka
have four distinct intersection points A = (0,a), Ā = (0, ā),B = (0,b), B̄ = (0, b̄),
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case η/Q η/z kη σ(kη) affine type ofQ

1
not

tangent
plane

z /∈ η

non–
degenerate

real/imaginary
conic section

non–
degenerate

real/imaginary
conic section

through
p1,p2

hyperboloid
of one sheet

(K < 0)/
ellipsoid
(K > 0)

2
not

tangent
plane

z ∈ η

non–
degenerate
real conic
section

real pair of
intersecting
lines where
L12 ⊂ σ(kη)
and singular

point
/∈ {p1,p2}

hyperboloid
of one sheet

(K < 0) or
of two sheets

(K > 0)

3
tangent
plane

z /∈ η

real/imaginary
pair of

intersecting
lines

real/imaginary
pair of

intersecting
lines l1, l2
where

p1 ∈ l1 \ l2,
p2 ∈ l2 \ l1

hyperbolic

(K < 0)/
elliptic
(K > 0)

paraboloid

4
tangent
plane

z ∈ η,
η ̸= Tz

real/imaginary
pair of

intersecting
lines

real/imaginary
pair of

intersecting
lines where
L12 ⊂ σ(kη)
and singular

point
∈ {p1,p2}

hyperbolic

(K < 0)/
elliptic
(K > 0)

paraboloid

5
tangent
plane

z ∈ η,
η = Tz

real/imaginary
pair of

intersecting
lines t1, t2

double line
L12

hyperbolic

(K < 0)/
elliptic
(K > 0)

paraboloid
Table 1. Non–degenerate quadric

where a, ā and b, b̄ denote pairs of conjugate complex triples respectively. In this
case, the common polar triangle of kη and ka is given by the intersection points
D1 = (0,d1),D2 = (0,d2),D3 = (0,d3) of the three pairs of diagonals of the
quadrilateral AĀBB̄. The directions of Q’s principal axes are then d1,d2,d3.

Figure 1, right, illustrates the situation of a quadric of revolution. In this case
the conics kη and ka touch each other in two different points A(0,a) = B(0,b) and
Ā(0, ā) = B̄(0, b̄), and their common tangents intersect in a point D(0,d). d thus
yields the direction of Q’s rotation axis.



68 GUDRUN ALBRECHT

case η/Q η/z η/s kη σ(kη) affine type ofQ

6
not

tangent
plane

z /∈ η s /∈ η

non–
degenerate
real conic
section

non–
degenerate
real conic
section

touching L in
p

cone

7
not

tangent
plane

z /∈ η s ∈ η

real/
imaginary
pair of

intersecting
lines

real/imaginary
pair of

intersecting
lines with

singular point
p and

L ̸⊂ σ(kη)

hyperbolic /
elliptic
cylinder

8
not

tangent
plane

z ∈ η s ∈ η
real pair of
intersecting

lines

real pair of
intersecting
lines with

singular point
p and

L ⊂ σ(kη)

hyperbolic

cylinder

9
not

tangent
plane

z ∈ η s /∈ η

non–
degenerate
real conic
section

real pair of
intersecting
lines with

singular point
̸= p and
L ⊂ σ(kη)

cone

10
tangent
plane

z /∈ η s ∈ η double line

double line

̸= L through
p

parabolic
cylinder

11 tangent
plane

z ∈ η s ∈ η double line t double line L
parabolic
cylinder

Table 2. Degenerate quadric

The first problem on the way of determining Q’s principal axes directions thus
consists in answering the question of how to obtain the intersection points a, ā and
b, b̄ of the conics kη and ka in the plane at infinity. All we have in order to solve
this task is Q’s rational quadratic parameter representation (2.1), i.e., the quadric’s
stereographic projection. We wish to intersect kη, the quadric’s conic at infinity
(kη = Q∩ η) and ka, the absolute conic which may be obtained by intersecting the
minimal cone

(3.2) CM : x2
1 + x2

2 + x2
3 = 0

with the plane at infinity

η : x0 = 0,
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kη
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d
1
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kηka

a=b

d

a=b

Figure 1. Situation in the plane at infinity. Left: general case,
∆d1d2d3 is the common polar triangle of kη and ka. Right: case
of a quadric of revolution.

i.e., ka = CM ∩η. Let γ be the intersection of the minimal cone CM and the quadric
Q (γ = CM ∩Q), thus being an algebraic space curve of order four. It then holds

(3.3) ka ∩ kη = γ ∩ η = γ ∩ kη.

We know the stereographic projections

σ(kη) : x0(u, v, w) = 0,

and

(3.4) σ(γ) : x2
1(u, v, w) + x2

2(u, v, w) + x2
3(u, v, w) = 0,

where σ(kη) is a conic section in the uvw–plane ϵ, and σ(γ) is an algebraic curve of
order four in ϵ. By Bézout’s theorem the intersection of σ(γ) and σ(kη) thus consists
of eight points, algebraically counted, whereas the desired intersection ka ∩ kη only
consists of four points, algebraically counted. In order to solve this discrepancy
we consider the following. The fourth order algebraic space curve γ intersects the
tangent plane Tz of Q in the center z of the stereographic projection in four points.
The stereographic projection of these four points yield the degeneration or base
points p1,p2 of the quadric1, the quadric’s base points are therefore contained in
σ(γ) as well as in σ(kη) thus being part of the intersection σ(γ) ∩ σ(kη), and in
general counting with multiplicity four.

This yields

(3.5) σ(γ) ∩ σ(kη) = {p1,p2, σ(a), σ(ā), σ(b), σ(b̄)}.

On this basis we may now proceed to practically determine σ(a), σ(ā), σ(b), σ(b̄),
and from this a, ā,b, b̄, and thus d1, d2, d3.

1For a degenerate quadric p1 = p2, see page 65.
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Figure 2. Schematic illustration of cases 1–5 from Table 1. First
row left: case 1, first row, right: case 2, second row, left: case 3,
second row, right: case 4, third row: case 5.

3.2. Practical determination of the axes directions. We will now treat the
different configurations induced by the 11 cases of tables 1 and 2. They are schema-
tized in Figures 2 and 3 for general quadrics. The situation for quadrics of revolution
differs only in the plane at infinity according to Figure 1, right. The four desired
points σ(a), σ(ā), σ(b), σ(b̄) ∈ ϵ and their respective preimages a, ā,b, b̄ ∈ η are
marked by hollow circles.
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Figure 3. Schematic illustration of cases 6–11 from Table 2. First
row left: case 6, first row, right: case 7, second row, left: case 8,
second row, right: case 9, third row, left: case 10, third row, right:
case 11.

In order to practically determine the points σ(a), σ(ā), σ(b), σ(b̄) we first calcu-
late the two base points pi(ui, vi, wi), i = 1, 2 by solving2

x0(u, v, w) = x1(u, v, w) = x2(u, v, w) = x3(u, v, w) = 0.

2These solutions always exist due to the special geometry of rational quadratic parametrisations

of quadrics, see, e.g., [21].



72 GUDRUN ALBRECHT

By considering the fact that these base points count with multiplicity four in the
intersection of σ(kη) and σ(γ) (see section 3.1), in general, we thus obtain four
additional solutions (ui, vi, wi), i = 3, 4, 5, 6, which yield the coordinates

(3.6) (x1(ui, vi, wi), x2(ui, vi, wi), x3(ui, vi, wi))

of the desired intersection points a, ā,b, b̄ of kη and γ in the plane at infinity x0 = 0.
In the exceptional situation that part of the intersection points between ka and

kη lie in the quadric’s tangent plane in z, the multiplicity of the base points on
the intersection σ(γ)∩ σ(kη) is higher than four, and in this case we cannot obtain
the coordinates of a, ā,b, b̄ as described above. This latter exceptional situation
happens only in the following very special settings (see tables 1,2 and figures 2, 3):

(i) cases 4 and 5, i.e., if Q is a paraboloid and z ∈ η 3

(ii) case 1, if ka ∩ kη ∩ Tz ̸= ∅; this is possible only if Q is an ellipsoid since
ka ∩ kη consists of imaginary points.

(iii) case 3, if ka∩kη ∩Tz ̸= ∅; this is possible only if Q is an elliptic paraboloid.
(iv) case 8, i.e., if Q is a hyperbolic cylinder and z ∈ η.
(v) case 11, i.e., if Q is a parabolic cylinder and z ∈ η.

These exceptional cases, where, algebraically speaking, the multiplicity of the quadric’s
base points in the intersection σ(γ)∩σ(kη) is higher than four, may easily be reduced
to one of the general cases (multiplicity of quadric’s base points in σ(γ) ∩ σ(kη) is
equal to four), by considering another surface patch on the same quadric Q obtained
with respect to a different stereographic projection center z′.

In the exceptional situations (i), (iv), (v), i.e., in the cases 4, 5, 8 and 11, we
may, e.g., choose (by using (2.1))

(3.7) z′ = x(
1

3
,
1

3
,
1

3
)

as finite projection center, since we suppose the triangular patch not to contain
poles within the parameter domain 0 ≤ u, v, w ≤ 1, u+ v + w = 1.

In the exceptional situations (ii) and (iii) of cases 1 and 3 we encounter a prob-
lem in the case where the center z of the stereographic projection lies on one of
eight specific (complex) lines on the quadric, which are the intersection lines of the
tangent planes in the four points ka ∩kη with the quadric. There exist two families
of (complex) lines on the quadric, i.e., a ”double” infinity of lines, making these
exceptional situations extremely rare! In order to be sure to avoid this very rare
setting we consider a parameter curve on the quadric, e.g., the conic x( 13 , v,

2
3 − v),

which intersects each of the eight lines exactly once. As long as necessary we it-
eratively generate vi = vi−1 + ∆v, (i = 1, 2, 3, . . .) and thus z′i = x( 13 , vi,

2
3 − vi),

(i = 0, 1, 2, 3, . . .) for a certain starting value v0, e.g., v0 = 1
3 , and a chosen step size

∆v. In the worst case (if z′i for i = 0, 1, . . . , 7 have not generated a non–exceptional
patch) z′8 guarantees the parametrisation to be non–exceptional. But in practice,
should the already very unlikely exceptional setting occur where z lies on one of
the above eight lines, then the first iteration step should remedy.

Once the new projection center z′ has been chosen we generate a new patch on
the quadric having the same border points b200, b020, b002 and border weights,
but different interior control points and different interior weights. For simplicity
we consider a patch in standard form (corner weights =1) and denote the corner

3Algebraically this is the case if the paraboloid is given by a polynomial parametrisation, i.e.,

x0(u, v, w) = 1.
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points b200, b020, and b002 by bC
0 , b

C
1 , and bC

2 respectively. Let τi be the tangent
plane of the quadric in bC

i and e0 = τ1∩ τ2, e1 = τ0∩ τ2, e2 = τ0∩ τ1 the respective
intersection lines. We then consider the planes

ϵ0 = plane(z′,bC
1 ,b

C
2 )

ϵ1 = plane(z′,bC
0 ,b

C
2 )

ϵ2 = plane(z′,bC
0 ,b

C
1 )

generated by the new projection center and a pair of corner points. The new interior
control point b′I

i ∈ ei (i = 0, 1, 2) is then obtained as intersection of the plane ϵi
and the line ei (b

′I
i ϵi∩ ∈ ei) calculated as solution of a 3×3 linear equation system.

According to [20] the weight w′I
i (which can become negative) in the point b′I

i is
calculated from

(3.8) w′I
i (b′I

i − z′) = qi − z′ ,

where

q0 = z′b′I
0 ∩ bC

1 b
C
2 ,

q1 = z′b′I
1 ∩ bC

0 b
C
2 ,

q2 = z′b′I
2 ∩ bC

0 b
C
1 .

Remark 3.1. The calculations of the new interior control points and weights may be
avoided in the situations (i), (iv) and (v) if the intersection point p of the tangent
planes τi (p = τ0 ∩ τ1 ∩ τ2) does not lie in the plane at infinity η. Let ei denote the
intersection points of the line ei and the plane π generated by the corner points of
the patch, and let bI

i = λip + µiei be the old interior control points (i = 0, 1, 2).
Then, according to [5, 6] the so–called harmonic complement of the given quadric
patch is obtained by using as new interior control points

b′I
i = −λip+ µiei

and corresponding weights. This choice guarantees the associated stereographic
projection center z′ not to lie in the plane at infinity η (supposing that z ∈ η and
p /∈ η). This is due to the fact that the points p, z, and z′ are colinear. This may be
shown by appropriately combining the constructions from [6] and [20]. Furthermore
the points (z′, z,p, s), where s = pz ∩ π, inherit the harmonic position from the
harmonic position of the points (b′I

i ,b
I
i ,p, ei), (i = 0, 1, 2).

We may thus suppose our configuration to be such that of the eight intersection
points σ(γ)∩σ(kη), algebraically counted, four are the base points of Q, and the re-
maining four are the stereographic projections of the desired points a, ā,b, b̄. Once
we have calculated the (u, v, w)–values of σ(a), σ(ā), σ(b), σ(b̄) we then substitute
them into the numerator of the quadric’s parameter representation and obtain the
coordinates (3.6) of the four points a, ā,b, b̄ in the plane at infinity.

We distinguish the following cases:

Case 1: a ̸= b (see figure 1, left)
In this case we have two pairs of conjugate complex points (a, ā) and

(b, b̄) which form a non-degenerate quadrilateral in the plane at infinity.
We then calculate the intersection points d1,d2,d3 of the diagonals of this
quadrilateral a, ā,b, b̄, and thus know the directions of Q’s principal axes.
Practically, this may be accomplished in the following way. The connecting
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line of the two points p(p1, p2, p3) and q(q1, q2, q3) in the plane at infinity
(i.e., p0 = q0 = 0) has the representation

(3.9) lpq : lpq · x = 0, x0 = 0,

where x = (x1, x2, x3) and lpq = p∧q (”∧” stands for the vector product).
In this way we determine the six lines laā, lbb̄, lab, lāb̄, lab̄, lāb, and the
intersection points of the three pairs of opposite diagonals as

(3.10) d1 = laā ∧ lbb̄ , d2 = lab ∧ lāb̄ , d3 = lab̄ ∧ lāb .

An interesting side product of these considerations is the following. Since
circles are exactly those conics containing two points of the absolute conic
ka all the planes containing any two of the points a, ā,b, b̄ are candidates
for carrying circular sections of the quadric Q, but only those containing
(a, ā) respectively (b, b̄) yield real circles. We thus have

Proposition 3.1. If the quadric Q is an ellipsoid, a hyperboloid of one
sheet, a hyperboloid of two sheets, an elliptic paraboloid, a cone or an elliptic
cylinder the two systems of parallel planes yielding circular sections of Q
are given by all the planes having either laā or lbb̄ as line at infinity.

Case 2: a = b and kη is not a double line (see figure 1, right)
We are in the case of a quadric of revolution, and we have one pair of

conjugate complex points (a, ā) in the plane at infinity. In this case there
exists only one system of parallel planes yielding circular sections on Q,
namely the planes that are perpendicular to the direction of the axis of
rotation. They all contain the points a and ā in the plane at infinity, and
thus satisfy an equation of the form

λx0 + laā · x = 0 , λ ∈ IR

where x = (x1, x2, x3) and laā = a ∧ ā. laā thus provides the direction
of Q’s axis of rotation. The remaining two directions may be chosen as
arbitrary orthogonal directions within the plane laā · x = 0.

Case 3: a = b and kη is a double line (case 10)
We are in the case of a parabolic cylinder, and we have one pair of

conjugate complex points (a, ā) in the plane at infinity. An arbitrary plane
through the line kη is given by

(3.11) πλ : λx0 + laā · x = 0 for λ ∈ IR,

where x = (x1, x2, x3) and laā = a ∧ ā. The planes πλ are parallel planes
all having the same normal vector laā, which thus yields one of the desired
axis directions, d1 = laā. The intersection line πλ ∩ Q yields a generating
line of Q and thus another axis direction. Practically, we may obtain this
axis direction by inserting Q’s parameter representation into πλ’s implicit
equation (3.11), and thus obtaining a second order equation of the form

fλ(u, v, w) = l(u, v, w) ·mλ(u, v, w) = 0,

where l(u, v, w),mλ(u, v, w) are linear factors representing the stereographic
projections of the parabolic cylinders’ line at infinity (l(u, v, w) = 0) and
one proper generating line (mλ(u, v, w) = 0), respectively. We thus map
two of the points of mλ(u, v, w) = 0 back onto Q obtaining pλ,qλ ∈ Q, and
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their connecting vector d2 = pλ−qλ yields the desired axis direction. The
remaining axis direction d3 is thus obtained as d3 = d1 ∧ d2.

4

Case 4: kη = ka
In this case the quadric Q is a sphere and no intersection points a, ā,b, b̄

exist. This case has to be tested upfront. Practically, this may be done by
checking if the sum of the squares of the coefficients of Sylvester’s resultant
of the equations (2.4) and (3.4) is smaller then a given tolerance. In this
case three arbitrary pairwise orthogonal directions may be chosen as axes
of the sphere Q.

4. Determination of the origin

In order to determine the origin such that the quadric Q is in canonical position
with respect to the resulting coordinate system, we will separately consider the
class of central quadrics (i.e., ellipsoids, hyperboloids of one and two sheets), the
class of paraboloids (i.e., elliptic and hyperbolic paraboloids), and the class of cones
and cylinders (i.e., cones, and elliptic, hyperbolic and parabolic cylinders).

4.1. Central quadrics. In the case of the central quadrics the desired origin o
coincides with the center of the quadric, and it may be obtained as the intersection
of the quadric’s symmetry planes. Since we already know the axes directions of the
quadric Q, it is sufficient to determine one quadric point in each symmetry plane
in order to analytically obtain these planes. Let πi be the symmetry plane of Q
that is orthogonal to the axis direction di, and let ci be the intersection curve of πi

and Q (ci = πi ∩Q). ci is a conic section, the so–called silhouette conic of Q with
respect to the direction di, and it is characterized by the fact that Q’s normals
along ci are perpendicular to di. If we write the parameter representation (2.1) as

x(u, v, w) =
p(u, v)

ρ(u, v)
,

where w = 1− u− v, then Q’s normal vector is parallel to

n(u, v) = ρ(u, v)pu(u, v)∧pv(u, v)−ρv(u, v)pu(u, v)∧p(u, v)−ρu(u, v)p(u, v)∧pv(u, v) ,

where pu(u, v), pv(u, v) respectively ρu(u, v), ρv(u, v)denote p’s respectively ρ’s
partial derivatives. It turns out that the components of n(u, v) are cubic poly-
nomials on (u, v). In the (u, v)–parameter plane ϵ the silhouette conic ci is thus
characterized by the cubic equation

(4.1) di · n(u, v) = 0.

ci’s stereographic projection σ(ci) is either a straight line or a conic section in ϵ
depending on whether the projection center z lies on ci (z ∈ ci) or not (z /∈ ci).
The cubic equation (4.1) decomposes into a quadratic component for σ(ci) and a
linear one for the base line, and if z ∈ ci equation (4.1) factorizes into the doubly
counting base line and linear component describing the line σ(ci).

All we need for our purpose of determining the quadric’s symmetry planes is
one point on ci. We may obtain such a point by intersecting an arbitrary line in
ϵ with the cubic curve (4.1). Of the three resulting intersection points we choose
one that is not contained in the quadric’s base line and calculate its image point on

4This line of reasoning even permits to determine the position of the origin pλ with λ satisfying
nλ · laā = 0, where nλ is a normal vector of Q in pλ.
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the quadric by using the parameter representation (2.1). Together with the known
axes directions this yields the three symmetry planes of the central quadric Q and
their intersection point is the desired origin o. With respect to {o;d1,d2,d3} the
quadric Q from (2.1) has canonical form.

4.2. Paraboloids, cones and cylinders. In the case of a paraboloid, a cone or
a cylinder two of the symmetry planes may be obtained in the same way as for
central quadrics, see section 4.1. The only difference consists in the fact that, here,
in some cases the base line might lie in the plane at infinity. If this is the case,
equation (4.1) is of degree two, and directly describes σ(ci).

The intersection of the two symmetry planes yields one axis of the quadric, say
d1. If Q is a paraboloid or a cone we then intersect d1 with Q and obtain the desired
origin o. If Q is a cylinder we arbitrarily choose the origin o on d1. The remaining
two axes d2, d3 are then obtained by simply attaching the already known remaining
two axes’ directions d2,d3 in the origin o. Thus the quadric Q has canonical form
with respect to the coordinate system {o;d1,d2,d3}.

5. Examples

In this section we illustrate the method of determining the coordinate system
with respect to which the quadric carrying the given triangular parametric quadric
patch has canonical position. The presented algorithm has been implemented in
the computer algebra system Maple, whose procedures are used for the performed
tasks such as equation solving, and has been tested for numerous examples. The
most significant ones, illustrating the main aspects of the method are listed below.
The figures have been produced with the program Geomview.

Without loss of generality we suppose the rational triangular quadric patch to
be given in standard form (i.e., w002 = w020 = w200 = 1). For every example we
thus give the control points and the inner weights as input data. As a result of the
algorithm detailed in [3] we first obtain the affine type of the underlying quadric.
On this basis we then apply the algorithm explained in the previous sections and
display and interpret the numerical results for the

• base points,
• intersection points σ(kη) ∩ σ(γ),
• points a, ā,b, b̄ in the plane at infinity,
• axis directions d1,d2,d3,
• curves di · n(u, v) = 0 (see (4.1)),
• origin.

In order to verify the numerical results, in the following examples we use, without
loss of generality, triangular parametric patches on quadrics that are in canonical
position with respect to the given coordinate system. The algorithm thus has
to yield this original coordinate system {o(0, 0, 0); (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T } as
result.

The below examples have been calculated with a 10–digit numerical accuracy.
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Example 1 Input:

b002 = (−.9171974522,−.9171974522,−.8343949045)T ,

b020 = (0, 1.6,−.6)T ,

b200 = (1.704142012,−.8520710059,−.7041420118)T ,

b011 = (−.5714285715, .5714285715,−1.285714286)T ,

b101 = (.4965517242,−.9931034485,−.9862068965)T ,

b110 = (1.142857143, .5714285715,−1.285714286)T ,

w011 = .7495221408, w101 = .8901738325, w110 = .7224219618.

The algorithm from [3] yields case 1 (see table 1), the patch thus lies
on an ellipsoid, see Figure 4, left.

Output: – base points:

(u1, v1) = (10.28131051− 16.78776028 · I, 9.508813267 + 9.186826300 · I),
(u2, v2) = (10.28131056 + 16.78776033 · I, 9.508813267− 9.186826300 · I).

– additional intersection points of σ(kη) and σ(γ):

(u3, v3) = (−1.459354858− .4517579514 · I, .5479983730 + 1.799168251 · I),
(u4, v4) = (1.624652414− .6814995422 · I, .4728876873 + 1.614092433 · I),
(u5, v5) = (1.624652414 + .6814995422 · I, .4728876873− 1.614092433 · I),
(u6, v6) = (−1.459354858 + .4517579514 · I, .5479983730− 1.799168251 · I),

– points a and b yielding the quadrilateral aābb̄ in the plane at
infinity:

a =

 −4.360263687 + .8886790196 · I
.967471190 + 4.746853823 · I
−1.876358720 + .382426572 · I

,

b =

 3.501421523 + .6362208299 · I
.692629498− 3.811864965 · I
−1.506771938− .273785841 · I

.

– axes directions d1,d2,d3:

d1 = (.8378892704 · 10−8,−1., .4917694781 · 10−9)T ,

d2 = (.1482689201 · 10−7,−.1680085742 · 10−9,

.9999999998)T ,

d3 = (−.9999999996,−.5151280985 · 10−8,

.1652759080 · 10−8)T
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Figure 4. Illustration of the given quadric triangles together with
their underlying quadrics for the examples 1 (left), 2 (middle), and
3 (right).

– curves di · n(u, v) = 0 (see (4.1)):

d1 · n(u, v) = .7386800406 · 10−4 · u3 + .6128967978 · 10−2 · u2 · v
+.2165985099 · 10−1 · u · v2 + .1956493578 · 10−1 · v3

−.6128971499 · 10−2 · u2 − .3390236733 · u · v
−.5990563440 · v2 + .1695118177 · u
+4.688267021 · v − 1.562755669

= 0,

d2 · n(u, v) = .5353578295 · 10−1 · u3 + .1364407931 · u2 · v
+.1920287660 · u · v2 + .2219749983 · v3

−1.502102728 · u2 − 1.170769792 · u · v
−3.476038635 · v2 + .3873330520 · u
+1.386399279 · v + 5.686694271

= 0,

d3 · n(u, v) = .2658327937 · 10−2 · u3 + .1062351426 · 10−1 · u2 · v
+.1219543143 · 10−1 · u · v2 + .3032066467 · 10−2 · v3

−.1479532018 · u2 − .3222507015 · u · v
−.9481322440 · 10−1 · v2 + 2.083674235 · u
+.7863392582 · v − .6945580770

= 0.

– origin (obtained as intersection of the three symmetry planes):
o(−.2365961050 ·10−7, .3063806432 ·10−8,−.1208053726 ·10−7).
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Example 2 Input:

b002 = (1, 1, 1.25)T ,

b020 = (0, 1, 1)T ,

b200 = (1, 0, .25)T ,

b011 = (.5, 1, 1)T ,

b101 = (1, .5, .25)T ,

b110 = (.5, .5, 0)T ,

w011 = 1, w101 = 1, w110 = 1.

The algorithm from [3] yields case 5 (see table 1), the patch thus lies
on an elliptic paraboloid, see Figure 4, middle.
According to the listing of exceptional cases, see section 3.2, and figure
2, bottom, the given parametrisation is not suitable for the calcula-
tions. We therefore construct the harmonic complement of the given
patch and thus obtain the following — suitable — input data (we are
now in case 3):

b002 = (1, 1, 1.25)T ,

b020 = (0, 1, 1)T ,

b200 = (1, 0, .25)T ,

b011 = (1/2, 4/3, 5/3)T ,

b101 = (−1/3, 1/2,−5/12)T ,

b110 = (1/2, 1/2, 0)T ,

w011 = 3/5, w101 = −3/5, w110 = −1.

Output: – base points:

(u1, v1, w1) = (1/2 · I, 1, 0),
(u2, v2, w2) = (−.5000000000 · I, 1, 0).

– additional intersection points of σ(kη) and σ(γ):

(u3, v3) = (.6106759983 + .2025512905 · 10−1 · I, .5405102585− .2213519966 · I),
(u4, v4) = (.2089116900− .1988170358 · I, .8976340716− .5821766201 · I),
(u5, v5) = (.2089116900 + .1988170358 · I, .8976340716 + .5821766201 · I),
(u6, v6) = (.6106759983− .2025512905 · 10−1 · I, .5405102585 + .2213519966 · I),

– points a and b yielding the quadrilateral aābb̄ in the plane at
infinity:

a =

 −.4051025852 · 10−1 + .2213519966 · I
−.1106759983− .2025512904 · 10−1 · I
.1916964369 + .3508287013 · 10−1 · I

,

b =

 −.3976340716− .5821766201 · I
.2910883100− .1988170357 · I
.5041797921− .3443611905 · I

.
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– axes directions d1,d2,d3:

d1 = (−1., .3292829096 · 10−7, .1163963355 · 10−6)T ,

d2 = (.1204583774 · 10−8,−.1108513701 · 10−10,

−.9999999996)T ,

d3 = (−.1334980598 · 10−6,−1.,−.1459103704 · 10−6)T

– curves di · n(u, v) = 0 (see (4.1)):

d1 · n(u, v) = .8000002671 · u2 + .2000000668 · v2

−.8000002013 · u− .7000000668 · v
+.5000000505

= 0,

d3 · n(u, v) = 3.199999640 · u2 + .7999999100 · v2

−5.199999640 · u− .7999999767 · v
+1.999999921

= 0.

– origin (obtained as intersection of two symmetry planes and the
quadric):
o(−.2165476376·10−6−.6754367456·10−14 ·I, .497938674·10−7−
.2051234632 · 10−6 · I, 0.− .2043 · 10−13 · I).

Example 3 Input:

b002 = (2.312941292, .5808823929, 1.458823657)T ,

b020 = (2.065591118, .2581988897, 2.581988897)T ,

b200 = (2.285714286,−.5532833353, 1.428571429)T ,

b011 = (2.141704770, .4104261923, 2.052130962)T ,

b101 = (1.739889546, .01044203266, .8220994950)T ,

b110 = (1.872983347,−.1270166538, 1.454972244)T ,

w011 = 1.011042669, w101 = 1.149581073, w110 = 1.077774309.

The algorithm from [3] yields case 7 (see table 2), the patch thus lies
on a hyperbolic cylinder, see Figure 4, right.

Output: – base point:

(u1, v1) = (−9.296915348, 35.37584342),

– additional intersection points of σ(kη) and σ(γ):

(u2, v2) = (−.9372534534− .5225407490 · I,−2.051323698 + 2.339472807 · I),
(u3, v3) = (−.9372534534 + .5225407490 · I,−2.051323698− 2.339472807 · I),
(u4, v4) = (3.281271232− 10.56535655 · I,−2.680148265 + 31.96604446 · I),
(u5, v5) = (3.281271232 + 10.56535655 · I,−2.680148265− 31.96604446 · I),

– points a and b yielding the quadrilateral aābb̄ in the plane at
infinity:
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a =

 4.85128819− .608861218 · I
2.425644097− .3044306111 · I
.680727551 + 5.423905074 · I

,

b =

 1.4474416− 8.2584412 · I
−.7237222804 + 4.129220339 · I

9.2332155 + 1.6182918 · I

.

– axes directions d1,d2,d3:

d1 = (−.2150449893 · 10−6,−.1078581048 · 10−6, 1.)T ,

d2 = (−.2028174164 · 10−6, .9999999996,

.3939173514 · 10−6)T ,

d3 = (−1., .5587201313 · 10−7,−.7512289131 · 10−7)T

– curves di · n(u, v) = 0 (see (4.1)):

d2 · n(u, v) = −.4390547921 · 10−2 · u3 − .4314756521 · 10−1 · u2 · v
−.2560381189 · 10−1 · u · v2 − .3875600924 · 10−2 · v3

+1.403925307 · u2 + 1.009232752 · u · v
+.1732714439 · v2 − 4.799043995 · u
−1.438242762 · v + 2.087569143

= 0,

d3 · n(u, v) = −.1828907162 · u3 − .1647954154 · u2 · v
−.4973728042 · 10−1 · u · v2 − .5055958016 · 10−2 · v3

+.7288142485 · u2 + .4548156334 · u · v
+.7417269768 · 10−1 · v2 − 1.269013251 · u
−.5097287993 · v + 2.078055825

= 0.

– origin (arbitrarily chosen on the intersection line of two symme-
try planes for , e.g., z = 0):
o(.2080359226 ·10−6− .5866136711 ·10−6 ·I, .8277369062 ·10−6−
.1189754692 · 10−12 · I, 0).

Example 4 Input:

b002 = (−.7826086957,−.7826086957,−.5652173913)T ,

b020 = (0., 1., 0.)T ,

b200 = (1.469387755,−.7346938776,−.4693877551)T ,

b011 = (−1., 1.,−3.)T ,

b101 = (.4186046512,−.8372093023,−.6744186047)T ,

b110 = (2., 1.,−3.)T ,

w011 = .3127716211, w101 = .9057148735, w110 = .3030457634.

The algorithm from [3] yields case 1 (see table 1), the patch thus lies
on an ellipsoid.
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Output: – base points:

(u1, v1) = (3.212386565− 11.59368285 · I, 4.484963134 + 1.796329422 · I),
(u2, v2) = (3.212386565 + 11.59368285 · I, 4.484963134− 1.796329422 · I).

– additional intersection points of σ(kη) and σ(γ):

(u3, v3) = (.1755774319− .2360520294 · I, .4841871165 + .6934756743 · I),
(u4, v4) = (.1755774319− .2360520294 · I, .4841871165 + .6934756743 · I),
(u5, v5) = (.1755774319 + .2360520294 · I, .4841871165− .6934756743 · I),
(u6, v6) = (.1755774319 + .2360520294 · I, .4841871165− .6934756743 · I),

– point a (= b) in the plane at infinity:

a =

 .4719652863 · 10−15 + .3020407411 · 10−14 · I
.370348752 + 1.233212378 · I

−1.233212378 + .3703487524 · I

,

We are thus in the case of an ellipsoid of revolution.
– direction of the axis of rotation d1:

d1 = (−1., .2778123957 · 10−29,−.1589099487 · 10−29)T ,

and choice of the remaining two axes directions as

d2 = (0, 1, 1)T ,

d3 = (0, 1,−1)T ,

– curves di · n(u, v) = 0 (see (4.1)):

d1 · n(u, v) = .1054513601 · 10−2 · u3 + .1397081004 · 10−1 · u2 · v
+.4855948039 · 10−1 · u · v2 + .1495200927 · 10−1 · v3

−.6818266625 · 10−1 · u2 − .4654606561 · u · v
−.1639545074 · v2 + 1.113650215 · u
+.5202192367 · v − .3712167385

= 0,

d2 · n(u, v) = .2473084209 · 10−1 · u3 + .1704287041 · u2 · v
+.1896966327 · u · v2 + .7738813204 · v3

−.8009626039 · u2 − .1924457148 · u · v −
2.618359451 · v2 + .27490821 · 10−2 · u
−7.321609445 · v + 5.753859446

= 0,

d3 · n(u, v) = −.2493175219 · 10−1 · u3 − .1898117691 · u2 · v
−.4147900181 · u · v2 − 1.473261392 · v3

+.8203456689 · u2 + 1.439116772 · u · v
+9.857085851 · v2 − .6260846109 · u
−12.72409444 · v + .928041846

= 0.

– origin (obtained as intersection of the three symmetry planes):
o(−.1876629728 · 10−9, .1500000000 · 10−9, .4500000000 · 10−9).
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6. Conclusion

In this paper we presented a geometric method for extracting the geometric
invariants of a given rational quadratic quadric triangle in form of its axes. Thus,
together with the algorithm from [3] it is now possible to examine a given parametric
rational quadratic Bézier triangle B in order to, step by step, extract its complete
geometric information in the following way:

(1) Determine whether B represents a quadric.
(2) If yes, then, denoting the underlying quadric by Q:

a) determine Q’s projective type,
b) determine Q’s affine type,
c) determine Q’s axes directions d1,d2,d3,
d) determine the position of the origin o such that with respect to the

coordinate system {o;d1,d2,d3} Q has normal form.

The steps 2)c) and 2)d) detailed in the present paper provide new geometrical
insight and have been added to the algorithm from [3], and applied to several
significant examples, thus illustrating its performance.

The method is aimed at application areas where geometrical knowledge is of
primary importance such as for example in CAD applications, e.g., for verifying a
geometric setting or solving constrained geometric configurations, etc.

References

[1] Albrecht, G., A note on Farin points for rational triangular Bézier patches,
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