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Abstract. Calabi [1] gave a classification of Kähler imbeddings of complete,

simply-connected definite complex space forms into complete, simply-connected
definite complex space forms. The local version of Calabi’s result was obtained
by Nakagawa and Ogiue in [5]. In contrast, no classification results were known
for pseudo-Kähler immersions between indefinite complex space forms.

In this article, we initiate the study of the classification problem on pseudo-
Kähler immersions between indefinite complex space forms. As a consequence,
three classification theorems for pseudo-Kähler immersions between flat indef-
inite complex space forms are obtained.

1. Introduction

A pseudo-Riemannian metric g on a complex manifold M is called pseudo-
Hermitian if the metric g and the almost complex structure J are compatible,
that is,

g(JX, JY ) = g(X,Y ), X, Y ∈ TpM, p ∈M.(1.1)

It follows from (1.1) that the index of g is an even integer 2t with 0 ≤ t ≤ m,
m = dimCM . The integer t is called the complex index.

The fundamental 2-form Ω of a pseudo-Hermitian manifold (M, g) is defined by

Ω(X,Y ) = g(X, JY ), X, Y ∈ TM.(1.2)

A pseudo-Hermitian manifold is called pseudo-Kähler if its fundamental 2-form Ω
is closed, that is, dΩ = 0. The corresponding metric is called pseudo-Kähler.

A plane section on a pseudo-Kähler manifold is called holomorphic if it is spanned
by {v, Jv} for some non-null vector v ∈ TM . The sectional curvature K(v ∧ Jv) of
a holomorphic section is called the holomorphic sectional curvature at v, which is
denoted by H(v).

A pseudo-Kähler manifold with positive complex index is called an indefinite
complex space form if it has constant holomorphic sectional curvature. We denote
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by Mm
t (4c) a complex m-dimensional indefinite complex space form of constant

holomorphic sectional curvature 4c and with complex index t.
The simplest example of indefinite complex space form is the flat complex pseudo-

Euclidean m-space Cm
t with complex index t which is the complex m-space Cm

endowed with the flat metric

g0 = −
t∑

j=1

dzjdz̄j +
m∑

j=t+1

dzjdz̄j .(1.3)

A pseudo-Riemannian submanifoldNn
s of a pseudo-Kähler manifoldMm

t is called
a complex submanifold if each of its tangent spaces is invariant under the action
of the almost complex structure J of Mm

t . By a pseudo-Kähler submanifold we
mean a complex submanifold of a pseudo-Kähler manifold with its induced pseudo-
Kählerian structure.

E. Calabi gave in [1] a classification of Kähler imbeddings of complete and simply
connected definite complex space forms into complete and simply-connected definite
complex space forms. The local version of Calabi’s result was obtained by Nakagawa
and Ogiue in [5]. In contrast, no classification results were known for pseudo-Kähler
immersions between indefinite complex space forms.

In this article we initiate the study of the classification problem on pseudo-
Kähler immersions between indefinite complex space forms. As a consequence,
three classification theorems for pseudo-Kähler immersions between flat indefinite
complex space forms are obtained.

2. Preliminaries

2.1. Basic formulas. Let Mm
t (4c) denote a complete simply-connected pseudo-

Kähler m-manifold with complex index t and with constant holomorphic sectional
curvature 4c. Then the curvature tensor R̃ of the indefinite complex space form
Mm

t (4c) satisfies

(2.1)
R̃(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY + 2g(X, JY )JZ}.

Assume that Nn
s is a pseudo-Kähler submanifold of Mm

t (4c). We denote the

Levi-Civita connections of Nn
s andMm

t (4c) by ∇ and ∇̃, respectively. The formulas
of Gauss and Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ),(2.2)

∇̃Xξ = −AξX +DXξ,(2.3)

for vector fields X and Y tangent to Nn
s and vector field ξ normal to Nn

s , where D
is the normal connection.

The second fundamental form h is related to Aξ by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩ .(2.4)

If we denote the curvature tensors of ∇ and D by R and RD, respectively, then the
equations of Gauss and Codazzi are given by
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⟨R(X,Y )Z,W ⟩ =
⟨
Ah(Y,Z)X,W

⟩
−

⟨
Ah(X,Z)Y,W

⟩
(2.5)

+ c(⟨X,W ⟩ ⟨Y, Z⟩ − ⟨X,Z⟩ ⟨Y,W ⟩),
(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z),(2.6)

RD(X,Y ; ξ, η) = R̃(X,Y ; ξ, η) + ⟨[Aξ, Aη](X), Y ⟩ ,(2.7)

where X,Y, Z,W (respectively, η and ξ) are vector fields tangent (respectively,
normal) to Nn

s ; and ∇h is defined by

(∇̄Xh)(Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).(2.8)

For pseudo-Kähler submanifolds the following results are well-known (see, for
instance, [3]).

Lemma 2.1. The second fundamental form h, the shape operator A and the normal
connection D of a pseudo-Kähler submanifold Nn

s of a pseudo-Kähler manifoldMm
t

satisfy

h(JX, Y ) = h(X,JY ) = Jh(X,Y ),(2.9)

AJξ
= JAξ, JAξ = −AξJ,(2.10)

DXJξ = JDXξ,(2.11)

for X,Y tangent to Nn
s and ξ normal to Nn

s .

Proof. Equations (2.9) and (2.10) can be found in [3, page 187]. Equation (2.11)

follows immediately from ∇̃XJξ = J∇̃Xξ and formula (2.3) of Weingarten. �
2.2. Reduction theorem. Let Rn

i,j denote the affine n-space equipped with the
metric whose canonical form isOj

−Ii
In−i−j

 ,

where Ik is the k × k identity matrix and Oj is the j × j zero matrix.
The metric is non-degenerate if and only if j = 0. The j in Rn

i,j measures the

degenerate part. The metric of Rn
i,j = Rj

0,j ×En−j
i is degenerate on the first factor

Rj
0,j and it is the standard pseudo-Euclidean metric with index i on the second

factor En−j
i .

Similar notation holds for the complex space Cn
i,j = Cj

0,j ×Cn−j
i .

Denote the natural embedding ι : Cn
i,j → Cn+j

i+j given by

ι((z1, z2, . . . , zn)) = (z1, . . . , zj , zj+1, . . . , zn, zj , . . . , z1) ∈ Cn+j
i+j(2.12)

for (z1, . . . , zn) ∈ Cn
i,j .

Let ϕ : N → M be an isometric immersion of a pseudo-Riemannian manifold
into another pseudo-Riemannian manifold. At each point p ∈ N , the first normal
space at p, denoted by Imhp, is defined by

Imhp = {h(u, v) : u, v ∈ Tp(N)}.
The following result is known as the reduction theorem of Erbacher-Magid (cf.

[4] or [3, page 40]).
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Theorem 2.1. Let ϕ : Nn
i → Em

t be an isometric immersion of a pseudo-Rieman-
nian n-manifold Nn

i with index i into the pseudo-Euclidean m-space Em
t . If the

first normal spaces are parallel, then there exists a complete (n + k)-dimensional
totally geodesic submanifold E∗ such that ψ(Nn

i ) ⊂ E∗, where k is the dimension
of the first normal spaces.

In Erbacher-Magid’s reduction theorem, E∗ = Rn+k
s,t for some s, t and t need not

be zero.

3. Flat pseudo-Kähler submanifolds Nn
s (0) in Cn+2

t

A pseudo-Riemannian submanifold Nn
s of a pseudo-Riemannian manifold is

called isotropic if ⟨h(v, v), h(v, v)⟩ is independent of the choice of the unit vector
v ∈ Tp(N

n
s ) at each point p ∈ Nn

s , where h denotes the second fundamental form
of Nn

s . Moreover, the pseudo-Riemannian submanifold Nn
s is called null-isotropic

if its second fundamental form h satisfies

⟨h(u, u), h(u, u)⟩ = 0(3.1)

for any u ∈ T (Nn
s ).

The following result can be found in [3, page 189].

Proposition 3.1. A pseudo-Kähler submanifold Nn
s of an indefinite complex space

form Mm
t (4c) has constant holomorphic sectional curvature 4c if and only if Nn

s is
null-isotropic.

To prove the main results, we need the following proposition.

Proposition 3.2. Let Nn
s be a pseudo-Kähler submanifold of an indefinite complex

space form Mm
t (4c). Then the following three statements are equivalent:

(i) Nn
s is flat;

(ii) the second fundamental form h of Nn
s satisfies

⟨h(u, v), h(w, θ)⟩ = 0,(3.2)

for any u, v, w, θ ∈ T (Nn
s );

(iii) the shape operator A of Nn
s satisfies Aξ = 0 for each ξ ∈ Imh.

Proof. Assume that Nn
s is a pseudo-Kähler submanifold of an indefinite complex

space form Mm
t (4c).

If Nn
s is a flat pseudo-Kähler submanifold, then Nn

s is null-isotropic according
to Proposition 3.1. Thus condition (3.1) holds. After replacing the u in (3.1) by
u+ v, we find

(3.3)
2 ⟨h(u, u), h(u, v)⟩+ 2 ⟨h(v, v), h(u, v)⟩

+ 2 ⟨h(u, v), h(u, v)⟩+ ⟨h(u, u), h(v, v)⟩ = 0.

Similarly, after replacing the u by u− v, we have

(3.4)
2 ⟨h(u, u), h(u, v)⟩+ 2 ⟨h(v, v), h(u, v)⟩

− 2 ⟨h(u, v), h(u, v)⟩ − ⟨h(u, u), h(v, v)⟩ = 0.

Thus, after combining (3.3) and (3.4), we get

⟨h(u, u), h(u, v)⟩+ ⟨h(v, v), h(u, v)⟩ = 0,(3.5)

2 ⟨h(u, v), h(u, v)⟩+ ⟨h(u, u), h(v, v)⟩ = 0.(3.6)
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On the other hand, since Nn
s is a pseudo-Kähler submanifold of constant holo-

morphic sectional curvature 4c in an indefinite complex space form Mm
t (4c) of the

same constant holomorphic sectional curvature, it follows from (2.1) and Gauss’
equation that

⟨h(u, v), h(u, v)⟩ − ⟨h(u, u), h(v, v)⟩ = 0.(3.7)

Thus, by combining (3.6) and (3.7), we obtain

⟨h(u, u), h(v, v)⟩ = 0(3.8)

for any u, v tangent to Nn
s . Now, after applying polarization we obtain (3.2) from

(3.8). This shows that (i) implies (ii).
(ii) =⇒ (i) is obvious.
Now, let us assume that (ii) holds. Then we find from (2.4) and (3.2) that⟨

Ah(u,v)w, θ
⟩
= 0 ∀u, v, w, θ ∈ T (Nn

s ).(3.9)

Since Nn
s is pseudo-Riemannian, (3.9) implies that Aξ = 0 for any ξ ∈ Imh. This

proves (iii).
Conversely, it follows from (2.4) that (iii) implies (ii). �

Theorem 3.1. Let ψ : Nn
s (0) → Cn+2

t be a flat pseudo-Kähler submanifold of the
complex pseudo-Euclidean (n+ 2)-space Cn+2

t . Then either

(i) t ∈ {s, s+ 1, s+ 2} and ψ is a totally geodesic pseudo-Kähler immersion, or

(ii) t = s+1 and ψ is locally congruent to the following pseudo-Kähler immersion:

ψ(z1, . . . , zn) =
(
f(z), z1, . . . , zn, f(z)

)
,

where f(z) := f(z1, . . . , zn) is a non-trivial holomorphic function in zj = xj + iyj,
i = 1, . . . , n.

Proof. Let ψ : Nn
s (0) → Cn+2

t be a pseudo-Kähler immersion of flat pseudo-Kähler
manifold Nn

s (0) into the complex pseudo-Euclidean (n+2)-space Cn+2
t . Then ψ is

null-isotropic according to Proposition 3.1.
Since Nn

s (0) is a flat indefinite complex space form, Nn
s (0) is locally holomor-

phically isometric to Cn
s . Hence there exists local complex coordinates z1, . . . , zn

such that the metric of Nn
s (0) is given by

g0 = −
s∑

k=1

dzkdz̄k +

n∑
k=s+1

dzkdz̄k.(3.10)

Put

∂xi =
∂

∂xi
, ∂yi =

∂

∂yi
, i = 1, . . . , n.

Then we have

∂yi = J∂xi , i = 1, . . . , n,(3.11)

Moreover, if we put

h
(
∂xi , ∂xj

)
= ηij , i, j = 1, . . . , n.(3.12)

we derive from (2.9) and (3.12) that

h
(
∂xi , ∂yj

)
= Jηij , h

(
∂yi , ∂yj

)
= −ηij , i, j = 1, . . . , n.(3.13)

It follows from Proposition 3.2 and (3.12) that, at a given point in Nn
s (0), each ηij

is either zero or light-like.
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Since z1, . . . , zn are the natural complex coordinates of Cn
s , we have

∇∂xi
∂xj = ∇∂xi

∂yj = ∇∂yi
∂yj = 0, i, j = 1, . . . , n.(3.14)

If ψ is totally geodesic, we get case (i).

Next, let us assume that ψ is non-totally geodesic. Then there exists at least
one pair (i, j), i, j ∈ {1, . . . , n} with i ≤ j such that ηij ̸= 0. For simplicity, let us
denote this ηij by ξ0.

It is clear that ξ0, Jξ0 span a light-like complex line subbundle of the normal
bundle T⊥(Nn

s (0)), that is,

⟨ξ0, ξ0⟩ = ⟨ξ0, Jξ0⟩ = ⟨Jξ0, Jξ0⟩ = 0, ξ0 ̸= 0.(3.15)

Thus, the complex index of the normal bundle must be one. Therefore, we obtain
t = s+ 1.

If there exists another pair (k, ℓ) ̸= (i, j) with k ≤ ℓ and ηkℓ ̸= 0, then we also
have

⟨ηkℓ, ηkℓ⟩ = ⟨ηkℓ, Jηkℓ⟩ = ⟨Jηkℓ, Jηkℓ⟩ = 0.(3.16)

It follows from Proposition 3.2 that

⟨ξ0, ηkℓ⟩ = ⟨Jξ0, Jηkℓ⟩ = 0.(3.17)

Moreover, from Lemma 2.1 and Proposition 3.2, we also have

⟨ξ0, Jηkℓ⟩ = 0.(3.18)

From these we conclude that the first normal bundle, {Imhp, p ∈ Nn
s (0)}, is spanned

by {ξ0, Jξ0}. Moreover, Imh is a complex line subbundle equipped with degenerate
induced metric.

Now, by differentiating (3.15), we obtain

⟨DXξ0, ξ0⟩ = ⟨DXJξ0, Jξ0⟩ = 0(3.19)

for any X ∈ T (Nn
s (0)).

On the other hand, after applying (3.12), (3.13), (3.14) and the equation of
Codazzi we find

D∂xi
Jξ0 = D∂yi

ξ0, D∂yi
Jξ0 = −D∂xi

ξ0.(3.20)

By combining (3.19) and (3.20) we also have

⟨DXξ0, Jξ0⟩ = 0, X ∈ T (Nn
s (0)).(3.21)

It follows from (3.19) and (3.21) that DXξ0, DXJξ0 ∈ Imh. Therefore the first
normal space is complex one-dimensional and it is light-like. Moreover, it is parallel
in the normal bundle. Consequently, ψ(Nn

s (0)) is contained in a degenerate complex
hyperplane Cn+1

s,1 of Cn+1
s+1 according to the Reduction Theorem of Erbacher-Magid

(see Theorem 2.1 or [3, page 40]).
It is well-known that Cn+1

s,1 is holomorphically isometric to the complex affine

(n+ 1)-space C1
0,1 ×Cn

s , where C1
0,1 is equipped with a degenerate metric.

On the other hand, it follows from Proposition 3.2 that the shape operator
satisfies

Aξ0 = 0, ∀ξ ∈ Imh(3.22)
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Thus, we derive from (2.3) and (3.13) that

∇̃Xξ0, ∇̃XJξ0 ∈ Imh(3.23)

for every vector X ∈ T (Nn
s (0)). Hence the first normal bundle Imh is a constant

complex line C1
0,1 with a degenerate metric in Cn+1

s,1 . Therefore, there exists a

non-trivial complex-valued function f(z) such that ψ(Nn
s (0)) is realized as the set

of points

(f(z), z1, . . . , zn)(3.24)

in Cn+1
s,1 = C1

0,1 ×Cn
s . Because Cn+1

s,1 can be holomorphically isometric embedded

into Cn+2
s+1 via the map

(w0, w1, . . . , wn) 7→ (w0, w1, . . . , wn, w0),(3.25)

we conclude that the immersion ψ : Nn
s (0) → Cn+2

s+1 is congruent to

(3.26) ψ(z1, . . . , zn) =
(
f(z), z1, . . . , zn, f(z)

)
.

Now, if we put f(z) = u(z)+ iv(z), then after applying the assumption that Nn
s (0)

is a complex submanifold of Cn+2
s+1 , we find

i
∂u

∂xj
− ∂v

∂xj
=

∂u

∂yj
+ i

∂v

∂yj
.

Hence u and v satisfy the Cauchy-Riemann equations, that is,

∂u

∂xj
=

∂v

∂yj
,
∂u

∂yj
= − ∂v

∂xj
, j = 1, . . . , n.

Therefore, f(z1, . . . , zn) is a holomorphic function. Consequently, we obtain case
(ii) of the theorem. �

4. Flat pseudo-Kähler submanifolds fully in Cm
t

A pseudo-Kähler immersion ψ : Nn
s → Cm

t is said to be full if ψ(Nn
s ) does not

lie in any totally geodesic complex pseudo-Euclidean subspace Cm′

t′ of Cm
t with

m′ < m and t′ ≤ t.
Because the following theorem can be proved in the same spirit as Theorem 3.1,

we only provide the key steps of the proof.

Theorem 4.1. Let ψ : N2
s (0) → Cm

t be a flat pseudo-Kähler surface of the complex
pseudo-Euclidean m-space Cm

t . If the immersion is full, then ψ is locally congruent
to the immersion:

(4.1) ψ(z1, z2) =
(
f1(z), . . . , fr(z), z1, z2, fr(z), . . . , f1(z)

)
for some positive integer r, where f1, . . . , fr are non-trivial holomorphic functions.

Proof. Let ψ : N2
s (0) → Cm

t be a pseudo-Kähler immersion of a flat pseudo-Kähler
surface N2

s (0) into the complex pseudo-Euclidean m-space Cm
t . Then it follows

from Proposition 3.2 that (3.2) holds. Hence, at each point p ∈ N2
s (0), the first

normal space, Imhp, is a complex subspace of the normal space T⊥(N2
s (0)) with a

degenerate induced metric.
Now, let us assume that the pseudo-Kähler immersion ψ is full. The we have

Cm
t = C2+2r

s+r , where r is the complex rank of the first normal bundle Imh.



FLAT PSEUDO-KÄHLER SUBMANIFOLDS 191

Since N2
s (0) is a flat indefinite complex space form, N2

s (0) is locally holomor-
phically isometric to C2

s. Hence we may assume that the metric is given by (3.10)
with n = 2. As in the proof of Theorem 3.1, we have

∇∂xi
∂xj = ∇∂xi

∂yj = ∇∂yi
∂yj = 0,(4.2)

∂yi = J∂xi , i, j = 1, 2.(4.3)

As before, if we put ηij = h
(
∂xi , ∂xj

)
, then we have

h
(
∂xi , ∂yj

)
= Jηij , h

(
∂yi , ∂yj

)
= −ηij .(4.4)

From Proposition 3.2 we find

⟨D∂xk
ηij , ηij⟩ = ⟨D∂yk

ηij , ηij⟩ = 0, i, j, k = 1, 2.(4.5)

On the other hand, by (2.8) and (4.2), we have

(4.6)

(∇∂xi
h)(∂xj

, ∂xk
) = D∂xj

h(∂xi
, ∂xk

),

(∇∂yi
h)(∂xj , ∂xk

) = D∂xj
h(∂yi , ∂xk

),

(∇∂yi
h)(∂yj , ∂xk

) = D∂yj
h(∂yi , ∂xk

),

(∇∂yi
h)(∂yj , ∂yk

) = D∂yj
h(∂yi , ∂yk

).

Thus, by Codazzi’s equation and (4.6) we get

(4.7)

D∂xi
h(∂xj , ∂xk

) = D∂xj
h(∂xi , ∂xk

) = D∂xk
h(∂xi , ∂xj ),

D∂yi
h(∂xj , ∂xk

) = D∂xj
h(∂yi , ∂xk

) = D∂xk
h(∂yi , ∂xj ),

· · · etc.,

Now, by applying (4.3), (4.5), (4.6) and Lemma 2.1, we find

(4.8)
⟨D∂xk

ηij , Jηij ⟩ = ⟨D∂yk
ηij , ηij ⟩ = 0,

⟨D∂xi
ηjj , ηik ⟩ = ⟨D∂xk

ηij , ηij ⟩ = 0, i, j, k = 1, 2.

Since the first normal bundle Imh of N2
s (0) in C2+r

s+r is of complex rank r endowed
with a degenerate induced metric, it follows from (4.5) and (4.8) that

DX(Imh) ⊂ Imh, ∀X ∈ T (N2
s (0)).(4.9)

Therefore, the first normal bundle is parallel in the normal bundle. Consequently,
it follows from the Reduction Theorem of Erbacher-Magid that N2

s (0) is immersed
in a totally geodesic complex (2 + r)-subspace C2+r

s,r of C2+2r
s+r = Cr

0,r ×C2
s. Now,

by applying (4.9), Proposition 3.2 and Weingarten’s formula, we obtain

∇̃Xξ0, ∇̃XJξ0 ∈ Imh(4.10)

for every vectorX ∈ T (Nn
s (0)). Hence the first normal bundle is a constant complex

r-subspace Cr
0,r ⊂ C2+r

s,r with a degenerate metric. Thus, ψ(N2
s (0)) can be realized

as the set of points

(f1(z), . . . , fr(z), z1, z2)(4.11)

in C2+r
s,r for some non-trivial complex-valued functions f1, . . . , fr. Now, because

C2+r
s,r can be holomorphically isometric embedded into C2+2r

s+r via

(ζ1, . . . , ζr, w1, w2) 7→ (ζ1, . . . , ζr, w1, w2, ζr, . . . , ζ1),(4.12)
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we conclude that ψ : N2
s (0) → C2+r

s+r is locally congruent to (4.1). As in the proof of
Theorem 3.1, we may conclude that f1, . . . , fr are holomorphic functions by using
the assumption that N2

s (0) is a complex surface in C2+r
s+r . �

A pseudo-Riemannian submanifold of a pseudo-Riemannian manifold is called
parallel if it has parallel second fundamental form, that is, ∇̄h = 0 identically.

Theorem 4.2. Let ψ : Nn
s (0) → Cm

t be a flat pseudo-Kähler submanifold of the
complex pseudo-Euclidean m-space Cm

t . If the immersion is full and parallel, then
ψ is locally congruent to the immersion:

(4.13) ψ(z1, . . . , zn) =
(
f1(z), . . . , fr(z), z1, . . . , zn, fr(z), . . . , f1(z)

)
for some positive integer r, where f1, . . . , fr are non-trivial polynomial functions of
degree ≤ 2 in z1, . . . , zn.

Proof. Under the hypothesis of the theorem and using the same notations as before,
we have Dηij = 0 for i, j = 1, . . . , n. Therefore, after applying the same argument
given in the proofs of Theorem 3.1 and Theorem 4.1 we know that the first normal
bundle Imh is a parallel degenerate subbundle of the normal bundle. Consequently,
according to the Reduction Theorem of Erbacher-Magid, Nn

s (0) is immersed in a
totally geodesic complex (n + r)-subspace Cn+r

s,r of Cn+2r
s+r = Cr

0,r × Cn
s , where

r = rankC(Imh). As before, we may also prove that the first normal bundle is a
constant complex r-subspace of Cn+2r

s+r . Thus, ψ is locally congruent to (4.13) for
some non-trivial holomorphic functions f1, . . . , fr.

Moreover, since ψ is a parallel pseudo-Kähler immersion, it follows from (4.2),
(4.6), (4.13) and Proposition 3.2(iii) that the third derivatives of f1, . . . , fr vanishes
identically. Consequently, f1, . . . , fr are polynomial functions of degree ≤ 2 in
z1, . . . , zn. �
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