INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 4 NO. 2 PP. 184–192 (2011) ©IEJG

CLASSIFICATION OF FLAT PSEUDO-KÄHLER SUBMANIFOLDS IN COMPLEX PSEUDO-EUCLIDEAN SPACES

BANG-YEN CHEN

(Communicated by H. Hilmi HACISALIHOĞLU)

ABSTRACT. Calabi [1] gave a classification of Kähler imbeddings of complete, simply-connected *definite* complex space forms into complete, simply-connected *definite* complex space forms. The local version of Calabi's result was obtained by Nakagawa and Ogiue in [5]. In contrast, no classification results were known for pseudo-Kähler immersions between *indefinite* complex space forms.

In this article, we initiate the study of the classification problem on pseudo-Kähler immersions between indefinite complex space forms. As a consequence, three classification theorems for pseudo-Kähler immersions between flat indefinite complex space forms are obtained.

1. INTRODUCTION

A pseudo-Riemannian metric g on a complex manifold M is called *pseudo-Hermitian* if the metric g and the almost complex structure J are compatible, that is,

(1.1)
$$g(JX, JY) = g(X, Y), \quad X, Y \in T_pM, \ p \in M.$$

It follows from (1.1) that the index of g is an even integer 2t with $0 \le t \le m$, $m = \dim_{\mathbf{C}} M$. The integer t is called the *complex index*.

The fundamental 2-form Ω of a pseudo-Hermitian manifold (M, g) is defined by

(1.2)
$$\Omega(X,Y) = g(X,JY), \ X,Y \in TM.$$

A pseudo-Hermitian manifold is called *pseudo-Kähler* if its fundamental 2-form Ω is closed, that is, $d\Omega = 0$. The corresponding metric is called *pseudo-Kähler*.

A plane section on a pseudo-Kähler manifold is called *holomorphic* if it is spanned by $\{v, Jv\}$ for some non-null vector $v \in TM$. The sectional curvature $K(v \wedge Jv)$ of a holomorphic section is called the *holomorphic sectional curvature* at v, which is denoted by H(v).

A pseudo-Kähler manifold with positive complex index is called an *indefinite* complex space form if it has constant holomorphic sectional curvature. We denote

²⁰⁰⁰ Mathematics Subject Classification. Primary: 53C40; Secondary 53C42.

 $Key\ words\ and\ phrases.$ Pseudo-Kähler submanifold, null isotropic submanifold, indefinite complex space form.

by $M_t^m(4c)$ a complex *m*-dimensional indefinite complex space form of constant holomorphic sectional curvature 4c and with complex index *t*.

The simplest example of indefinite complex space form is the flat complex pseudo-Euclidean *m*-space \mathbf{C}_t^m with complex index *t* which is the complex *m*-space \mathbf{C}_t^m endowed with the flat metric

(1.3)
$$g_0 = -\sum_{j=1}^t dz_j d\bar{z}_j + \sum_{j=t+1}^m dz_j d\bar{z}_j.$$

A pseudo-Riemannian submanifold N_s^n of a pseudo-Kähler manifold M_t^m is called a *complex submanifold* if each of its tangent spaces is invariant under the action of the almost complex structure J of M_t^m . By a *pseudo-Kähler submanifold* we mean a complex submanifold of a pseudo-Kähler manifold with its induced pseudo-Kählerian structure.

E. Calabi gave in [1] a classification of Kähler imbeddings of complete and simply connected *definite* complex space forms into complete and simply-connected *definite* complex space forms. The local version of Calabi's result was obtained by Nakagawa and Ogiue in [5]. In contrast, no classification results were known for pseudo-Kähler immersions between *indefinite* complex space forms.

In this article we initiate the study of the classification problem on pseudo-Kähler immersions between indefinite complex space forms. As a consequence, three classification theorems for pseudo-Kähler immersions between flat indefinite complex space forms are obtained.

2. Preliminaries

2.1. **Basic formulas.** Let $M_t^m(4c)$ denote a complete simply-connected pseudo-Kähler *m*-manifold with complex index *t* and with constant holomorphic sectional curvature 4*c*. Then the curvature tensor \tilde{R} of the indefinite complex space form $M_t^m(4c)$ satisfies

(2.1)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ\}.$$

Assume that N_s^n is a pseudo-Kähler submanifold of $M_t^m(4c)$. We denote the Levi-Civita connections of N_s^n and $M_t^m(4c)$ by ∇ and $\tilde{\nabla}$, respectively. The formulas of Gauss and Weingarten are given respectively by

(2.2)
$$\nabla_X Y = \nabla_X Y + h(X, Y),$$

(2.3)
$$\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi,$$

for vector fields X and Y tangent to N_s^n and vector field ξ normal to N_s^n , where D is the normal connection.

The second fundamental form h is related to A_{ξ} by

(2.4)
$$\langle h(X,Y),\xi\rangle = \langle A_{\xi}X,Y\rangle.$$

If we denote the curvature tensors of ∇ and D by R and R^D , respectively, then the equations of Gauss and Codazzi are given by

B.-Y. CHEN

(2.5)
$$\langle R(X,Y)Z,W\rangle = \langle A_{h(Y,Z)}X,W\rangle - \langle A_{h(X,Z)}Y,W\rangle + c(\langle X,W\rangle \langle Y,Z\rangle - \langle X,Z\rangle \langle Y,W\rangle),$$

(2.6)
$$(\bar{\nabla}_X h)(Y, Z) = (\bar{\nabla}_Y h)(X, Z),$$

(2.7)
$$R^{D}(X,Y;\xi,\eta) = \tilde{R}(X,Y;\xi,\eta) + \langle [A_{\xi},A_{\eta}](X),Y \rangle$$

where X, Y, Z, W (respectively, η and ξ) are vector fields tangent (respectively, normal) to N_s^n ; and ∇h is defined by

(2.8)
$$(\overline{\nabla}_X h)(Y,Z) = D_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z).$$

For pseudo-Kähler submanifolds the following results are well-known (see, for instance, [3]).

Lemma 2.1. The second fundamental form h, the shape operator A and the normal connection D of a pseudo-Kähler submanifold N_s^n of a pseudo-Kähler manifold M_t^m satisfy

(2.9)
$$h(JX,Y) = h(X,JY) = Jh(X,Y),$$

$$(2.10) A_{J_{\xi}} = JA_{\xi}, \ JA_{\xi} = -A_{\xi}J,$$

$$(2.11) D_X J\xi = J D_X \xi,$$

for X, Y tangent to N_s^n and ξ normal to N_s^n .

Proof. Equations (2.9) and (2.10) can be found in [3, page 187]. Equation (2.11) follows immediately from $\tilde{\nabla}_X J\xi = J\tilde{\nabla}_X \xi$ and formula (2.3) of Weingarten.

2.2. Reduction theorem. Let $\mathbf{R}_{i,j}^n$ denote the affine *n*-space equipped with the metric whose canonical form is

$$\begin{pmatrix} O_j & & \\ & -I_i & \\ & & I_{n-i-j} \end{pmatrix},$$

where I_k is the $k \times k$ identity matrix and O_j is the $j \times j$ zero matrix.

The metric is non-degenerate if and only if j = 0. The j in $\mathbf{R}_{i,j}^n$ measures the degenerate part. The metric of $\mathbf{R}_{i,j}^n = \mathbf{R}_{0,j}^j \times \mathbb{E}_i^{n-j}$ is degenerate on the first factor $\mathbf{R}_{0,j}^j$ and it is the standard pseudo-Euclidean metric with index i on the second factor \mathbb{E}_i^{n-j} .

Similar notation holds for the complex space $\mathbf{C}_{i,j}^n = \mathbf{C}_{0,j}^j \times \mathbf{C}_i^{n-j}$. Denote the natural embedding $\iota : \mathbf{C}_{i,j}^n \to \mathbf{C}_{i+j}^{n+j}$ given by

(2.12)
$$\iota((z_1, z_2, \dots, z_n)) = (z_1, \dots, z_j, z_{j+1}, \dots, z_n, z_j, \dots, z_1) \in \mathbf{C}_{i+j}^{n+j}$$

for $(z_1,\ldots,z_n)\in \mathbf{C}_{i,j}^n$.

Let $\phi : N \to M$ be an isometric immersion of a pseudo-Riemannian manifold into another pseudo-Riemannian manifold. At each point $p \in N$, the *first normal space* at p, denoted by Im h_p , is defined by

$$\operatorname{Im} h_p = \{h(u, v) : u, v \in T_p(N)\}$$

The following result is known as the reduction theorem of Erbacher-Magid (cf. [4] or [3, page 40]).

186

Theorem 2.1. Let $\phi: N_i^n \to \mathbb{E}_t^m$ be an isometric immersion of a pseudo-Riemannian n-manifold N_i^n with index *i* into the pseudo-Euclidean m-space \mathbb{E}_t^m . If the first normal spaces are parallel, then there exists a complete (n + k)-dimensional totally geodesic submanifold E^* such that $\psi(N_i^n) \subset E^*$, where *k* is the dimension of the first normal spaces.

In Erbacher-Magid's reduction theorem, $E^* = \mathbf{R}_{s,t}^{n+k}$ for some s, t and t need not be zero.

3. Flat pseudo-Kähler submanifolds
$$N_s^n(0)$$
 in \mathbf{C}_t^{n+2}

A pseudo-Riemannian submanifold N_s^n of a pseudo-Riemannian manifold is called *isotropic* if $\langle h(v,v), h(v,v) \rangle$ is independent of the choice of the unit vector $v \in T_p(N_s^n)$ at each point $p \in N_s^n$, where h denotes the second fundamental form of N_s^n . Moreover, the pseudo-Riemannian submanifold N_s^n is called *null-isotropic* if its second fundamental form h satisfies

(3.1)
$$\langle h(u,u), h(u,u) \rangle = 0$$

for any $u \in T(N_s^n)$.

The following result can be found in [3, page 189].

Proposition 3.1. A pseudo-Kähler submanifold N_s^n of an indefinite complex space form $M_t^m(4c)$ has constant holomorphic sectional curvature 4c if and only if N_s^n is null-isotropic.

To prove the main results, we need the following proposition.

Proposition 3.2. Let N_s^n be a pseudo-Kähler submanifold of an indefinite complex space form $M_t^m(4c)$. Then the following three statements are equivalent:

(i) N_s^n is flat;

(ii) the second fundamental form h of N_s^n satisfies

(3.2)
$$\langle h(u,v), h(w,\theta) \rangle = 0$$

for any $u, v, w, \theta \in T(N_s^n)$;

(iii) the shape operator A of N_s^n satisfies $A_{\xi} = 0$ for each $\xi \in \text{Im } h$.

Proof. Assume that N_s^n is a pseudo-Kähler submanifold of an indefinite complex space form $M_t^m(4c)$.

If N_s^n is a flat pseudo-Kähler submanifold, then N_s^n is null-isotropic according to Proposition 3.1. Thus condition (3.1) holds. After replacing the u in (3.1) by u + v, we find

$$(3.3) \qquad 2 \langle h(u,u), h(u,v) \rangle + 2 \langle h(v,v), h(u,v) \rangle \\ + 2 \langle h(u,v), h(u,v) \rangle + \langle h(u,u), h(v,v) \rangle = 0.$$

Similarly, after replacing the u by u - v, we have

$$2\langle h(u,u), h(u,v) \rangle + 2\langle h(v,v), h(u,v) \rangle$$

(3.4)
$$(3.4) - 2 \langle h(u, v), h(u, v) \rangle - \langle h(u, u), h(v, v) \rangle = 0.$$

Thus, after combining (3.3) and (3.4), we get

(3.5)
$$\langle h(u,u), h(u,v) \rangle + \langle h(v,v), h(u,v) \rangle = 0,$$

(3.6) $2\langle h(u,v), h(u,v) \rangle + \langle h(u,u), h(v,v) \rangle = 0.$

On the other hand, since N_s^n is a pseudo-Kähler submanifold of constant holomorphic sectional curvature 4c in an indefinite complex space form $M_t^m(4c)$ of the same constant holomorphic sectional curvature, it follows from (2.1) and Gauss' equation that

(3.7)
$$\langle h(u,v), h(u,v) \rangle - \langle h(u,u), h(v,v) \rangle = 0.$$

Thus, by combining (3.6) and (3.7), we obtain

(3.8)
$$\langle h(u,u), h(v,v) \rangle = 0$$

for any u, v tangent to N_s^n . Now, after applying polarization we obtain (3.2) from (3.8). This shows that (i) implies (ii).

(ii) \implies (i) is obvious.

Now, let us assume that (ii) holds. Then we find from (2.4) and (3.2) that

(3.9)
$$\langle A_{h(u,v)}w,\theta\rangle = 0 \quad \forall u,v,w,\theta \in T(N_s^n)$$

Since N_s^n is pseudo-Riemannian, (3.9) implies that $A_{\xi} = 0$ for any $\xi \in \text{Im} h$. This proves (iii).

Conversely, it follows from (2.4) that (iii) implies (ii).

Theorem 3.1. Let $\psi : N_s^n(0) \to \mathbf{C}_t^{n+2}$ be a flat pseudo-Kähler submanifold of the complex pseudo-Euclidean (n+2)-space \mathbf{C}_t^{n+2} . Then either

(i) $t \in \{s, s+1, s+2\}$ and ψ is a totally geodesic pseudo-Kähler immersion, or

(ii) t = s + 1 and ψ is locally congruent to the following pseudo-Kähler immersion:

 $\psi(z_1,\ldots,z_n)=\big(f(z),z_1,\ldots,z_n,f(z)\big),$

where $f(z) := f(z_1, \ldots, z_n)$ is a non-trivial holomorphic function in $z_j = x_j + iy_j$, $i = 1, \ldots, n$.

Proof. Let $\psi : N_s^n(0) \to \mathbf{C}_t^{n+2}$ be a pseudo-Kähler immersion of flat pseudo-Kähler manifold $N_s^n(0)$ into the complex pseudo-Euclidean (n+2)-space \mathbf{C}_t^{n+2} . Then ψ is null-isotropic according to Proposition 3.1.

Since $N_s^n(0)$ is a flat indefinite complex space form, $N_s^n(0)$ is locally holomorphically isometric to \mathbf{C}_s^n . Hence there exists local complex coordinates z_1, \ldots, z_n such that the metric of $N_s^n(0)$ is given by

(3.10)
$$g_0 = -\sum_{k=1}^s dz_k d\bar{z}_k + \sum_{k=s+1}^n dz_k d\bar{z}_k.$$

Put

$$\partial_{x_i} = \frac{\partial}{\partial x_i}, \ \partial_{y_i} = \frac{\partial}{\partial y_i}, \ i = 1, \dots, n.$$

Then we have

(3.11)
$$\partial_{y_i} = J \partial_{x_i}, \quad i = 1, \dots, n,$$

Moreover, if we put

(3.12)
$$h\left(\partial_{x_i},\partial_{x_j}\right) = \eta_{ij}, \quad i,j = 1,\dots,n.$$

we derive from (2.9) and (3.12) that

$$(3.13) h \left(\partial_{x_i}, \partial_{y_j}\right) = J\eta_{ij}, \ h \left(\partial_{y_i}, \partial_{y_j}\right) = -\eta_{ij}, \ i, j = 1, \dots, n.$$

It follows from Proposition 3.2 and (3.12) that, at a given point in $N_s^n(0)$, each η_{ij} is either zero or light-like.

Since z_1, \ldots, z_n are the natural complex coordinates of \mathbf{C}_s^n , we have

(3.14)
$$\nabla_{\partial_{x_i}}\partial_{x_j} = \nabla_{\partial_{x_i}}\partial_{y_j} = \nabla_{\partial_{y_i}}\partial_{y_j} = 0, \quad i, j = 1, \dots, n.$$

If ψ is totally geodesic, we get case (i).

Next, let us assume that ψ is non-totally geodesic. Then there exists at least one pair $(i, j), i, j \in \{1, ..., n\}$ with $i \leq j$ such that $\eta_{ij} \neq 0$. For simplicity, let us denote this η_{ij} by ξ_0 .

It is clear that $\xi_0, J\xi_0$ span a light-like complex line subbundle of the normal bundle $T^{\perp}(N_s^n(0))$, that is,

(3.15)
$$\langle \xi_0, \xi_0 \rangle = \langle \xi_0, J\xi_0 \rangle = \langle J\xi_0, J\xi_0 \rangle = 0, \ \xi_0 \neq 0.$$

Thus, the complex index of the normal bundle must be one. Therefore, we obtain t = s + 1.

If there exists another pair $(k, \ell) \neq (i, j)$ with $k \leq \ell$ and $\eta_{k\ell} \neq 0$, then we also have

(3.16)
$$\langle \eta_{k\ell}, \eta_{k\ell} \rangle = \langle \eta_{k\ell}, J\eta_{k\ell} \rangle = \langle J\eta_{k\ell}, J\eta_{k\ell} \rangle = 0.$$

It follows from Proposition 3.2 that

(3.17)
$$\langle \xi_0, \eta_{k\ell} \rangle = \langle J\xi_0, J\eta_{k\ell} \rangle = 0.$$

Moreover, from Lemma 2.1 and Proposition 3.2, we also have

(3.18)
$$\langle \xi_0, J\eta_{k\ell} \rangle = 0.$$

From these we conclude that the first normal bundle, $\{\operatorname{Im} h_p, p \in N_s^n(0)\}$, is spanned by $\{\xi_0, J\xi_0\}$. Moreover, $\operatorname{Im} h$ is a complex line subbundle equipped with degenerate induced metric.

Now, by differentiating (3.15), we obtain

(3.19)
$$\langle D_X \xi_0, \xi_0 \rangle = \langle D_X J \xi_0, J \xi_0 \rangle = 0$$

for any $X \in T(N_s^n(0))$.

On the other hand, after applying (3.12), (3.13), (3.14) and the equation of Codazzi we find

$$(3.20) D_{\partial_{x_i}}J\xi_0 = D_{\partial_{y_i}}\xi_0, \ D_{\partial_{y_i}}J\xi_0 = -D_{\partial_{x_i}}\xi_0.$$

By combining (3.19) and (3.20) we also have

(3.21)
$$\langle D_X \xi_0, J \xi_0 \rangle = 0, \ X \in T(N_s^n(0)).$$

It follows from (3.19) and (3.21) that $D_X \xi_0, D_X J \xi_0 \in \text{Im } h$. Therefore the first normal space is complex one-dimensional and it is light-like. Moreover, it is parallel in the normal bundle. Consequently, $\psi(N_s^n(0))$ is contained in a degenerate complex hyperplane $\mathbf{C}_{s,1}^{n+1}$ of \mathbf{C}_{s+1}^{n+1} according to the Reduction Theorem of Erbacher-Magid (see Theorem 2.1 or [3, page 40]).

(see Theorem 2.1 or [3, page 40]). It is well-known that $\mathbf{C}_{s,1}^{n+1}$ is holomorphically isometric to the complex affine (n+1)-space $\mathbf{C}_{0,1}^1 \times \mathbf{C}_s^n$, where $\mathbf{C}_{0,1}^1$ is equipped with a degenerate metric.

On the other hand, it follows from Proposition 3.2 that the shape operator satisfies

B.-Y. CHEN

Thus, we derive from (2.3) and (3.13) that

$$(3.23) \nabla_X \xi_0, \nabla_X J \xi_0 \in \operatorname{Im} h$$

for every vector $X \in T(N_s^n(0))$. Hence the first normal bundle Im h is a constant complex line $\mathbf{C}_{0,1}^1$ with a degenerate metric in $\mathbf{C}_{s,1}^{n+1}$. Therefore, there exists a non-trivial complex-valued function f(z) such that $\psi(N_s^n(0))$ is realized as the set of points

$$(3.24) (f(z), z_1, \dots, z_n)$$

in $\mathbf{C}_{s,1}^{n+1} = \mathbf{C}_{0,1}^1 \times \mathbf{C}_s^n$. Because $\mathbf{C}_{s,1}^{n+1}$ can be holomorphically isometric embedded into \mathbf{C}_{s+1}^{n+2} via the map

$$(3.25) (w_0, w_1, \dots, w_n) \mapsto (w_0, w_1, \dots, w_n, w_0),$$

we conclude that the immersion $\psi: N_s^n(0) \to \mathbf{C}_{s+1}^{n+2}$ is congruent to

(3.26)
$$\psi(z_1, \dots, z_n) = (f(z), z_1, \dots, z_n, f(z)).$$

Now, if we put f(z) = u(z) + iv(z), then after applying the assumption that $N_s^n(0)$ is a complex submanifold of \mathbf{C}_{s+1}^{n+2} , we find

$$\mathrm{i}\,\frac{\partial u}{\partial x_j} - \frac{\partial v}{\partial x_j} = \frac{\partial u}{\partial y_j} + \mathrm{i}\,\frac{\partial v}{\partial y_j}.$$

Hence u and v satisfy the Cauchy-Riemann equations, that is,

$$\frac{\partial u}{\partial x_j} = \frac{\partial v}{\partial y_j}, \quad \frac{\partial u}{\partial y_j} = -\frac{\partial v}{\partial x_j}, \quad j = 1, \dots, n.$$

Therefore, $f(z_1, \ldots, z_n)$ is a holomorphic function. Consequently, we obtain case (ii) of the theorem.

4. Flat pseudo-Kähler submanifolds fully in \mathbf{C}_t^m

A pseudo-Kähler immersion $\psi: N_s^n \to \mathbf{C}_t^m$ is said to be *full* if $\psi(N_s^n)$ does not lie in any totally geodesic complex pseudo-Euclidean subspace $\mathbf{C}_{t'}^{m'}$ of \mathbf{C}_t^m with m' < m and $t' \leq t$.

Because the following theorem can be proved in the same spirit as Theorem 3.1, we only provide the key steps of the proof.

Theorem 4.1. Let $\psi : N_s^2(0) \to \mathbf{C}_t^m$ be a flat pseudo-Kähler surface of the complex pseudo-Euclidean m-space \mathbf{C}_t^m . If the immersion is full, then ψ is locally congruent to the immersion:

(4.1)
$$\psi(z_1, z_2) = \left(f_1(z), \dots, f_r(z), z_1, z_2, f_r(z), \dots, f_1(z)\right)$$

for some positive integer r, where f_1, \ldots, f_r are non-trivial holomorphic functions.

Proof. Let $\psi : N_s^2(0) \to \mathbf{C}_t^m$ be a pseudo-Kähler immersion of a flat pseudo-Kähler surface $N_s^2(0)$ into the complex pseudo-Euclidean *m*-space \mathbf{C}_t^m . Then it follows from Proposition 3.2 that (3.2) holds. Hence, at each point $p \in N_s^2(0)$, the first normal space, Im h_p , is a complex subspace of the normal space $T^{\perp}(N_s^2(0))$ with a degenerate induced metric.

Now, let us assume that the pseudo-Kähler immersion ψ is full. The we have $\mathbf{C}_t^m = \mathbf{C}_{s+r}^{2+2r}$, where r is the complex rank of the first normal bundle $\operatorname{Im} h$.

190

Since $N_s^2(0)$ is a flat indefinite complex space form, $N_s^2(0)$ is locally holomorphically isometric to \mathbf{C}_s^2 . Hence we may assume that the metric is given by (3.10) with n = 2. As in the proof of Theorem 3.1, we have

(4.2)
$$\nabla_{\partial_{x_i}}\partial_{x_j} = \nabla_{\partial_{x_i}}\partial_{y_j} = \nabla_{\partial_{y_i}}\partial_{y_j} = 0,$$

(4.3)
$$\partial_{y_i} = J \partial_{x_i}, \quad i, j = 1, 2.$$

As before, if we put $\eta_{ij} = h\left(\partial_{x_i}, \partial_{x_j}\right)$, then we have

(4.4)
$$h\left(\partial_{x_i},\partial_{y_j}\right) = J\eta_{ij}, \ h\left(\partial_{y_i},\partial_{y_j}\right) = -\eta_{ij}.$$

From Proposition 3.2 we find

(4.5)
$$\langle D_{\partial x_k} \eta_{ij}, \eta_{ij} \rangle = \langle D_{\partial y_k} \eta_{ij}, \eta_{ij} \rangle = 0, \ i, j, k = 1, 2.$$

On the other hand, by (2.8) and (4.2), we have

(4.6)

$$(\nabla_{\partial_{x_i}} h)(\partial_{x_j}, \partial_{x_k}) = D_{\partial_{x_j}} h(\partial_{x_i}, \partial_{x_k}),$$

$$(\nabla_{\partial_{y_i}} h)(\partial_{x_j}, \partial_{x_k}) = D_{\partial_{x_j}} h(\partial_{y_i}, \partial_{x_k}),$$

$$(\nabla_{\partial_{y_i}} h)(\partial_{y_j}, \partial_{x_k}) = D_{\partial_{y_j}} h(\partial_{y_i}, \partial_{x_k}),$$

$$(\nabla_{\partial_{y_i}} h)(\partial_{y_j}, \partial_{y_k}) = D_{\partial_{y_j}} h(\partial_{y_i}, \partial_{y_k}).$$

Thus, by Codazzi's equation and (4.6) we get

(4.7)
$$D_{\partial_{x_i}}h(\partial_{x_j},\partial_{x_k}) = D_{\partial_{x_j}}h(\partial_{x_i},\partial_{x_k}) = D_{\partial_{x_k}}h(\partial_{x_i},\partial_{x_j}),$$
$$D_{\partial_{y_i}}h(\partial_{x_j},\partial_{x_k}) = D_{\partial_{x_j}}h(\partial_{y_i},\partial_{x_k}) = D_{\partial_{x_k}}h(\partial_{y_i},\partial_{x_j}),$$
$$\cdots etc.,$$

Now, by applying (4.3), (4.5), (4.6) and Lemma 2.1, we find

(4.8)
$$\langle D_{\partial_{x_k}} \eta_{ij}, J\eta_{ij} \rangle = \langle D_{\partial_{y_k}} \eta_{ij}, \eta_{ij} \rangle = 0, \langle D_{\partial_{x_i}} \eta_{jj}, \eta_{ik} \rangle = \langle D_{\partial_{x_k}} \eta_{ij}, \eta_{ij} \rangle = 0, \quad i, j, k = 1, 2.$$

Since the first normal bundle Im h of $N_s^2(0)$ in \mathbf{C}_{s+r}^{2+r} is of complex rank r endowed with a degenerate induced metric, it follows from (4.5) and (4.8) that

(4.9)
$$D_X(\operatorname{Im} h) \subset \operatorname{Im} h, \ \forall X \in T(N_s^2(0)).$$

Therefore, the first normal bundle is parallel in the normal bundle. Consequently, it follows from the Reduction Theorem of Erbacher-Magid that $N_s^2(0)$ is immersed in a totally geodesic complex (2 + r)-subspace $\mathbf{C}_{s,r}^{2+r}$ of $\mathbf{C}_{s+r}^{2+2r} = \mathbf{C}_{0,r}^r \times \mathbf{C}_s^2$. Now, by applying (4.9), Proposition 3.2 and Weingarten's formula, we obtain

(4.10)
$$\nabla_X \xi_0, \nabla_X J \xi_0 \in \operatorname{Im} h$$

for every vector $X \in T(N_s^n(0))$. Hence the first normal bundle is a constant complex r-subspace $\mathbf{C}_{0,r}^r \subset \mathbf{C}_{s,r}^{2+r}$ with a degenerate metric. Thus, $\psi(N_s^2(0))$ can be realized as the set of points

$$(4.11) (f_1(z), \dots, f_r(z), z_1, z_2)$$

in $\mathbf{C}_{s,r}^{2+r}$ for some non-trivial complex-valued functions f_1, \ldots, f_r . Now, because $\mathbf{C}_{s,r}^{2+r}$ can be holomorphically isometric embedded into \mathbf{C}_{s+r}^{2+2r} via

(4.12)
$$(\zeta_1, \dots, \zeta_r, w_1, w_2) \mapsto (\zeta_1, \dots, \zeta_r, w_1, w_2, \zeta_r, \dots, \zeta_1),$$

B.-Y. CHEN

we conclude that $\psi: N_s^2(0) \to \mathbf{C}_{s+r}^{2+r}$ is locally congruent to (4.1). As in the proof of Theorem 3.1, we may conclude that f_1, \ldots, f_r are holomorphic functions by using the assumption that $N_s^2(0)$ is a complex surface in \mathbf{C}_{s+r}^{2+r} .

A pseudo-Riemannian submanifold of a pseudo-Riemannian manifold is called *parallel* if it has parallel second fundamental form, that is, $\overline{\nabla}h = 0$ identically.

Theorem 4.2. Let $\psi : N_s^n(0) \to \mathbf{C}_t^m$ be a flat pseudo-Kähler submanifold of the complex pseudo-Euclidean m-space \mathbf{C}_t^m . If the immersion is full and parallel, then ψ is locally congruent to the immersion:

(4.13)
$$\psi(z_1, \dots, z_n) = (f_1(z), \dots, f_r(z), z_1, \dots, z_n, f_r(z), \dots, f_1(z))$$

for some positive integer r, where f_1, \ldots, f_r are non-trivial polynomial functions of degree ≤ 2 in z_1, \ldots, z_n .

Proof. Under the hypothesis of the theorem and using the same notations as before, we have $D\eta_{ij} = 0$ for i, j = 1, ..., n. Therefore, after applying the same argument given in the proofs of Theorem 3.1 and Theorem 4.1 we know that the first normal bundle Im h is a parallel degenerate subbundle of the normal bundle. Consequently, according to the Reduction Theorem of Erbacher-Magid, $N_s^n(0)$ is immersed in a totally geodesic complex (n + r)-subspace $\mathbf{C}_{s,r}^{n+r}$ of $\mathbf{C}_{s+r}^{n+2r} = \mathbf{C}_{0,r}^r \times \mathbf{C}_s^n$, where $r = \operatorname{rank}_{\mathbf{C}}(\operatorname{Im} h)$. As before, we may also prove that the first normal bundle is a constant complex r-subspace of \mathbf{C}_{s+r}^{n+2r} . Thus, ψ is locally congruent to (4.13) for some non-trivial holomorphic functions f_1, \ldots, f_r .

Moreover, since ψ is a parallel pseudo-Kähler immersion, it follows from (4.2), (4.6), (4.13) and Proposition 3.2(iii) that the third derivatives of f_1, \ldots, f_r vanishes identically. Consequently, f_1, \ldots, f_r are polynomial functions of degree ≤ 2 in z_1, \ldots, z_n .

References

- [1] Calabi, E., Isometric imbedding of complex manifolds, Ann. Math. 58 (1953), 1–23.
- [2] Chen, B.-Y.: Riemannian submanifolds, in: F. Dillen, L. Verstraelen (Eds.) Handbook of Differential Geometry, Vol. I, 187–418, North-Holland, Amsterdam, 2000.
- [3] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, Word Scientific, Hackensack, NJ, 2011.
- [4] Magid, M. A., Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math. 8 (1984), 31–54.
- [5] Nakagawa, H. and Ogiue, K., Complex space forms immersed in complex space forms, Trans. Amer. Math. Soc. 219 (1976), 289–297.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824-1027, U.S.A.

E-mail address: bychen@math.msu.edu