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ON THE CURVATURE OF INVARIANT KROPINA METRICS
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Abstract. In the present article we compute the flag curvature of a special
type of invariant Kropina metrics on homogeneous spaces.

1. Introduction

Let M be a smooth n−dimensional manifold and TM be its tangent bundle.
A Finsler metric on M is a non-negative function F : TM −→ R which has the
following properties:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0},
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0,

(3) the n×n Hessian matrix [gij(x, y)] = [ 12
∂2F 2

∂yi∂yj ] is positive definite at every

point (x, y) ∈ TM0.

For a smooth manifold M suppose that g and b are a Riemannian metric and a
1-form respectively as follows:

g = gijdx
i ⊗ dxj(1.1)

b = bidx
i.(1.2)

An important family of Finsler metrics is the family of (α, β)−metrics which is
introduced by M. Matsumoto (see [5]) and has been studied by many authors. An
interesting and important example of such metrics is the Kropina metrics with the
following form:

F (x, y) =
α(x, y)2

β(x, y)
,(1.3)

where α(x, y) =
√
gij(x)yiyj and β(x, y) = bi(x)y

i.

In a natural way, the Riemannian metric g induces an inner product on any
cotangent space T ∗

xM such that < dxi(x), dxj(x) >= gij(x). The induced inner
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product on T ∗
xM induces a linear isomorphism between T ∗

xM and TxM (for more

details see [3].). Then the 1-form b corresponds to a vector field X̃ on M such that

g(y, X̃(x)) = β(x, y).(1.4)

Therefore we can write the Kropina metric F = α2

β as follows:

F (x, y) =
α(x, y)2

g(X̃(x), y)
.(1.5)

Flag curvature, which is a generalization of the concept of sectional curvature in
Riemannian geometry, is one of the fundamental quantities which associates with
a Finsler space. Flag curvature is computed by the following formula:

K(P, Y ) =
gY (R(U, Y )Y, U)

gY (Y, Y ).gY (U,U)− g2Y (Y, U)
,(1.6)

where gY (U, V ) = 1
2

∂2

∂s∂t (F
2(Y + sU + tV ))|s=t=0, P = span{U, Y }, R(U, Y )Y =

∇U∇Y Y −∇Y ∇UY −∇[U,Y ]Y and ∇ is the Chern connection induced by F (see
[1] and [9].).
In general, the computation of the flag curvature of Finsler metrics is very difficult,
therefore it is important to find an explicit and applicable formula for the flag
curvature. In [2], we have studied the flag curvature of invariant Randers metrics
on naturally reductive homogeneous spaces and in [7] we generalized this study on
a general homogeneous space. Also in [8] we considered (α, β)−metrics of the form
(α+β)2

α and gave the flag curvature of these metrics. In this paper we study the flag
curvature of invariant Kropina metrics on homogeneous spaces.

2. Flag curvature of invariant Kropina metrics on homogeneous spaces

Let G be a compact Lie group, H a closed subgroup, and g0 a bi-invariant
Riemannian metric on G. Assume that g and h are the Lie algebras of G and H
respectively. The tangent space of the homogeneous space G/H is given by the
orthogonal complement m of h in g with respect to g0. Each invariant metric g
on G/H is determined by its restriction to m. The arising AdH -invariant inner
product from g on m can extend to an AdH -invariant inner product on g by taking
g0 for the components in h. In this way the invariant metric g on G/H determines
a unique left invariant metric on G that we also denote by g. The values of g0 and
g at the identity are inner products on g. We denote them by < ., . >0 and < ., . >.
The inner product < ., . > determines a positive definite endomorphism ϕ of g such
that < X,Y >=< ϕX, Y >0 for all X,Y ∈ g.
T. Püttmann has shown that the curvature tensor of the invariant metric < ., . >
on the compact homogeneous space G/H is given by

< R(X,Y )Z,W > = −{1
2
(< B−(X,Y ), [Z,W ] >0 + < [X,Y ], B−(Z,W ) >0)

+
1

4
(< [X,W ], [Y, Z]m > − < [X,Z], [Y,W ]m >(2.1)

− 2 < [X,Y ], [Z,W ]m >) + (< B+(X,W ), ϕ−1B+(Y, Z) >0

− < B+(X,Z), ϕ−1B+(Y,W ) >0)},
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where B+ and B− are defined by

B+(X,Y ) =
1

2
([X,ϕY ] + [Y, ϕX]),

B−(X,Y ) =
1

2
([ϕX, Y ] + [X,ϕY ]),

and [., .]m is the projection of [., .] to m.(see [6].).
Notice. We added a minus to the Püttmann’s formula because our definition of

the curvature tensor R is different from the Püttmann’s definition in a minus sign.

Theorem 2.1. Let G,H, g, h, g, g0 and ϕ be as above. Assume that X̃ is an invari-

ant vector field on G/H and X := X̃H . Suppose that F = α2

β is the Kropina metric

arising from g and X̃ such that its Chern connection coincides to the Levi-Civita
connection of g. Suppose that (P, Y ) is a flag in TH(G/H) such that {Y, U} is an
orthonormal basis of P with respect to < ., . >. Then the flag curvature of the flag
(P, Y ) in TH(G/H) is given by

(2.2) K(P, Y ) =
3 < U,X >< R(U, Y )Y,X > +2 < Y,X >< R(U, Y )Y,U >

2(<U,X>
<Y,X> )2 + 2

,

where

< R(U, Y )Y,X > = −1

4
(< [ϕU, Y ] + [U, ϕY ], [Y,X] >0

+ < [U, Y ], [ϕY,X] + [Y, ϕX] >0)−
3

4
< [Y,U ], [Y,X]m >

−1

2
< [U, ϕX] + [X,ϕU ], ϕ−1([Y, ϕY ]) >0(2.3)

+
1

4
< [U, ϕY ] + [Y, ϕU ], ϕ−1([Y, ϕX] + [X,ϕY ]) >0,

and

< R(U, Y )Y, U > = −1

2
< [ϕU, Y ] + [U, ϕY ], [Y,U ] >0

−3

4
< [Y, U ], [Y,U ]m > − < [U, ϕU ], ϕ−1([Y, ϕY ]) >0(2.4)

+
1

4
< [U, ϕY ] + [Y, ϕU ], ϕ−1([Y, ϕU ] + [U, ϕY ]) >0 .

Proof. The Chern connection of F coincides on the Levi-Civita connection of g.
Therefore the Finsler metric F and the Riemannian metric g have the same curva-
ture tensor. We denote it by R.
By using the definition of gY (U, V ) and some computations for F we have:

gY (U, V ) =
1

g4(Y,X)
{(2g(Y,U)g(Y,X)− g(U,X)g(Y, Y ))(2g(Y, V )g(Y,X)

−g(V,X)g(Y, Y )) + g(Y, Y )(g(Y,X)(2g(U, V )g(Y,X)(2.5)

+2g(Y, V )g(U,X)− 2g(V,X)g(Y,U))− 2g(U,X)(2g(Y, V )g(Y,X)

−g(V,X)g(Y, Y )))}.
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By attention to this consideration that {Y, U} is an orthonormal basis for P with
respect to g and (2.5) we have

gY (R(U, Y )Y, U) =
1

< Y,X >4
{< U,X >

(3 < R(U, Y )Y,X > −2 < Y,R(U, Y )Y >< Y,X >)(2.6)

+2 < Y,X > (< R(U, Y )Y, U >< Y,X >

− < U,X >< Y,R(U, Y )Y >)},

and

gY (Y, Y ).gY (U,U)− g2Y (U, Y ) =
2 < U,X >2

< Y,X >6
+

2

< Y,X >4
.(2.7)

Now by using Püttmann’s formula [6, eq. (2.1)] we have:

< X,R(U, Y )Y > = −1

4
(< [ϕU, Y ] + [U, ϕY ], [Y,X] >0

+ < [U, Y ], [ϕY,X] + [Y, ϕX] >0)−
3

4
< [Y, U ], [Y,X]m >(2.8)

−1

2
< [U, ϕX] + [X,ϕU ], ϕ−1([Y, ϕY ]) >0

+
1

4
< [U, ϕY ] + [Y, ϕU ], ϕ−1([Y, ϕX] + [X,ϕY ]) >0,

< R(U, Y )Y, Y >= 0,(2.9)

and

< R(U, Y )Y,U > = −1

2
< [ϕU, Y ] + [U, ϕY ], [Y, U ] >0

−3

4
< [Y, U ], [Y, U ]m > − < [U, ϕU ], ϕ−1([Y, ϕY ]) >0(2.10)

+
1

4
< [U, ϕY ] + [Y, ϕU ], ϕ−1([Y, ϕU ] + [U, ϕY ]) >0 .

Substituting the equations (2.6), (2.7), (2.8), (2.9) and (2.10) in the equation (1.6)
completes the proof.

�

Now we continue our study with a special type of Riemannian homogeneous
spaces which has been named naturally reductive. We remind that a homogeneous
space M = G/H with a G−invariant indefinite Riemannian metric g is said to
be naturally reductive if it admits an ad(H)-invariant decomposition g = h + m
satisfying the condition

B(X, [Z, Y ]m) +B([Z,X]m, Y ) = 0 for X,Y, Z ∈ m,(2.11)

where B is the bilinear form on m induced by g and [, ]m is the projection to m with
respect to the decomposition g = h+m (For more details see [4].).
In this case the above formula for the flag curvature reduces to a simpler equation.

Theorem 2.2. In the previous theorem let G/H be a naturally reductive homoge-
neous space. Then the flag curvature of the flag (P, Y ) in TH(G/H) is given by 2.2
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where,

R(U, Y )Y =
1

4
[Y, [U, Y ]m]m + [Y, [U, Y ]h](2.12)

Proof. By using Proposition 3.4 in [4] (page 202) the claim clearly follows. �
If the invariant Kropina metric is defined by a bi-invariant Riemannian metric

on a Lie group then there is a simpler formula for the flag curvature, we give this
formula in the following theorem.

Theorem 2.3. Let G be a Lie group, g be a bi-invariant Riemannian metric on

G, and X̃ be a left invariant vector field on G. Suppose that F = α2

β is the Kropina

metric defined by g and X̃ on G such that the Chern connection of F coincides
on the Levi-Civita connection of g. Then for the flag curvature of the flag P =
span{Y, U}, where {Y, U} is an orthonormal basis for P with respect to g, we have:

K(P, Y ) =

−3 < U,X >< [[U, Y ], Y ], X > −2 < Y,X >< [[U, Y ], Y ], U >

8(<U,X>
<Y,X> )2 + 8

,(2.13)

Proof. g is bi-invariant. Therefore we have R(U, Y )Y = − 1
4 [[U, Y ], Y ]. Now by

using Theorem 2.2 the proof is completed. �
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