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Abstract. While the concept of straight-line length is well understood in
taxicab geometry, little research has been done into the length of curves or
the nature of area and volume in this geometry. This paper sets forth a
comprehensive view of the basic dimensional measures in taxicab geometry.

1. Introduction

When taxicab geometry is mentioned, the context is often a contrast with two-
dimensional Euclidean geometry. Whatever the emphasis, the depth of the dis-
cussion frequently does not venture far beyond how the measurement of length is
affected by the usual Euclidean metric being replaced with the taxicab metric where
the distance between two points (x1, y1) and (x2, y2) is given by

dt = |x2 − x1|+ |y2 − y1|

Papers have appeared that explore length in taxicab geometry in greater detail
[9, 10], and a few papers have derived area and volume formulae for certain figures
and solids using exclusively taxicab measurements [2, 5, 11]. However, this well-
built foundation has left a number of open questions. What is the taxicab length of
a curve in two dimensions? In three dimensions? What does area actually mean in
two-dimensional taxicab geometry? Is the taxicab area of a “flat” surface in three
dimensions comparable to the taxicab area of the “same” surface (in a Euclidean
sense) in two dimensions? These are all fundamental questions that do not appear
to have been answered by the current body of research in taxicab geometry. In this
paper we wish to provide a comprehensive, unified view of length, area, and volume
in taxicab geometry.

Where suitable and enlightening, we will use the value πt = 4 as the value for π
in taxicab geometry [3].
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Figure 1. Taxicab length as a sum of Euclidean projections onto
the coordinate axes.

2. The Nature of Length

The first dimensional measure we will examine is the simplest of the measures:
the measurement of length. This is also, for line segments at least, the most well
understood measure in taxicab geometry.

2.1. One-dimensional Length. The simplest measurement of length is the length
of a line segment in one dimension. On this point, Euclidean and taxicab geometry
are in complete agreement. The length of a line segment from a point A = a
to another point B = b is simply the number of unit lengths covered by the line
segment,

de(A,B) = dt(A,B) = |b− a|

2.2. Two-dimensional Linear Length. In two dimensions, however, the Eu-
clidean and taxicab metrics are not always in agreement on the length of a line
segment. For line segments parallel to a coordinate axis, such as the line segment
with endpoints A = (x1, y) and B = (x2, y), there is agreement since both metrics
reduce to one-dimensional measurement: de(A,B) = dt(A,B) = |x2 − x1|. Only
when the line segment is not parallel to one of the coordinate axes do we finally
see disagreement between the Euclidean and taxicab metrics. The taxicab length
of such a line segment can be viewed as the sum of the Euclidean lengths of the
projections of the line segment onto the coordinate axes (Figure 1),

(2.1) dt = de| cos θ|+ de| sin θ|

The Pythagorean Theorem tells us the Euclidean and taxicab lengths will generally
not agree for line segments that are not parallel to one of the coordinate axes. Line
segments of the same Euclidean length will have various taxicab lengths as their
position relative to the coordinate axes changes. If one were to place a scale on
a diagonal line, the Euclidean and taxicab markings would differ with the largest
discrepancy being at a 45◦ angle to the coordinate axes (Figure 2).

These cases and types of length measurement are well known and are well under-
stood to those familiar with taxicab geometry. But, even in two dimensions, there
is at least one other type of length measurement in Euclidean geometry: the length
of a curve. How is the length of a (functional) curve in two dimensions measured
in taxicab geometry?

2.3. Arc Length in Two Dimensions. In Euclidean geometry, the arc length
of a curve described by a function f with a continuous derivative over an interval
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Figure 2. The scale of measurement differs along a diagonal line
for Euclidean geometry (below the line) and taxicab geometry
(above the line).

[a, b] is given by

L =

∫ b

a

√
1 + [f ′(x)]2 dx

To find a corresponding formula in taxicab geometry, we may follow a traditional
method for deriving arc length. First, split the interval [a, b] into n subintervals
with widths △x1,△x2, . . . ,△xn by defining points x1, x2, ..., xn−1 between a and
b (Figure 3). This allows for definition of points P0, P1, P2, ..., Pn on the curve
whose x-coordinates are a, x1, x2, ..., xn−1, b. By connecting these points, we obtain
a polygonal path approximating the curve. At this crucial point of the derivation
we apply the taxicab metric instead of the Euclidean metric to obtain the taxicab
length Lk of the kth line segment,

Lk = △xk + |f(xk)− f(xk−1)|

By the Mean Value Theorem, there is a point x∗
k between xk−1 and xk such that

f(xk)−f(xk−1) = f ′(x∗
k)△xk. Thus, the taxicab length of the kth segment becomes

Lk = △xk + |f ′(x∗
k)△xk| = (1 + |f ′(x∗

k)|)△xk

and the taxicab length of the entire polygonal path is

n∑
k=1

Lk =
n∑

k=1

(1 + |f ′(x∗
k)|)△xk

Figure 3. Approximating arc length in taxicab geometry.



196 KEVIN P. THOMPSON

By increasing the number of subintervals while forcing max△xk → 0, the length
of the polygonal path will approach the arc length of the curve. So,

L = lim
max△x→0

n∑
k=1

(1 + |f ′(x∗
k)|)△xk

The right side of this equation is a definite integral, so the taxicab arc length of the
curve described by the function f over the interval [a, b] is given by

(2.2) L =

∫ b

a

(1 + |f ′(x)|) dx

As an example, the northeast quadrant of a taxicab circle of radius r centered
at the origin is described by f (x) = −x+ r. The arc length of this curve over the
interval [0, r] is given by

L =

∫ r

0

(1 + |−1|) dx = 2r

which is precisely one-fourth of the circumference of a taxicab circle of radius r. A
more interesting application involves the northeast quadrant of the Euclidean circle
of radius r at the origin described by f (x) =

√
r2 − x2.

L =

∫ r

0

(
1 +

∣∣∣−x
(
r2 − x2

)− 1
2

∣∣∣) dx

=
(
x−

√
r2 − x2

) ∣∣∣r
0

= r − 0− 0 + r

= 2r

The distance is the same as if we had traveled along the taxicab circle between
the two endpoints! While this is a shocking result to the Euclidean observer who is
accustomed to distinct paths between two points generally having different lengths,
the taxicab observer merely shrugs his shoulders. A curve such as a Euclidean
circle can be approximated with increasingly small horizontal and vertical steps
near its path (Figure 4b). As any good introduction to taxicab geometry teaches
us, such as Krause [7], multiple straight-line paths between two points have the
same length in taxicab geometry (see Figure 4a). So, each of these approximations
of the Euclidean circle will have the same taxicab length. Therefore, we should

Figure 4. a) Multiple straight-line paths between two points can
have the same length in taxicab geometry. b) A curve can be
approximated by small horizontal and vertical paths.
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Figure 5. Multiple curves between two points can have the same
length in taxicab geometry. Shown are a) part of the taxicab circle
of radius r, b) part of the Euclidean circle of radius r, and c) part
of the curve −1

rx
2 + r.

expect the limiting case to also have the same length. To further make the point,
we can follow the Euclidean parabola f(x) = −1

rx
2 + r in the first quadrant and

arrive at the same result (Figure 5).

L =

∫ r

0

(
1 +

∣∣∣∣−2x

r

∣∣∣∣) dx = r + r = 2r

To formalize these observations, we have the following theorem.

Theorem 2.1. If a function f is monotone increasing or decreasing and differen-
tiable with a continuous derivative over an interval [a, b], then the arc length of f
over [a, b] is

L = (b− a) + |f (b)− f (a)|
(i.e. the path from (a, v = f(a)) to (b, w = f(b)) is independent of the function f
under the stated conditions).

Proof. The taxicab arc length of f over [a, b] is

L =

∫ b

a

(1 + |f ′ (x)|) dx = (b− a) +

∫ b

a

(|f ′ (x)|) dx

If f is monotone increasing, f ′ (x) ≥ 0. And, since f has a continuous derivative, we
may apply the First Fundamental Theorem of Calculus to get

L = (b− a) + f (b)− f (a)

If f is monotone decreasing, we get the similar result

L = (b− a) + f (a)− f (b)

In either case, the latter difference must be positive so we have

L = (b− a) + |f (b)− f (a)|

�

For functions that are not monotone increasing or decreasing, the arc length
can be found using this theorem by taking the sum of the arc lengths over the
subintervals where the function is monotone increasing or decreasing.
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2.4. Three-Dimensional Linear Length. The taxicab length of a line segment
in three dimensions is a natural extension of the formula in two dimensions. For a
line segment with endpoints (x1, y1, z1) and (x2, y2, z2),

dt = |x2 − x1|+ |y2 − y1|+ |z2 − z1|

A nice discussion of the three-dimensional metric and other properties is given in [1].
There are no surprises here, and the taxicab length can be viewed as the sum of the
Euclidean lengths of the projections of the line segment onto the three coordinate
axes.

2.5. Arc Length in Three Dimensions. The simplest extension of the arc length
of a curve to three dimensions is for parametric curves. For a curve in two dimen-
sions, we can parameterize the function f = (x(t), y(t)) and modify Equation (2.2)
to get

L =

∫ b

a

(∣∣∣∣dxdt
∣∣∣∣+ ∣∣∣∣dydt

∣∣∣∣) dt

Generalizing this to three dimensions, we have

L =

∫ b

a

(∣∣∣∣dxdt
∣∣∣∣+ ∣∣∣∣dydt

∣∣∣∣+ ∣∣∣∣dzdt
∣∣∣∣) dt

Intuitively, Theorem 2.1 generalizes to three-dimensions saying that the length of
a three-dimensional “monotonic” curve depends only on its endpoints.

3. The Nature of Area

In prior research regarding area in taxicab geometry [5, 11], the underlying as-
sumption has been that the area of a figure should agree in Euclidean and taxicab
geometry, although the formulae to compute the area could be vastly different.
Additionally, it appears area has only been investigated in two dimensions. In this
section we wish to examine this assumption about area and explore surface area in
three dimensions.

Figure 6 gets right to the question of what area means in taxicab geometry. The
figures shown are each squares in both geometries: all sides and angles have the
same measure. If we cling to the notion that the area of a square is the square of
the length of its sides, these figures have equal Euclidean area (2) but very different
taxicab areas (4 and 2). The position of the sides of the square relative to the

Figure 6. Squares with equal Euclidean area (2) but different
taxicab area (4 and 2, respectively) when viewing area as the
square of the length of the sides.
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coordinate axes in taxicab geometry affects their length which in turn affects the
area calculation.

We have a choice before us. We can cling to the area of a square being the
square of its sides and live with the position of a figure affecting its taxicab area
just as the position of a line segment affects its taxicab length. Or, we can maintain
consistency with the Euclidean area of the figure and, as in this example, seek a
new formula for the area of a square. Several points here and later in this paper
will hopefully help us to make a firm decision here.

Reviewing the nature of length in taxicab geometry, we see agreement with
Euclidean geometry on the length of a line segment (a one-dimensional “figure”) in
one dimension. Only for line segments in two dimensions, a dimension higher than
the figure, do we see discrepancies between the geometries.

If we apply this same logic to area, the geometries should agree on area (a two-
dimensional figure) in two dimensions. Only for the area of a surface in three
dimensions would we expect to see differences because the figure would have a
different position relative to the coordinate planes.

In addition, the area of a figure has traditionally been viewed as the number
of square units of the plane enclosed by the figure. Since Euclidean and taxicab
geometry are built on the Cartesian coordinate system, it seems logical that the
computation of area in two dimensions should agree in these two geometries.

With this reasoning, we proceed with the traditional Euclidean concept of area
in two dimensions while looking for the proper extension of the concept to three
dimensions. Therefore, for our example, we would need a new formula for the
taxicab area of a square. (For the interested reader, it can be shown that the area
of a square in terms of the taxicab length s of its sides is s2(cos2t θ+sin2t θ) where θ
is the taxicab angle between one of the sides and the x-axis and the trigonometric
functions are taxicab [12].)

3.1. Area in Two Dimensions. The standard approach to the computation of
two-dimensional area in undergraduate calculus courses is integration. Estimates
of area under a functional curve involve increasing numbers of rectangles that each
approximate a portion of the area under the curve. Since Euclidean and taxicab
geometry agree on length in the horizontal and vertical directions, these area ap-
proximations in the two geometries will agree. Therefore, we should expect the
calculation of area under a curve by integration to transfer seamlessly to taxicab
geometry. This is a further argument to view area in two dimensions consistently
between the two geometries.

3.2. Surface Area in Three Dimensions. As stated in a previous section, we
should expect the taxicab area of a “flat” surface in three dimensions to differ from
the area of the “same” figure (in a Euclidean sense) in one of the coordinate planes.
This follows from the pattern seen with line segments in one and two dimensions.
To discover how the area will differ, consider a plane rotated upward from the
xy-plane along the y-axis (Figure 7).

In a manner similar to Figure 2, the taxicab scale in the x-direction will be
compressed in the rotated plane compared to the Euclidean scale. The angle θ
formed in a plane parallel to the xz-plane will determine the scaling effect seen in
the one dimension of the rotated plane with the maximal difference occurring at
45◦. The result is the “same” figure (in a Euclidean sense) in the xy-plane and
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Figure 7. A plane rotated up from the xy-plane along the y-axis
will have different Euclidean and taxicab scales of measurement in
the x-direction.

in the rotated plane will have different taxicab areas. (Interestingly, the taxicab
coordinate grid in the rotated plane is not even composed of Euclidean squares but
of Euclidean rectangles since the taxicab scale in the y-direction is unaffected by
the specific rotation performed.)

As a specific example, a unit square at the origin in the xy-plane will have a
Euclidean and taxicab area of 1. If we rotate the square upward 45◦ along the
y-axis, the Euclidean area will be unchanged but the taxicab area will now be

√
2

since one side will now have taxicab length cos 45◦ + sin 45◦ =
√
2.

If the plane is instead rotated along the x-axis, the taxicab area is again found
by scaling the Euclidean area. When rotation occurs in both manners, the scaling
factors compound each other. So, the taxicab area of a figure in the rotated plane
can be found from its Euclidean area using Equation (2.1) as a guide for each
direction of rotation: the scaling factors are sums of the (Euclidean) cosine and
sine of the angles α and β formed by lines in cross-sectional planes parallel to the
xz-plane and the yz-plane similar to the single rotation illustrated in Figure 7,

(3.1) At = Ae(| cose α|+ | sine α|)(| cose β|+ | sine β|)

3.3. Surfaces of Revolution. In [4] Janssen makes several attempts to revolve
half a taxicab circle about an axis to obtain a taxicab sphere. The first approach

Figure 8. a) A Janssen taxicab “sphere” and b) a taxicab sphere.
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revolves the upper half of a taxicab circle in a Euclidean manner about the hor-
izontal axis resulting in a “sphere” with some straight edges but also with some
curved surfaces (Figure 8a). This does not seem to quite fit the “squarish” nature
of seemingly everything in taxicab geometry and does not appear to satisfy the
usual definition of a sphere (all points equidistant from the center).

The author’s line of thought is quite instructive, however. If we consider a
Euclidean solid of revolution about the x-axis, the cross-section of the solid in the
yz-plane is a Euclidean circle. Therefore, for a taxicab revolution about the x-
axis, the cross-section should be a taxicab circle in that plane. A taxicab sphere
obtained by revolving a taxicab circle about the horizontal axis in a taxicab manner
would yield Figure 8b. This completely “squarish” object seems to fit the geometry
better and indeed does, by construction, satisfy the usual definition of a sphere.
So, revolution about the horizontal axis should follow the path of a taxicab circle
in the yz-plane and not the path of a Euclidean circle.

As an application of our approach to surface area in three dimensions, we would
like to find a formula for the surface area of a solid of revolution. For a differentiable
function f over an interval [a, b] divide the interval into n subintervals. Using a
linear approximation of the curve over each subinterval, we revolve each line segment
about the x-axis. In the Euclidean derivation, this creates the frustrum of a cone.
In taxicab geometry, the discussion above shows us this will create the frustrum of a
taxicab cone, which is equivalent to the frustrum an Euclidean right square pyramid
(partially shown in Figure 9). To find the taxicab surface area of the frustrum, we
will compute the Euclidean area and then scale the area by examining the rotations
of the frustrum sides to the xy-plane.

The Euclidean surface area of the frustrum of a pyramid is 1
2 (p1+ p2)s where p1

and p2 are the perimeters of the “top” and “bottom” edges of the frustrum and s is
the slant height. For the kth subinterval, the Euclidean perimeters are 4

√
2f(xk−1)

and 4
√
2f(xk). To compute the slant height, we project the shaded triangle in

Figure 9 onto a plane parallel to the yz-plane. The slant height s is the hypotenuse
of the right triangle ABC. The projected triangle is an isoceles right triangle with
legs of length |f(xk) − f(xk−1)| (labeled df in the figure), so the altitude of this

triangle is
√
2
2 |f(xk) − f(xk−1)|. The other leg of triangle ABC has length △xk

Figure 9. A portion of the revolution of a line segment about the
x-axis in a taxicab manner with a close-up of the shaded triangle.
(The full revolution creates the frustrum of an Euclidean right
square pyramid.)
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(labeled dx in the figure). Therefore, the slant height is

s =

√
(△xk)2 +

1

2
[f(xk)− f(xk−1)]2

So, we have the Euclidean surface area of kth frustrum of the approximation:

Ske =
1

2
(p1 + p2)s

=
1

2
(4
√
2f(xk−1) + 4

√
2f(xk))

√
(△xk)2 +

1

2
[f(xk)− f(xk−1)]2

= 2
√
2(f(xk−1) + f(xk))

√
(△xk)2 +

1

2
[f(xk)− f(xk−1)]2

The sides of this frustrum form Euclidean angles of 45◦ with the xy-plane using
a cross-sectional plane parallel to the xz-plane. This gives one scaling factor for the
taxicab surface area of cos 45◦+sin 45◦ =

√
2. The other scaling factor is dependent

on the sum of the cosine and sine of the angle of the linear approximation of the
function and the x-axis. This gives another scaling factor of

△xk + |f(xk)− f(xk−1)|√
(△xk)2 + [f(xk)− f(xk−1)]2

Therefore, using Equation (3.1) the taxicab surface area of the kth frustrum of the
approximation is

Sk =
4(f(xk−1)+f(xk))(△xk+|f(xk)−f(xk−1)|)

√
(△xk)2+

1
2 [f(xk)−f(xk−1)]2√

(△xk)2+[f(xk)−f(xk−1)]2

As the derivation now continues along the same lines as the Euclidean version, the
Intermediate Value Theorem and the Mean Value Theorem give us values x∗

k and
x∗∗
k such that f(x∗

k) = 1
2 (f(xk) + f(xk−1)) and f(xk) − f(xk−1) = f ′(x∗∗

k )△xk.
Therefore,

Sk =
8f(x∗

k)(△xk + |f ′(x∗∗
k )|△xk)

√
(△xk)2 +

1
2 [f

′(x∗∗
k )△xk]2√

(△xk)2 + [f ′(x∗∗
k )△xk]2

=
8f(x∗

k)(1 + |f ′(x∗∗
k )|)

√
1 + 1

2 [f
′(x∗∗

k )]2√
1 + [f ′(x∗∗

k )]2
△xk

= 8f(x∗
k)(1 + |f ′(x∗∗

k )|)

√
1−

[f ′(x∗∗
k )]2

2(1 + [f ′(x∗∗
k )]2)

△xk

Accumulating the frustrums and taking the limit yields the formula for the taxicab
surface area of a solid of revolution:

(3.2) S =

∫ b

a

2πtf(x)(1 + |f ′(x)|)

√
1− [f ′(x)]2

2(1 + [f ′(x)]2)
dx

This is a very interesting formula. The portion outside the radical is very reminis-
cent of the Euclidean formula with the expected changes in the circle circumference
factor (2πtf(x)) and the arc length factor (1 + |f ′(x)|) due to the taxicab metric.
The extra radical represents a scaling factor based on the ratio of the slant height
to the linear approximation of the curve. The greater the difference between these
two quantities the more the frustrum sides are rotated with respect to the xy-plane
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thus requiring more scaling. If these two quantities are close, the frustrum sides
are rotated very little and therefore require little scaling.

To complete the analysis inspired by Janssen, half of a taxicab sphere of radius r
is obtained by revolving the function f(x) = −x+r over the interval [0, r]. Doubling
this result yields the surface area of a whole taxicab sphere:

S = 2

∫ r

0

2πt(−x+ r)(1 + | − 1|)

√
1− (−1)2

2(1 + (−1)2)
dx

= 4πt

√
3

∫ r

0

(−x+ r) dx

= −2πt

√
3 (−x+ r)2

∣∣r
0

= 2πt

√
3r2

Such a taxicab sphere is composed of two Euclidean right square pyramids of height
r
√
6

2 and base side length r
√
2. The Euclidean surface area is therefore 4r2

√
3.

Since the sides are at 45◦ angles to the xy-plane in both directions, the taxicab
area scaling factors are both

√
2. This gives a taxicab surface area of 8r2

√
3 in

perfect agreement with the formula obtained from the solid of revolution.

4. The Nature of Volume

If we follow the same pattern used for length and area measures, we expect
the Euclidean and taxicab volume of a solid (a three-dimensional object) in three
dimensions to be equal. Only in four dimensions would we expect orientation of
the solid to impact the taxicab volume when compared to the Euclidean volume.

4.1. Solids of Revolution. To compute the volume of a Euclidean solid of revolu-
tion, the traditional “slicing” method involves computing the volume of an infinites-
simal cylinder as dxmultipled by the area of the Euclidean circle of revolution. This
method can be adapted directly into taxicab geometry by replacing the Euclidean
circle area with the taxicab circle area if the volume of a taxicab cylinder is found
in the same manner.

A taxicab cylinder resembles an Euclidean cylinder except that the cross section
is a taxicab circle (Figure 10). For such a cylinder lying along the x-axis, the cross-
sectional area will lie in a plane parallel to the yz-plane and therefore the Euclidean
and taxicab areas will agree. In addition, the height of the cylinder will agree in
the two geometries as it lies along a coordinate axis. Based on our assumption that

Figure 10. A taxicab cylinder.
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volume will agree in three dimensions between the geometries, the taxicab volume
of a cylinder is the product of the area of the cross-sectional taxicab circle and the
height.

A taxicab circle of radius r is composed of four isoceles triangles with area 1
2r

2

(Proposition 1 of [11]). Therefore, a taxicab cylinder of radius r and height h will
have volume

Vt = 2r2h =
1

2
πtr

2h

With this information we can now compute the volume of a solid of revolution
obtained by revolving a continuous function f about the x-axis over an interval
[a, b].

(4.1) Vt =

∫ b

a

1

2
πt[f(x)]

2 dx

Continuing our primary example, the upper half of a taxicab circle of radius r
centered at the origin is described by

f(x) =

{
x+ r −r ≤ x ≤ 0

−x+ r 0 < x ≤ r

Using Equation (4.1) the volume of a taxicab sphere obtained by revolving the
upper half of the circle about the x-axis is

V =

∫ r

−r

1

2
πt[f(x)]

2 dx

=
1

2
πt

∫ 0

−r

(x+ r)2 dx+
1

2
πt

∫ r

0

(−x+ r)2 dx

=
1

6
πt(x+ r)3

∣∣∣∣0
−r

− 1

6
πt(−x+ r)3

∣∣∣∣r
0

=
1

3
πtr

3

This result agrees precisely with the volume of a taxicab sphere as a special case
of a tetrahedron [2] providing some assurance of our concept of volume and com-
putational approach.

It should also be noted that the surface area of a sphere is not the derivative of
the volume with respect to the radius. This is a consequence of the radius of the
sphere not being everywhere perpendicular to the surface.

5. Other Examples

To conclude our discussion, we can derive surface area and volume formulae for
the taxicab equivalents of a few common solids.

Using the standard definition of a taxicab parabola described in [8], half of a
(horizontally) parallel case of the parabola with focus (0, a) and directrix y = −a
is given by

f(y) =

{
y, 0 ≤ y ≤ a

a, y > a
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Figure 11. A taxicab paraboloid.

Restricting the total “height” of the parabola to h and revolving the curve about
the y-axis yields an open-top taxicab paraboloid (Figure 11) surface area

S =

∫ a

0

2πty(2)

√
1− (1)2

2(1 + (1)2)
dy +

∫ h

a

2πta(1)

√
1− (0)2

2(1 + (0)2)
dy

= 2πt

√
3

∫ a

0

y dy + 2πta

∫ h

a

dy

= πt

√
3y2

∣∣∣a
0
+ 2πtay |ha

= πta
2
√
3 + 2πta(h− a)

As we would expect based on Figure 11, this is the sum of the surface area of a
cylinder with radius a and height h− a and half a sphere of radius a.

For the volume of a paraboloid we have

V =

∫ h

0

1

2
πt (f (y))

2
dy

=

∫ a

0

1

2
πty

2 dy +

∫ h

a

1

2
πta

2 dy

=
1

6
πty

3

∣∣∣∣a
0

+
1

2
πta

2y

∣∣∣∣h
a

=
1

6
πta

3 +
1

2
πta

2(h− a)

Again, as expected, this is the sum of the volume of a cylinder of radius a and
height h− a and half a sphere of radius a.

In the defining paper concerning conics in taxicab geometry [6], nondegenerate
(or “true”) two-foci taxicab ellipses are described as taxicab circles, hexagons, and
octagons. If we revolve half of one of these figures about the x-axis we obtain a
taxicab ellipsoid (Figure 12). If we consider a taxicab ellipse with major axis length
2a, minor axis length 2b, and s the sum of the distances from a point on the ellipse
to the foci, the function

f(x) =


x+ s

2 −a ≤ x < b− s
2

b b− s
2 ≤ x < −b+ s

2

−x+ s
2 −b+ s

2 ≤ x ≤ a
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Figure 12. Nondegenerate, two-foci taxicab ellipses. Shown are
the upper halves of a) the octogonal ellipse, b) the hexagonal el-
lipse, and c) the circular ellipse (a taxicab circle).

describes the upper half of an ellipse centered at the origin. This function will
generally cover the sphere (s = 2a and a = b), hexagon (s = 2a and a > b), and
octagon (s > 2a) cases for a taxicab ellipse. The ellipsoid solid of revolution will
have volume

V =
1

2
πt

∫ b− s
2

−a

(
x+

s

2

)2

dx+
1

2
πt

∫ −b+ s
2

b− s
2

b2 dx+
1

2
πt

∫ a

−b+ s
2

(
−x+

s

2

)2

dx

=
1

3
πtb

3 − 1

6
(s− 2a)3 +

1

2
πtb

2(s− 2b)

For the case of a spherical taxicab ellipsoid (Figure 12c), this formula reduces to
1
3πtb

3 in agreement with our previous result. For the case of a hexagon (Figure

12b), this formula reduces to 1
3πtb

3+ 1
2πtb

2(2a−2b) which is the sum of the volume
of a taxicab sphere of radius b and a taxicab cylinder of radius b and height 2a−2b.
This is to be expected since a hexagonal taxicab ellipsoid is composed of a taxicab
cylinder capped by two taxicab half-spheres.

In Euclidean geometry, there is not a closed form for the surface area an ellipsoid.
Since a taxicab ellipse is composed of straight lines, this problem is avoided in
taxicab geometry. The surface area of an taxicab ellipsoidal solid of revolution is

S = 2πt

∫ b− s
2

−a

(
x+

s

2

)
(1 + |1|)

√
1− (1)2

2(1 + (1)2)
dx

+ 2πt

∫ −b+ s
2

b− s
2

b(1 + 0)

√
1− (0)2

2(1 + (0)2)
dx

+ 2πt

∫ a

−b+ s
2

(
−x+

s

2

)
(1 + | − 1|)

√
1− (−1)2

2(1 + (−1)2)
dx

+ 2(
1

2
πt(

s

2
− a)2)

= 2πt

√
3b2 − 2πt

√
3(

s

2
− a)2 + 2πtb(s− 2b) + πt(

s

2
− a)2

For a hexagonal ellipsoid, the first term is the surface area of the ends which
combine to equal a taxicab sphere of radius b; the second and last terms are zero;
and, the third term is the area of a taxicab cylinder of radius b and length s − 2b
composing the middle of the ellipsoid. For the octogonal ellipsoid (Figure 12a), the
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first term is an overestimate since the top of the sphere is not present on either
end. This is corrected by the subtraction of the second term amounting to a taxicab
sphere of radius s

2 − a. (A similar correction term is seen in the volume formula
above.) The last term accounts for the area of the ends of the ellipsoid which are
taxicab circles of radius s

2 − a.

6. Conclusion

Generalizing the patterns we have set forth in this paper, it appears that the
taxicab measure of a n-dimensional figure in n-dimensional space will agree with
the Euclidean measure of the figure. However, in (n + 1)-dimensional space, the
taxicab measure of the figure will in general depend on its position in the space
when compared with the Euclidean measure. Along the way we generalized the
observation that multiple paths between two points can have the same taxicab
length and described a strategy for dealing with figures living in a dimension higher
than themselves. We also developed in taxicab geometry the strategy of revolving
a function about the x-axis axis by observing that the shape of the cross-section
of the solid in the yz-plane should be a taxicab circle. As in Euclidean geometry,
this has yielded a simple method for deriving surface area and volume formulas for
some standard taxicab solids created as solids of revolution.

The author would like to thank Tevian Dray of Oregon State University for his help
and suggestions during the writing and revision of this paper.
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