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ABSTRACT. Calabi [1] gave a classification of Kahler imbeddings of complete,
simply-connected definite complex space forms into complete, simply-connected
definite complex space forms. The local version of Calabi’s result was obtained
by Nakagawa and Ogiue in [5]. In contrast, no classification results were known
for pseudo-Kéahler immersions between indefinite complex space forms.

In this article, we initiate the study of the classification problem on pseudo-
Kaéahler immersions between indefinite complex space forms. As a consequence,
three classification theorems for pseudo-Kéahler immersions between flat indef-
inite complex space forms are obtained.

1. INTRODUCTION

A pseudo-Riemannian metric ¢ on a complex manifold M is called pseudo-
Hermitian if the metric g and the almost complex structure J are compatible,
that is,

(1.1) g(JX,JY) = g(X,Y), X,Y €T,M, pe M.

It follows from (1.1) that the index of g is an even integer 2t with 0 < ¢ < m,
m = dimg M. The integer t is called the complex index.
The fundamental 2-form  of a pseudo-Hermitian manifold (M, g) is defined by

(1.2) QX,Y) =g(X,JY), X,Y € TM.

A pseudo-Hermitian manifold is called pseudo-Kdhler if its fundamental 2-form €
is closed, that is, d2 = 0. The corresponding metric is called pseudo-Kdhler.

A plane section on a pseudo-Kéhler manifold is called holomorphic if it is spanned
by {v, Juv} for some non-null vector v € TM. The sectional curvature K (v A Jv) of
a holomorphic section is called the holomorphic sectional curvature at v, which is
denoted by H(v).

A pseudo-Kahler manifold with positive complex index is called an indefinite
complex space form if it has constant holomorphic sectional curvature. We denote
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by M]"(4c) a complex m-dimensional indefinite complex space form of constant
holomorphic sectional curvature 4c and with complex index ¢.

The simplest example of indefinite complex space form is the flat complex pseudo-
Euclidean m-space C}* with complex index ¢ which is the complex m-space C™
endowed with the flat metric

t m
(1.3) go = — Zdedfj + Z dz;dz;.
j=1 j=t+1

A pseudo-Riemannian submanifold N}* of a pseudo-Kéhler manifold M;™ is called
a complex submanifold if each of its tangent spaces is invariant under the action
of the almost complex structure J of M. By a pseudo-Kdhler submanifold we
mean a complex submanifold of a pseudo-Kéhler manifold with its induced pseudo-
Kahlerian structure.

E. Calabi gave in [1] a classification of Kahler imbeddings of complete and simply
connected definite complex space forms into complete and simply-connected definite
complex space forms. The local version of Calabi’s result was obtained by Nakagawa
and Ogiue in [5]. In contrast, no classification results were known for pseudo-Kéahler
immersions between indefinite complex space forms.

In this article we initiate the study of the classification problem on pseudo-
Kahler immersions between indefinite complex space forms. As a consequence,
three classification theorems for pseudo-Kéhler immersions between flat indefinite
complex space forms are obtained.

2. PRELIMINARIES

2.1. Basic formulas. Let M/"(4c) denote a complete simply-connected pseudo-
Kahler m-manifold with complex index ¢ and with constant holomorphic sectional
curvature 4c. Then the curvature tensor R of the indefinite complex space form
M]"(4c) satisfies

R(X,Y)Z =c{g(Y,2)X — g(X,2)Y + g(JY, Z)JX

(2.1)
—g(JX, Z)JY +29(X,JY)JZ}.

Assume that N7 is a pseudo-Kéhler submanifold of M;™(4c). We denote the
Levi-Civita connections of N* and M]"(4¢) by V and V, respectively. The formulas
of Gauss and Weingarten are given respectively by

(2.2) VxY =VxY + h(X,Y),
(2.3) Vx&=—A¢X + Dx¢,

for vector fields X and Y tangent to N and vector field £ normal to N, where D
is the normal connection.
The second fundamental form b is related to A¢ by

(2.4) (MX,Y), &) = (A X,Y).

If we denote the curvature tensors of V and D by R and RP, respectively, then the
equations of Gauss and Codazzi are given by
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(2.5) (R(X,Y)Z, W) = (Any.y X, W) — (Apixn Y, W)

+ (X, W) (Y, Z) — (X, Z) (Y, W)),
(2.6) (Vxh)(Y,Z) = (Vyh)(X, Z),
(2.7) RP(X,Y;¢&,m) = R(X,Y;6,n) + ([Ag, A(X),Y),

where X,Y,Z, W (respectively, n and ) are vector fields tangent (respectively,
normal) to N7'; and Vh is defined by
(2.8) (Vxh)(Y,Z) = Dxh(Y,Z) — h(VxY,Z) = MY, VxZ).

For pseudo-Kéhler submanifolds the following results are well-known (see, for

instance, [3]).

Lemma 2.1. The second fundamental form h, the shape operator A and the normal
connection D of a pseudo-Kdhler submanifold N7 of a pseudo-Kdahler manifold M]™
satisfy

(2.9) h(JX,Y)=h(X,JY)=Jh(X,Y),
(2.10) Ay =JAe, JAe =—AcJ,
(2.11) DxJ§ = JDx¢,

for X, Y tangent to NI and & normal to N}.

Proof. Equations (2.9) and (2.10) can be found in [3, page 187]. Equation (2.11)
follows immediately from VxJ¢ = JVx¢& and formula (2.3) of Weingarten. (]

2.2. Reduction theorem. Let R}; denote the affine n-space equipped with the
metric whose canonical form is

0j
_IZ )
In_i_j
where I}, is the k x k identity matrix and O; is the j X j zero matrix.
The metric is non-degenerate if and only if j = 0. The j in R}’; measures the

degenerate part. The metric of R} ; = R%’ ;X E?_j is degenerate on the first factor
R%y ; and it is the standard pseudo-Euclidean metric with index ¢ on the second
factor EI' 7. ‘ ‘

Similar notation holds for the complex space C}'; = Cp ; x C{"7.

Denote the natural embedding ¢ : C}'; — C;ff given by

(2.12) ((z1,22, 03 20) = (B1, o o3 Zj, Zj1s e oo s Zns Zjy oo, 21) € C?_:rjj
for (21,...,2,) € C};.

Let ¢ : N — M be an isometric immersion of a pseudo-Riemannian manifold
into another pseudo-Riemannian manifold. At each point p € N, the first normal

space at p, denoted by Im h,,, is defined by
Imh, = {h(u,v) : u,v € TH(N)}.

The following result is known as the reduction theorem of Erbacher-Magid (cf.
[4] or [3, page 40]).
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Theorem 2.1. Let ¢ : N]' — EJ* be an isometric immersion of a pseudo-Rieman-
nian n-manifold N* with index i into the pseudo-Euclidean m-space Ef*. If the
first normal spaces are parallel, then there exists a complete (n + k)-dimensional
totally geodesic submanifold E* such that Y(N]*) C E*, where k is the dimension
of the first normal spaces.

In Erbacher-Magid’s reduction theorem, E* = RZJ[k for some s,t and ¢ need not
be zero.

3. FLAT PSEUDO-KAHLER SUBMANIFOLDS N7(0) IN CJ2

A pseudo-Riemannian submanifold N7 of a pseudo-Riemannian manifold is
called isotropic if (h(v,v),h(v,v)) is independent of the choice of the unit vector
v € T,(N?) at each point p € N7, where h denotes the second fundamental form
of N'. Moreover, the pseudo-Riemannian submanifold N is called null-isotropic
if its second fundamental form h satisfies

(31) <h(u7u)ah(uau)> =0
for any u € T(N7).
The following result can be found in [3, page 189].

Proposition 3.1. A pseudo-Kdhler submanifold NI of an indefinite complex space
form M[™(4c) has constant holomorphic sectional curvature 4c if and only if NI is
null-isotropic.

To prove the main results, we need the following proposition.

Proposition 3.2. Let N} be a pseudo-Kdihler submanifold of an indefinite complex
space form M]™(4c). Then the following three statements are equivalent:

(i) NI is flat;
(i) the second fundamental form h of NI satisfies
(3.2) (h(u,v), h(w,0)) =0,
for any u,v,w,0 € T(N?);
(iil) the shape operator A of N satisfies A¢ =0 for each & € Im h.
Proof. Assume that N is a pseudo-Kéhler submanifold of an indefinite complex
space form M;™(4c).
If NI is a flat pseudo-Kéhler submanifold, then N is null-isotropic according

to Proposition 3.1. Thus condition (3.1) holds. After replacing the w in (3.1) by
u + v, we find

2 (h(u,u), h(u,v)) + 2 (h(v,v), h(u,v))
+ 2 (h(u,v), h(u,v)) + (h(u,u), h(v,v)) = 0.
Similarly, after replacing the v by u — v, we have
2 (h(u,u), h(u,v)) + 2 (h(v,v), h(u,v))
—2(h(u,v), h(u,v)) — (h(u,u), h(v,v)) = 0.
Thus, after combining (3.3) and (3.4), we get
(3.5) (h(u,u), h(u,v)) + (h(v,v), h(u,v)) =0,
(3.6) 2 (h(u,v), h(u,v)) + (h(u,u), h(v,v)) = 0.

(3.3)

(3.4)
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On the other hand, since IV} is a pseudo-Kéahler submanifold of constant holo-
morphic sectional curvature 4¢ in an indefinite complex space form M;™(4c) of the
same constant holomorphic sectional curvature, it follows from (2.1) and Gauss’
equation that

(37) <h(uvv)7h(ua 'U)> - <h(ua u),h(v,v)) =0.
Thus, by combining (3.6) and (3.7), we obtain
(3.8) (h(u,u), h(v,v)) =0

for any u,v tangent to N”. Now, after applying polarization we obtain (3.2) from
(3.8). This shows that (i) implies (ii).

(ii) = (i) is obvious.

Now, let us assume that (ii) holds. Then we find from (2.4) and (3.2) that
(3.9) <Ah(u,v)w, 9> =0 VYu,v,w,0 € T(N).
Since N is pseudo-Riemannian, (3.9) implies that A¢ = 0 for any £ € Im h. This
proves (iii).

Conversely, it follows from (2.4) that (iii) implies (ii). O
Theorem 3.1. Let ¢ : N™(0) — C*2 be a flat pseudo-Kihler submanifold of the
complex pseudo-Buclidean (n + 2)-space CP2. Then either

(i) t € {s,s+ 1,8+ 2} and ¢ is a totally geodesic pseudo-Kdahler immersion, or

(ii) t = s+ 1 and ¢ is locally congruent to the following pseudo-Kdhler immersion:

Y(z1,y .oy 2n) = (f(z),zl,...,zn,f(z)),

where f(2) := f(z1,...,2n) s a non-trivial holomorphic function in z; = x; + iy;,
i=1,...,n.

Proof. Let ¢ : N™(0) — C}"*? be a pseudo-Kihler immersion of flat pseudo-Kihler
manifold N(0) into the complex pseudo-Euclidean (n + 2)-space C}*2. Then ) is
null-isotropic according to Proposition 3.1.

Since N(0) is a flat indefinite complex space form, N?(0) is locally holomor-
phically isometric to C?. Hence there exists local complex coordinates zi, ..., 2,
such that the metric of N'(0) is given by

(3.10) go = — Z dzrdZz, + Z dzrdzy.
k=1 k=s+1
Put

8%:8(;, ayi:a?/i, i=1,...,n
Then we have
(3.11) Oy, = J0y,, 1=1,...,n,
Moreover, if we put
(3.12) h (02,1 05,) =mij, 4,5=1,...,n.
we derive from (2.9) and (3.12) that
(3.13) h(0,,0y,) = Jnij, h(8y,,0y,) = —nij, i,5=1,...,n.

It follows from Proposition 3.2 and (3.12) that, at a given point in N7'(0), each 7;;
is either zero or light-like.



FLAT PSEUDO-KAHLER SUBMANIFOLDS 189

Since 21, ..., 2, are the natural complex coordinates of C7', we have

(3.14) Vaziaxj = Vaziayj = Vayiayj = 0, i,j = 1, ey n.

If 4 is totally geodesic, we get case (i).

Next, let us assume that v is non-totally geodesic. Then there exists at least
one pair (4,7),4,j € {1,...,n} with ¢ < j such that n;; # 0. For simplicity, let us
denote this 7;; by &o.

It is clear that &y, J& span a light-like complex line subbundle of the normal
bundle T+ (N?(0)), that is,

(3.15) (€0,60) = (60, J60) = (JE0, JE0) =0, & # 0.

Thus, the complex index of the normal bundle must be one. Therefore, we obtain
t=s+1.

If there exists another pair (k,f) # (i,7) with k& < £ and 7, # 0, then we also
have

(3.16) (Mkesiee) = ey Jke) = (e, Jnke) = 0.
It follows from Proposition 3.2 that

(3.17) (€0, mke) = (J€o, Jnke) = 0.
Moreover, from Lemma 2.1 and Proposition 3.2, we also have
(3.18) (€0, Jnre) = 0.

From these we conclude that the first normal bundle, {Im h,,p € N2*(0)}, is spanned
by {0, J&}. Moreover, Im h is a complex line subbundle equipped with degenerate
induced metric.

Now, by differentiating (3.15), we obtain

(3.19) (Dx&o,&) = (DxJ&, J&) =0

for any X € T(N(0)).
On the other hand, after applying (3.12), (3.13), (3.14) and the equation of
Codazzi we find

(3.20) Do, J€ = Do, &, Do, J€ = —Da, .
By combining (3.19) and (3.20) we also have
(3.21) <Dxf0, J§0> =0, X € T(NS(O))

It follows from (3.19) and (3.21) that Dx&y, DxJ& € Imh. Therefore the first
normal space is complex one-dimensional and it is light-like. Moreover, it is parallel
in the normal bundle. Consequently, ¢(N(0)) is contained in a degenerate complex
hyperplane C:’jl of C?jr"ll according to the Reduction Theorem of Erbacher-Magid
(see Theorem 2.1 or [3, page 40]).

It is well-known that C?j’l is holomorphically isometric to the complex affine
(n + 1)-space C(l)’1 x C7, where Céyl is equipped with a degenerate metric.

On the other hand, it follows from Proposition 3.2 that the shape operator
satisfies

(3.22) A, =0, VE€Imh
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Thus, we derive from (2.3) and (3.13) that
(3.23) Vxéo, VxJ& € Imh

for every vector X € T(N(0)). Hence the first normal bundle Im & is a constant
complex line Cj, with a degenerate metric in C?jl. Therefore, there exists a
non-trivial complex-valued function f(z) such that ¢(N(0)) is realized as the set
of points

(3.24) (f(2),21,...,2n)

in C'"! = Cj1 x CY. Because C"1! can be holomorphically isometric embedded
into C™1?2 via the map
s+1

(325) (w07w13"'awn) — (w()awla"'?wnawf))a
we conclude that the immersion ¢ : N7*(0) — Cgif is congruent to

(3.26) V(z1,. ey 2n) = (f(z),zl,...,zn,f(z)).

Now, if we put f(z) = u(z) +iv(z), then after applying the assumption that N'(0)

is a complex submanifold of Cgif, we find

. Ou ov  Ou . 0Ov

1 = —+1 /.
Ozj  Oxj  Oy; Oy
Hence u and v satisfy the Cauchy-Riemann equations, that is,

Ju dv  Ou v |

— =, — = -, ]:1,...,71.

Oz; Oy; 0y Oz,
Therefore, f(z1,...,2,) is a holomorphic function. Consequently, we obtain case
(ii) of the theorem. O

4. FLAT PSEUDO-KAHLER SUBMANIFOLDS FULLY IN C}*

A pseudo-Kéhler immersion v : N — CI™ is said to be full if 1(N?') does not
lie in any totally geodesic complex pseudo-Euclidean subspace CZL' of C* with
m' <mand t <t

Because the following theorem can be proved in the same spirit as Theorem 3.1,
we only provide the key steps of the proof.

Theorem 4.1. Let 1) : N2(0) — CI* be a flat pseudo-Kdihler surface of the complex
pseudo-Euclidean m-space C{*. If the immersion is full, then 1 is locally congruent
to the immersion:

(4.1) W(z1,22) = (fl(z), ces Jr(2), 21, 20, fr(2), - - - fl(z))

for some positive integer r, where f1,..., f, are non-trivial holomorphic functions.

Proof. Let ¢ : N2(0) — C7 be a pseudo-Kihler immersion of a flat pseudo-Kéhler
surface N2(0) into the complex pseudo-Euclidean m-space CJ*. Then it follows
from Proposition 3.2 that (3.2) holds. Hence, at each point p € N2(0), the first
normal space, Im h,,, is a complex subspace of the normal space T-(N2(0)) with a
degenerate induced metric.

Now, let us assume that the pseudo-Kéhler immersion 1 is full. The we have
Cl' = Cii?f“, where r is the complex rank of the first normal bundle Im h.
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Since N2(0) is a flat indefinite complex space form, N2(0) is locally holomor-
phically isometric to C2. Hence we may assume that the metric is given by (3.10)
with n = 2. As in the proof of Theorem 3.1, we have

(4.2) Vo, 0z, = Vo, 0y =V, 0y, =0,
(4.3) 0y = J0,,, ij=1,2.
As before, if we put n;; = h (6%, 83:],), then we have
(4.4) h (0z,,0y;) = Jnij, h(0y,,0y,) = —nij-
From Proposition 3.2 we find
(4.5) (Dowijs mij) = (Daylij> mig) = 0, 4,4,k = 1,2.
On the other hand, by (2.8) and (4.2), we have
(Vo,,1)(0s;,0x,,) = Do, h(0x;, 0uy.),
(46) (Vayl h)(0z;,0x,.) = Do, 1(0y,; 0x,),
(Voy, 1)@y, 0u,) = Do, hldyss 0y,
(Vayl h)(ayg ) ayk) = DauJ h(ayi ) ayk->
Thus, by Codazzi’s equation and ( .6) we get
D, 12, 82,) = Dy, (01, 00,) = Do, 1 B,
(4.7) Do, M0s,,0,) = (3y,7 02,.) = Do, 70y, , 0z, ),

. e?fc.7
Now, by applying (4.3), (4.5), (4.6) and Lemma 2.1, we find
(48) (Do, nijs Jnij) = (Do, mijsmiz) = 0,
. <D3mi77jja771'k>:<D3mknij7nij>:Oa Za]7k:1a2

Since the first normal bundle Im k of N2(0) in ngrr: is of complex rank r endowed
with a degenerate induced metric, it follows from (4.5) and (4.8) that

(4.9) Dx(Imh) C Imh, VX € T(NZ(0)).

Therefore, the first normal bundle is parallel in the normal bundle. Consequently,
it follows from the Reduction Theorem of Erbacher-Magid that N2(0) is immersed
in a totally geodesic complex (2 + r)-subspace C21" of cifzr = Cj.,. x C2. Now,
by applying (4.9), Proposition 3.2 and Wemgarten s formula, we obtain

(4.10) Vxéo,VxJ& € Imh

for every vector X € T(N(0)). Hence the first normal bundle is a constant complex
r-subspace Cj,. C C21" with a degenerate metric. Thus, )(NZ(0)) can be realized
as the set of points

(411) (fl(z)v'“vfr(z)aZleQ)

in C2t" for some non-trivial complex-valued functions fi,..., f.. Now, because
<

Ci‘*f’ can be holomorphically isometric embedded into Ciifr via

(412) (Clv . ',Cr,wlan) = (Clv . 'aCr,wlawZaCTa .. '7C1);
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we conclude that ¢ : N2(0) — C217 is locally congruent to (4.1). As in the proof of
Theorem 3.1, we may conclude that fq,..., f, are holomorphic functions by using
the assumption that N2(0) is a complex surface in C217. O

A pseudo-Riemannian submanifold of a pseudo-Riemannian manifold is called
parallel if it has parallel second fundamental form, that is, VA = 0 identically.

Theorem 4.2. Let ¢ : N(0) — C}J* be a flat pseudo-Kdhler submanifold of the
complex pseudo-Euclidean m-space CJ*. If the immersion is full and parallel, then
1 is locally congruent to the immersion:

(4.13) (21,0, 2n) = (fl(z), cos fr(2), 21, - .,zn,fr(z),...7f1(z))

for some positive integer r, where f1,..., f. are non-trivial polynomial functions of
degree < 2 in z1,...,2%n.

Proof. Under the hypothesis of the theorem and using the same notations as before,
we have Dn;; = 0 for ¢,j = 1,...,n. Therefore, after applying the same argument
given in the proofs of Theorem 3.1 and Theorem 4.1 we know that the first normal
bundle Im h is a parallel degenerate subbundle of the normal bundle. Consequently,
according to the Reduction Theorem of Erbacher-Magid, N*(0) is immersed in a
totally geodesic complex (n + r)-subspace Cf" of cuir = 0 X C¥, where
r = rankc(Imh). As before, we may also prove that the first normal bundle is a
constant complex r-subspace of C2f?". Thus, v is locally congruent to (4.13) for
some non-trivial holomorphic functions fy,..., f..

Moreover, since 9 is a parallel pseudo-Kéahler immersion, it follows from (4.2),
(4.6), (4.13) and Proposition 3.2(iii) that the third derivatives of fi, ..., f, vanishes
identically. Consequently, fi,..., f,. are polynomial functions of degree < 2 in

ZlyeeeyZn. (Il
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