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A NEW PROOF OF THE ERDÖS-MORDELL INEQUALITY

JIAN LIU

(Communicated by Levent KULA)

Abstract. In this paper we give a new proof of the famous Erdös-Mordell
inequality. Some related conjectures checked by the computer are also given.

1. Introduction

In 1932, P.Erdös conjectured the following beautiful geometric inequality:

Theorem 1.1. Let P be an interior point of the triangle ABC. Denote by R1, R2, R3

the distance of P from the vertices A,B,C, and r1, r2, r3 the distances of P from
the sides BC,CA,AB respectively. Then

(1.1) R1 +R2 +R3 ≥ 2(r1 + r2 + r3).

Equality holds if and only if triangle ABC is equilateral and P is its center.

P.Erdös [1] formally published inequality (1.1) as a problem in 1935. L.J.Mordell
[2] first proved the theorem. Since then, inequality (1.1) is known as the Erdös-
Mordell’s inequality. Later, some other proofs were given in succession ([3]-[11]),
many of which were based on the following inequality:

(1.2) R1 ≥ cr2 + br3
a

,

where a, b, c are the lengths of the sides BC,CA,AB respectively. G.R.Veldkamp [4]
and V.Komornik [5] proved inequality (1.2) by using area method. D.K.Kazarinoff
[6] used a theorem of Pappus. L.Bankoff [7] used orthogonal projections and similar
triangles. A.Avez [8] and H.Lee [9] used the Ptolemy’s theorem.

In this note we give a new proof which does not use inequality (1.2). We also
propose some related conjectures which are checked by the computer.

2. New proof of Theorem 1.1

Our new proof is based on the following lemma:
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Lemma 2.1. For an arbitrary interior point P of triangle ABC, we have

(2.1)
√

a2 + 4r21 ≥ cr1 + ar3
b

+
ar2 + br1

c
.

Equality holds if and only if the line PO (O is the circumcenter of ABC) parallels
the side BC.

Proof. Let S denote the area of triangle ABC. By Heron’s formula:

(2.2) S =
√

s(s− a)(s− b)(s− c),

where s = (a+ b+ c)/2, we easily get

(2.3) 16S2 = 2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4.

Then using this we can verify the identity:

a2 +
16x2S2

(ax+ by + cz)2
− 4S2

(ax+ by + cz)2

(
cx+ az

b
+

ay + bx

c

)2

=

[
(2b2c2 + a2b2 + a2c2 − b4 − c4)x− a(b2 + c2 − a2)(yb+ zc)

]2
4b2c2(ax+ by + cz)2

,(2.4)

where x, y, z are real numbers and ax+ by + cz ̸= 0. Therefore, it follows that

(2.5) a2 +
16x2S2

(ax+ by + cz)2
− 4S2

(ax+ by + cz)2

(
cx+ az

b
+

ay + bx

c

)2

≥ 0.

Putting x = r1, y = r2, z = r3 in the above inequality, then using the following
identity:

(2.6) ar1 + br2 + cr3 = 2S,

we obtain

a2 + 4r21 ≥
(
cr1 + ar3

b
+

ar2 + br1
c

)2

,

hence inequality (2.1) is valid. Clearly, the equality of (2.1) holds if and only if

(2.7) (2b2c2 + a2b2 + a2c2 − b4 − c4)r1 − a(b2 + c2 − a2)(br2 + cr3) = 0.

Now we denote the areas of triangle BPC,CPA,APB by Sa, Sb, Sc respectively,
then Sa = 1

2ar1, Sb =
1
2br2, Sc =

1
2cr3. Applying (2.3), we know (2.7) is equivalent

to

(2.8) Sa

[
16S2 − a2(b2 + c2 − a2)

]
= a2(b2 + c2 − a2)(Sb + Sc).

If A = π
2 , then r1 = 0 from (2.7), thus P lies on BC and the circumcenter of

triangle ABC is the midpoint of the side BC. If A ̸= π
2 , then Sa ̸= 0 and it follows

from (2.8) that
16S2 − a2(b2 + c2 − a2)

a2(b2 + c2 − a2)
=

Sb + Sc

Sa
,

using the fact Sa + Sb + Sc = S, we get

Sa =
1

16S
a2(b2 + c2 − a2) =

1

4
a2 cotA =

1

2
R2 sin 2A,

where R is the circumradius of triangle ABC. But S△OBC = 1
2R

2 sin 2A, hence
Sa = S△BPC = S△BOC , therefore the line PO parallels BC. This completes the
proof of the Lemma 2.1. �
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According to the Lemma 2.1, we also have

(2.9)
√

b2 + 4r22 ≥ ar2 + br1
c

+
br3 + cr1

a
,

(2.10)
√
c2 + 4r23 ≥ br3 + cr2

a
+

cr1 + ar3
b

.

We now prove the Erdös-Mordell theorem.

Proof. Let ha, hb, hc denote the altitudes corresponding to the sides BC,CA,AB
of ABC respectively. Using 2S = aha and Heron’s formula (2.2) one obtains

ha =
1

2a

√
[(b+ c)2 − a2] [a2 − (b− c)2] ≤ 1

2

√
(b+ c)2 − a2,

thus we have

(2.11) b+ c ≥
√
a2 + 4h2

a,

with equality if and only if b = c.
Applying inequality (2.11) to triangle PBC, we get

(2.12) R2 +R3 ≥
√
a2 + 4r21,

and we also have two similar forms. Adding these inequalities we obtain

(2.13) 2(R1 +R2 +R3) ≥
√
a2 + 4r21 +

√
b2 + 4r22 +

√
c2 + 4r23,

with equality if and only if P is the circumcenter of triangle ABC.
On the other hand, adding inequalities (2.1),(2.9) and (2.10) gives:√

a2 + 4r21 +
√
b2 + 4r22 +

√
c2 + 4r23

≥ 2

(
c

b
+

b

c

)
r1 + 2

(a
c
+

c

a

)
r2 + 2

(
b

a
+

a

b

)
r3,(2.14)

and the equality is the same as (2.13).
Since c

b +
b
c ≥ 2, a

c + c
a ≥ 2, b

a + a
b ≥ 2, thus from inequalities (2.13) and (2.14),

we see Erdös-Mordell inequality (1.1) holds and the equality in (1.1) occurs only
when a = b = c and P is its center. This completes the proof of Theorem 1.1. �

Remark 2.1. N.Dergiades [10] extended the following inequality concerning an in-
ternal point of triangle ABC:

(2.15) R1 +R2 +R3 ≥
(
c

b
+

b

c

)
r1 +

(a
c
+

c

a

)
r2 +

(
b

a
+

a

b

)
r3

to the case involving any point in the plane. Our lemma obviously can be extended
to the same case and so can inequality (2.13). Therefore, by using the Lemma 2.1
we can prove Dergiades’ result in [10].

Remark 2.2. The author [12] has proved the following inequalities:(
c

b
+

b

c

)
r1 +

(a
c
+

c

a

)
r2 +

(
b

a
+

a

b

)
r3 ≥ 2

√
har1 + hbr2 + hcr3

≥ 2(r1 + r2 + r3).(2.16)
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From (2.13),(2.14) and (2.16), we can get the following refinements of Erdös-Mordell
inequality:

R1 +R2 +R3 ≥ 1

2

(√
a2 + 4r21 +

√
b2 + 4r22 +

√
c2 + 4r23

)
≥

(
c

b
+

b

c

)
r1 +

(a
c
+

c

a

)
r2 +

(
b

a
+

a

b

)
r3

≥ 2
√
har1 + hbr2 + hcr3

≥ 2(r1 + r2 + r3).(2.17)

Figure 1
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Remark 2.3. The Erdös-Mordell inequality can also be extended as the following:

(2.18) 2(R+Rp) ≥ R1 +R2 +R3 ≥ 2(r1 + r2 + r3) ≥ 2(r + rp),

where R, r are the circumradius and inradius of ABC respectively, Rp, rp the cir-
cumradius and inradius of the pedal triangle DEF (see Figure 1). The first inequal-
ity in (2.18) is one of the conjectures posed by the author in [13], which has been
proved by Wang Zhen [14] recently. The last inequality will be published in one of
my recent Chinese article.

3. Several conjectures

In this section, we shall propose some related conjectures.
From the inequality chain (2.17) we see that

(3.1)
√
a2 + 4r21 +

√
b2 + 4r22 +

√
c2 + 4r23 ≥ 4(r1 + r2 + r3).

It seems not easy to prove this inequality directly. Considering its generalization
we propose the following conjecture having been checked by the computer:

Conjecture 1. If k ≥ 4 be a real number, then

(3.2)
√
a2 + kr21 +

√
b2 + kr22 +

√
c2 + kr23 ≥

√
k + 12 (r1 + r2 + r3).

A similar conjecture is the following:

Conjecture 2. If k ≥ 4 be a real number, then

(3.3)
√
a2 + kw2

1 +
√
b2 + kw2

2 +
√
c2 + kw2

3 ≥
√
k + 12 (w1 + w2 + w3).

where w1, w2, w3 are the angle-bisectors of ∠BPC,∠CPA,∠APB respectively.

Remark 3.1. It is easy to prove that inequality (2.11) still holds after changing the
altitude by the angle-bisector. So we actually have the following inequality:

(3.4) 2(R1 +R2 +R3) ≥
√
a2 + 4w2

1 +
√
b2 + 4w2

2 +
√
c2 + 4w2

3,
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which is stronger than (2.13). Therefore, if Conjecture 2 is true, then its special
case k = 4 and (3.4) conclude the Borrow’s inequality [3]:

(3.5) R1 +R2 +R3 ≥ 2(w1 + w2 + w3).

The first inequality in (2.18) is a reverse Erdös-Mordell inequality. It leads us
to put forward the similar interesting conjecture:

Conjecture 3. Let P be an interior point of triangle ABC. The lines AP,BP,CP
cut the opposite sides BC,CA,AB at L,M,N respectively. then

(3.6) R1 +R2 +R3 ≤ 2(R+Rq),

where R,Rq are the circumradius of triangle ABC and the Cevian Triangle LMN
respectively (see Figure 2).

Figure 2 
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The more general conjecture is the following:

Conjecture 4. Let P be an interior point of triangle ABC. If 0 < k ≤ 1, then

(3.7) Rk
1 +Rk

2 +Rk
3 ≤ 2Rk + (2Rq)

k.

If k < 0, then the reverse inequality holds.

Remark 3.2. For the pedal triangle (see Figure 1), the author [13] has proved the
inequality:

(3.8)
1

Rk
1

+
1

Rk
2

+
1

Rk
3

≥ 2

Rk
+

1

(2Rp)k
.

where k ≥ 1. We also supposed (3.8) is valid for 0 < k < 1 and the reverse
inequality holds for 0 < k ≤ −1 (the first inequality in (2.18) is the special case of
this conjecture).

It is well known that Erdös-Mordell inequality can be generalized to the case
with weights:

(3.9) x2R1 + y2R2 + z2R3 ≥ 2(yzr1 + zxr2 + xyr3),

where x, y, z are arbitrary real numbers. The monograph [15,p.318,Theorem 15]
states that inequality (3.9) holds only for positive real numbers x, y, z. In [16], the
author showed that the inequality is valid for all real numbers x, y, z by using a
simple method.

For Figure 2, we give a conjecture similar to (3.9):

Conjecture 5. Let P be an interior point of triangle ABC and let ra, rb, rc be the
excircleradius of triangle ABC. Then

(3.10) x2ra + y2rb + z2rc ≥ 2(yzhl + zxhm + xyhn),

where hl, hm, hn are the altitudes of Cevian triangle LMN .



A NEW PROOF OF THE ERDÖS-MORDELL INEQUALITY 119

Finally, we propose a conjecture which includes the Erdös-Mordell inequality as
a special case.

Conjecture 6. If 0 < k ≤ 1.73, then the following inequality holds:

(3.11) Rk
1 +Rk

2 +Rk
3 ≥ (r2 + r3)

k + (r3 + r1)
k + (r1 + r2)

k.

Clearly, the above inequality becomes the Erdös-Mordell inequality when k = 1.

References

[1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
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