ON A SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN LP-SASAKIAN MANIFOLD

SELCEN YÜKSEL PERKTAŞ, EROL KILIÇ, SADIK KELEŞ

(Communicated by Cihan ÖZGÜR)

ABSTRACT. In this paper we study some properties of curvature tensor, projective curvature tensor, v-Weyl projective tensor, concircular curvature tensor, conformal curvature tensor, quasi-conformal curvature tensor with respect to semi-symmetric non-metric connection in a Lorentzian para-Sasakian (briefly LP-Sasakian) manifold. It is shown that an LP-Sasakian manifold $(M^n, g)(n > 3)$ with the semi-symmetric non-metric connection is an η -Einstein manifold.

1. INTRODUCTION

The idea of semi-symmetric linear connection on a differentiable manifold was introduced by Friedmann and Schouten [5]. A linear connection $\widetilde{\nabla}$ in an *n*-dimensional differentiable manifold M is said to be semi-symmetric connection if its torsion \widetilde{T} is of the form

(1.1)
$$\widetilde{T}(X,Y) = u(X)Y - u(Y)X,$$

where u is a 1-form. The connection $\widetilde{\nabla}$ is a metric connection if there is a Riemannian metric g in M such that $\widetilde{\nabla}g = 0$, otherwise it is non-metric. In 1932, H. A. Hayden [6] defined a semi-symmetric metric connection on a Riemannian manifold and this was further developed by K. Yano [21]. In [1], Agashe and Chafle introduced a semi-symmetric non-metric connection on a Riemannian manifold and this was further studied by U. C. De and D. Kamilya [3], J. Sengupta, U. C. De and T. Q. Binh [12], S. C. Biswas and U. C. De[2] and others. In [12], the authors defined a semi-symmetric non-metric connection on a Riemannian manifold which generalizes the notion of semi-symmetric non-metric connection introduced by Agashe and Chafle. M. M. Tripathi [15] studied the semi-symmetric metric connection in a Kenmotsu manifolds. In [16], the semi-symmetric non-metric connection in a Kenmotsu manifold was studied by M. M. Tripathi and N. Nakkar. Also in [18], M. M. Tripathi proved the existence of a new connection and he showed that in particular

²⁰⁰⁰ Mathematics Subject Classification. 53B15, 53C50, 53D15.

Key words and phrases. Lorentzian para-Sasakian manifold, η -Einstein manifold, semisymmetric non-metric connection, projective curvature tensor, *v*-Weyl projective tensor, concircular curvature tensor, conformal curvature tensor, quasi-conformal curvature tensor, deformation algebra.

cases, this connection reduces to semi-symmetric connections; even some of them are not introduced so far. On the other hand, there is a class of almost paracontact metric manifolds, namely Lorentzian para-Sasakian manifolds. In 1989, K. Matsumoto [8], introduced the notion of Lorentzian para-Sasakian manifold. Then I. Mihai and R. Rosca [9] introduced the same notion independently and they obtained several results on this manifold. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [7], U. C. De and et al.,[10], A. A. Shaikh and S. Biswas [13], M. M. Tripathi and U. C. De [17].

In this paper, we study the semi-symmetric non-metric connection in a Lorentzian para-Sasakian manifold. Section 2 is devoted to preliminaries. In section 3, we find the expression for curvature tensor (resp. Ricci tensor) with respect to the semisymmetric non-metric connection and investigate relations between curvature tensor (resp. Ricci tensor) with respect to the semi-symmetric non-metric connection and curvature tensor (resp. Ricci tensor) with respect to Levi-Civita connection. In this section we also show that a LP-Sasakian manifold with the semi-symmetric non-metric connection is an η -Einstein manifold. In section 4 projective curvature tensor of the semi-symmetric non-metric connection is studied and it is shown that in a LP-Sasakian manifold the projective curvature tensor of the manifold with respect to the semi-symmetric non-metric connection is equal to the projective curvature tensor of the manifold. The concircular curvature tensor, conformal curvature tensor, quasi conformal curvature tensor of a LP-Sasakian manifold with respect to the semi-symmetric non-metric connection are investigated in section 5, section 6 and section 7, respectively. In the last section deformation algebra of the Levi-Civita connection and the semi-symmetric non-metric connection of a Lorentzian para-Sasakian manifold is established.

2. Preliminaries

A differentiable manifold of dimension n is called Lorentzian para-Sasakian (briefly, LP-Sasakian)[8, 9], if it admits a (1, 1)-tensor field ϕ , a contravariant vector field ξ , a 1-form η and a Lorentzian metric g which satisfy

- (2.1) $\eta(\xi) = -1,$
- (2.2) $\phi^2(X) = X + \eta(X)\xi,$
- (2.3) $g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$
- (2.4) $g(X,\xi) = \eta(X),$
- (2.5) $\nabla_X \xi = \phi X,$

(2.6)
$$(\nabla_X \phi)(Y) = g(X,Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi$$

where ∇ denotes the covariant differentiation with respect to the Lorentzian metric g.

It can be easily seen that in an LP-Sasakian manifold the following relations hold:

- (2.7) $\phi \xi = 0, \quad \eta \circ \phi = 0,$
- $(2.8) rank \phi = n-1.$

If we put

(2.9) $\Phi(X,Y) = g(X,\phi Y)$

for any vector fields X and Y, then the tensor field $\Phi(X, Y)$ is a symmetric (0, 2) tensor field [8]. Also since the 1-form η is closed in an LP-Sasakian manifold, we have [8, 10]

(2.10)
$$(\nabla_X \eta)(Y) = \Phi(X, Y), \quad \Phi(X, \xi) = 0$$

for all $X, Y \in TM$.

Also in an LP-Sasakian manifold, the following relations hold [7, 10]:

(2.11)
$$g(R(X,Y)Z,\xi) = \eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$

(2.12)
$$R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X,$$

(2.13)
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$

(2.14)
$$R(\xi, X)\xi = X + \eta(X)\xi,$$

(2.15)
$$S(X,\xi) = (n-1)\eta(X),$$

(2.16)
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y)$$

for any vector fields X, Y, Z where R and S are the Riemannian curvature and the Ricci tensors of the manifold, respectively.

Let M be an n-dimensional LP-Sasakian manifold and ∇ be the Levi-Civita connection on M. A linear connection $\widetilde{\nabla}$ on M is said to be semi-symmetric if the torsion tensor

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

satisfies

(2.17)
$$\widetilde{T}(X,Y) = \eta(Y)X - \eta(X)Y$$

for all X , $Y\in TM.$ A semi-symmetric non-metric connection $\tilde{\nabla}$ in an LP-Sasakian manifold can be defined by

(2.18)
$$\widetilde{\nabla}_X Y = \nabla_X Y + \eta(Y) X,$$

where ∇ is Levi-Civita connection on M (see [1]).

3. Curvature Tensor

Let M be an *n*-dimensional LP-Sasakian manifold. The curvature tensor \widetilde{R} of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ is defined by

(3.1)
$$\widetilde{R}(X,Y)Z = \widetilde{\nabla}_X \widetilde{\nabla}_Y Z - \widetilde{\nabla}_Y \widetilde{\nabla}_X Z - \widetilde{\nabla}_{[X,Y]} Z.$$

From (2.18) and (3.1) we have,

(3.2)
$$\widetilde{R}(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y$$

where α is a tensor field of (0, 2) type defined by

(3.3)
$$\alpha(X,Y) = (\widetilde{\nabla}_X \eta)Y = (\nabla_X \eta)Y - \eta(X)\eta(Y).$$

Lemma 3.1. Let M be an n-dimensional LP-Sasakian manifold with the semisymmetric non-metric connection $\widetilde{\nabla}$. Then

(3.4)
$$(\nabla_X \phi)Y = (\nabla_X \phi)Y - \eta(Y)\phi X,$$

(3.5)
$$\nabla_X \xi = -X + \phi X,$$

(3.6)
$$(\nabla_X \eta) Y = \Phi(X, Y) - \eta(X) \eta(Y) = \alpha(X, Y)$$

Proof. By using (2.18) and (2.7), we obtain (3.4). From (2.18) and (2.5) we get (3.5). Finally by using (2.18) and (2.6) we have (3.6). \Box

From (3.6) we have

Corollary 3.1. In an LP-Sasakian manifold, the tensor field α satisfies

$$\alpha(X,\xi) = \eta(X) = g(X,\xi)$$

Let K and \widetilde{K} be the curvature tensors of (0, 4) type given by

$$K(X,Y,Z,U) = g(R(X,Y)Z,U)$$

and

$$(3.8) K(X,Y,Z,U) = g(R(X,Y)Z,U).$$

Theorem 3.1. In an LP-Sasakian manifold with semi-symmetric non-metric connection $\widetilde{\nabla}$ we have

$$\begin{aligned} (3.9) \qquad & \widetilde{R}(X,Y)Z + \widetilde{R}(Y,Z)X + \widetilde{R}(Z,X)Y &= 0, \\ (3.10) \qquad & \widetilde{K}(X,Y,Z,U) + \widetilde{K}(Y,X,Z,U) &= 0, \\ (3.11) \qquad & \widetilde{K}(X,Y,Z,U) - \widetilde{K}(Z,U,X,Y) &= \alpha(X,U)g(Y,Z) \end{aligned}$$

$$-\alpha(Y,Z)g(X,U).$$

Proof. By using (3.2) and the first Bianchi identity

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0

with respect to Levi-Civita connection $\nabla,$ we obtain

$$\widetilde{R}(X,Y)Z + \widetilde{R}(Y,Z)X + \widetilde{R}(Z,X)Y = (\alpha(Z,Y) - \alpha(Y,Z))X + (\alpha(X,Z) - \alpha(Z,X))Y + (\alpha(Y,X) - \alpha(X,Y))Z.$$

Since α is symmetric then we obtain (3.9).

From (3.2), (3.7) and (3.8) we have

~

$$\widetilde{K}(X,Y,Z,U) = g(\widetilde{R}(X,Y)Z,U)$$

$$(3.12) = K(X,Y,Z,U) - \alpha(Y,Z)g(X,U) + \alpha(X,Z)g(Y,U)$$

If we change the role of X and Y in (3.12) we write

$$K(Y, X, Z, U) = K(Y, X, Z, U) - \alpha(X, Z)g(Y, U) + \alpha(Y, Z)g(X, U)$$

Since K(X, Y, Z, U) + K(Y, X, Z, U) = 0 and α is symmetric then we get (3.10). Finally, if we use (3.12) and K(X, Y, Z, U) = K(Z, U, X, Y) we can easily obtain (3.11).

Lemma 3.2. Let M be a n-dimensional LP-Sasakian manifold with the semisymmetric non-metric connection $\widetilde{\nabla}$. Then

- (3.13) $\widetilde{R}(\xi, X)Y = (g(X, Y) \alpha(X, Y))\xi,$
- $(3.14) \qquad \qquad \widetilde{R}(\xi, X)\xi = 0,$
- (3.15) $\widetilde{R}(X,Y)\xi = 0.$

Proof. (3.13) follows from (2.12) and (3.2). By using (2.14) and (3.2) we have (3.14). From (2.13) and (3.2) we obtain (3.15). \Box

The Ricci tensor \tilde{S} of the manifold M with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$ is defined by

$$S(X,Y) = Trace \ of \ the \ map : X \to R(X,Y)Z,$$

that is,

(3.16)
$$\widetilde{S}(X,Y) = \sum_{i=1}^{n} \varepsilon_i g(\widetilde{R}(e_i,X)Y,e_i)$$

and the scalar curvature of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ is given by

(3.17)
$$\widetilde{r} = \sum_{i=1}^{n} \varepsilon_i \widetilde{S}(e_i, e_i)$$

where X, $Y \in TM$, $\{e_1, e_2, ..., e_n\}$ is an orthonormal frame and $\varepsilon_i = g(e_i, e_i)$.

Theorem 3.2. Let M be an n-dimensional LP-Sasakian manifold with semi-symmetric non-metric connection $\widetilde{\nabla}$. Then the Ricci tensor \widetilde{S} and the scalar curvature of the manifold M with respect to $\widetilde{\nabla}$ are given by

(3.18)
$$S(X,Y) = S(X,Y) - (n-1)\alpha(X,Y)$$

and

(3.19)
$$\widetilde{r} = r - (n-1)trace(\alpha),$$

respectively. Here S and r are the Ricci tensor and the scalar curvature of the manifold with respect to the Levi-Civita connection ∇ , respectively. Consequently, \tilde{S} is symmetric.

Proof. From (3.2) and (3.16) we have (3.18). (3.19) follows from (3.18). Since α and S are symmetric, from (3.18) \widetilde{S} is symmetric, too.

Lemma 3.3. In an LP-Sasakian manifold with semi-symmetric non-metric connection $\widetilde{\nabla}$ we have

(3.20)
$$S(X,\xi) = 0,$$

(3.21)
$$\widetilde{S}(\phi X, \phi Y) = \widetilde{S}(X, Y).$$

Proof. By using (2.15) and (3.18) we have (3.20). Since $\Phi(\phi X, \phi Y) = \Phi(X, Y)$, from (2.16) and (3.18) we get (3.21).

In [13], the authors stated the following theorems:

Theorem 3.3. [13] An LP-Sasakian manifold $(M^n, g)(n > 3)$ satisfying the condition $S(X, \xi).R = 0$ is an η -Einstein manifold.

Theorem 3.4. [13] Let $(M^n, g)(n > 3)$ be an LP-Sasakian manifold satisfying the condition $S(X, \xi).R = 0$. Then the scalar curvature of the manifold is constant if and only if the vector field ξ is harmonic.

From (3.20) and Theorem (3.3) we have the following corollary

Corollary 3.2. An LP-Sasakian manifold $(M^n, g)(n > 3)$ with the semi-symmetric non-metric connection is an η -Einstein manifold.

By using (3.20) again and from Theorem (3.4) we get

Corollary 3.3. Let $(M^n, g)(n > 3)$ be an LP-Sasakian manifold with the semisymmetric non-metric connection. Then the scalar curvature of the manifold with respect to the semi-symmetric non-metric connection is constant if and only if the vector field ξ is harmonic.

4. PROJECTIVE CURVATURE TENSOR

Let M be an n-dimensional LP-Sasakian manifold. The projective curvature tensor \tilde{P} of type (1,3) of M with respect to the semi-symmetric non-metric connection $\tilde{\nabla}$ is defined by [11]

(4.1)

$$\widetilde{P}(X,Y)Z = \widetilde{R}(X,Y)Z + \frac{1}{n+1}\{\widetilde{S}(X,Y) - \widetilde{S}(Y,X)\}Z$$

$$-\frac{n}{n^2 - 1}\{\widetilde{S}(Y,Z)X - \widetilde{S}(X,Z)Y\}$$

$$-\frac{1}{n^2 - 1}\{\widetilde{S}(Z,Y)X - \widetilde{S}(Z,X)Y\}.$$

Proposition 4.1. In a LP-Sasakian manifold M the projective curvature tensor of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ is equal to the projective curvature tensor of the manifold with respect to the Levi-Civita connection.

Proof. Let P and \widetilde{P} denote the projective curvature tensors with respect to $\widetilde{\nabla}$ and ∇ , respectively. Then by using (3.2) and (3.18) in (4.1) we have

$$\begin{split} \widetilde{P}(X,Y)Z &= R(X,Y)Z - \alpha(Y,Z)X - \alpha(X,Z)Y \\ &+ \frac{1}{n+1} \{S(X,Y) - (n-1)\alpha(X,Y) \\ &- S(Y,X) + (n-1)\alpha(Y,X)\}Z \\ &- \frac{n}{n^2 - 1} \{S(Y,Z)X - (n-1)\alpha(Y,Z)X \\ &- S(X,Z)Y + (n-1)\alpha(X,Z)Y\} \\ &- \frac{1}{n^2 - 1} \{S(Z,Y)X - (n-1)\alpha(Z,Y)X \\ &- S(Z,X)Y + (n-1)\alpha(Z,X)Y\} \\ &= R(X,Y)Z + \frac{1}{n+1} \{S(X,Y) - S(Y,X)\}Z \\ &- \frac{n}{n^2 - 1} \{S(Y,Z)X - S(X,Z)Y\} \\ &- \frac{1}{n^2 - 1} \{S(Z,Y)X - S(Z,X)Y\} \\ &+ (-1 + \frac{n}{n+1} + \frac{1}{n+1}) \{\alpha(Y,Z)X - \alpha(X,Z)Y\} \\ &= P(X,Y)Z. \end{split}$$

This completes the proof.

The projective curvature tensor of M with respect to the semi-symmetric nonmetric connection $\widetilde{\nabla}$ satisfies the following algebraic properties

(4.2)
$$\widetilde{P}(X,Y)Z + \widetilde{P}(Y,X)Z = 0$$

(4.3)
$$\widetilde{P}(X,Y)Z + \widetilde{W}(Y,Z)X + \widetilde{P}(Z,X)Y = 0.$$

Theorem 4.1. Let M be a LP-Sasakian manifold. If the Ricci tensor of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ vanishes, then the curvature tensor of M with respect to $\widetilde{\nabla}$ is equal to the projective curvature tensor of the manifold with respect to the Levi-Civita connection.

Proof. If $\widetilde{S} = 0$, from (4.1) we have $\widetilde{P}(X, Y)Z = \widetilde{R}(X, Y)Z$. Since

$$\widetilde{P}(X,Y)Z = P(X,Y)Z$$

we get

(4.4)
$$\widehat{R}(X,Y)Z = P(X,Y)Z.$$

This gives the assertion of the theorem.

Theorem 4.2. If the curvature tensor of a LP-Sasakian manifold with respect to the semi-symmetric non-metric connection vanishes, then the manifold is projectively flat.

Proof. If $\widetilde{R}(X, Y)Z = 0$, the from (4.4) we have P(X, Y)Z = 0,

which completes the proof.

Theorem 4.3. An LP-Sasakian manifold with vanishing Ricci tensor \widetilde{S} with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ is projectively flat if and only if the curvature tensor \widetilde{R} with respect to $\widetilde{\nabla}$ vanishes.

Proof. From theorem (4.1) and theorem (4.2), we have the assertion of the theorem. \Box

In the theory of the projective transformations of connections the Weyl projective tensor plays an important role. The v-Weyl projective tensor P^v is defined by [14]

(4.5)
$$P^{v}(X,Y)Z = R(X,Y)Z - \frac{1}{n-1} \{S(Y,Z)X - S(X,Z)Y\}.$$

Theorem 4.4. Let M be an n-dimensional LP-Sasakian manifold. Then the v-Weyl projective tensor $\widetilde{P^v}$ of M with respect to the semi-symmetric non-metric connection is equal to the v-Weyl projective tensor P^v of the manifold.

Proof. Let $\widetilde{P^v}$ and P^v denote the *v*-Weyl projective tensors of M with respect to the semi-symmetric non-metric connection and the Levi-Civita connection, respectively. From the definition of *v*-Weyl projective tensor, the *v*-Weyl projective tensor of M with respect to the semi-symmetric non-metric connection is

$$\widetilde{P^{v}}(X,Y)Z = \widetilde{R}(X,Y)Z - \frac{1}{n-1}\{\widetilde{S}(Y,Z)X - \widetilde{S}(X,Z)Y\}.$$

Then by using (3.2), (3.18) and (4.5), we have

$$\widetilde{P^{\upsilon}}(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y -\frac{1}{n-1}\{S(Y,Z)X - (n-1)\alpha(Y,Z)X -S(X,Z)Y + (n-1)\alpha(X,Z)Y\}$$

which gives $\widetilde{P^{v}}(X,Y)Z = P^{v}(X,Y)Z$.

Lemma 4.1. In an n-dimensional LP-Sasakian manifold, the v-Weyl projective tensor $\widetilde{P^v}$ of the manifold with respect to the semi-symmetric non-metric connection satisfies the followings:

$$\begin{split} \widetilde{P^{v}}(X,Y)Z + \widetilde{P^{v}}(Y,Z)X + \widetilde{P^{v}}(Z,X)Y &= 0, \\ \widetilde{P^{v}}(X,Y)Z + \widetilde{P^{v}}(Y,X)Z &= 0. \end{split}$$

5. Concircular Curvature Tensor

Let M be an *n*-dimensional LP-Sasakian manifold. The concircular curvature tensor of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ is given by

(5.1)
$$\widetilde{V}(X,Y)Z = \widetilde{R}(X,Y)Z - \frac{\widetilde{r}}{n(n-1)} \{g(Y,Z)X - g(X,Z)Y\}$$

where \widetilde{R} and \widetilde{r} are the curvature tensor and the scalar curvature of M with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$, respectively. The concircular curvature tensor can be thought as a measure of the failure of a Riemannian manifold to be of constant curvature.

Theorem 5.1. The concircular curvature tensors V and \widetilde{V} of the semi-symmetric non-metric connection $\widetilde{\nabla}$ and of the LP-Sasakian manifold are related by

(5.2)
$$\widetilde{V}(X,Y)Z = V(X,Y)Z - \{\alpha(Y,Z)X - \alpha(X,Z)Y\} + \frac{trace(\alpha)}{n} \{g(Y,Z)X - g(X,Z)Y\}.$$

Proof. By using (3.2) and (3.19) in (5.1), we have

$$\widetilde{V}(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y
- \frac{r - (n-1)trace(\alpha)}{n(n-1)} \{g(Y,Z)X - g(X,Z)Y\}$$

which gives (2.18).

6. Conformal Curvature Tensor

Let M be an *n*-dimensional LP-Sasakian manifold. The conformal curvature tensor of M with respect to semi-symmetric non-metric connection $\widetilde{\nabla}$ is defined by

[22]

$$\widetilde{C}(X,Y,Z,U) = \widetilde{K}(X,Y,Z,U)
-\frac{1}{n-2} \{g(Y,Z)\widetilde{S}(X,U) - g(X,Z)\widetilde{S}(Y,U)
+\widetilde{S}(Y,Z)g(X,U) - \widetilde{S}(X,Z)g(Y,U) \}
+\frac{\widetilde{r}}{(n-1)(n-2)} \{g(Y,Z)g(X,U) - g(X,Z)g(Y,U) \}.$$
(6.1)

By using (3.8), (3.18) and (3.19) in (6.1), we get

$$\begin{split} \widetilde{C}(X,Y,Z,U) &= C(X,Y,Z,U) + \frac{1}{n-2} \{ \alpha(Y,Z)g(X,U) - \alpha(X,Z)g(Y,U) \} \\ &+ \frac{n-1}{n-2} \{ \alpha(X,U)g(Y,Z) - \alpha(Y,U)g(X,Z) \} \\ &- \frac{trace(\alpha)}{n-2} \{ g(X,U)g(Y,Z) - g(Y,U)g(X,Z) \} \end{split}$$

7. QUASI-CONFORMAL CURVATURE TENSOR

The notion of the quasi-conformal curvature tensor was introduced by Yano and Sawaki [20]. They define a quasi-conformal curvature tensor by

$$W(X,Y)Z = aR(X,Y)Z + b\{S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY\} - \frac{r}{n}[\frac{a}{n-1} + 2b]\{g(Y,Z)X - g(X,Z)Y\},$$
(7.1)

where a and b are constants such that $ab \neq 0$, R is the Riemannian curvature tensor, S is the Ricci tensor, Q is the Ricci operator defined by g(QX, Y) = S(X, Y) and r is the scalar curvature of the manifold. If a = 1 and $b = -\frac{1}{n-2}$, then (7.1) takes the form

$$W(X,Y)Z = R(X,Y)Z - \frac{1}{n-2}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] + \frac{r}{(n-1)(n-2)}[g(Y,Z)X - g(X,Z)Y]$$

= $C(X,Y)Z$,

where C is conformal curvature tensor [4]. Thus the conformal curvature tensor C is a particular case of the quasi-conformal curvature tensor W. An n- dimensional (n > 3) manifold is called quasi-conformally flat if the quasi-conformal curvature tensor W vanishes.

A quasi-conformal curvature tensor \widetilde{W} with respect to a semi-symmetric nonmetric connection in an *n*-dimensional Lorentzian para-Sasakian manifold is defined by

$$\widetilde{W}(X,Y)Z = a\widetilde{R}(X,Y)Z + b\{\widetilde{S}(Y,Z)X - \widetilde{S}(X,Z)Y + g(Y,Z)\widetilde{Q}X - g(X,Z)\widetilde{Q}Y\} - \frac{\widetilde{r}}{n}[\frac{a}{n-1} + 2b]\{g(Y,Z)X - g(X,Z)Y\},$$
(7.2)

where a and b arbitrary constant such that a and b are not zero simultaneously, \widetilde{Q} is the Ricci operator with respect to the semi-symmetric non-metric connection

i.e., $g(\widetilde{Q}X,Y) = \widetilde{S}(X,Y)$ and \widetilde{r} is the scalar curvature of the manifold with respect to the semi-symmetric non-metric connection. Let us denote

(7.3)
$$\widetilde{W}(X,Y,Z,U) = g(\widetilde{W}(X,Y)Z,U).$$

Then if we use (3.2), (3.8), (3.18), (3.19), (7.3) in (7.2) we have

$$\begin{split} W(X,Y,Z,U) &= & W(X,Y,Z,U) \\ &-[a+(n-1)b]\{\alpha(Y,Z)g(X,U) - \alpha(X,Z)g(Y,U)\} \\ &-[(n-1)b]\{\alpha(X,U)g(Y,Z) - \alpha(Y,U)g(X,Z)\} \\ &+[\frac{(n-1)trace(\alpha)}{n}(\frac{a}{n-1}+2b)]\{g(X,U)g(Y,Z) \\ &-g(Y,U)g(X,Z)\}. \end{split}$$

If a = (1 - n)b, then

$$\widetilde{W}(X,Y,Z,U) = W(X,Y,Z,U) + a\{\alpha(X,U)g(Y,Z) - \alpha(Y,U)g(X,Z)\} - \frac{a}{n}trace(\alpha)\{g(X,U)g(Y,Z) - g(Y,U)g(X,Z)\}$$

8. Deformation Algebra $II(M, \nabla, \widetilde{\nabla})$

Let ∇^1 and ∇^2 be two linear connections in a Riemannian manifold. We define the product of two vector fields X and Y by

(8.1)
$$X \circ Y = \nabla_X^2 Y - \nabla_X^1 Y.$$

The module $\chi(M)$ of all differentiable vector fields becomes an algebra over the ring F(M) all real functions over M. This algebra is called the deformation algebra [19] of the ordered pair of connection (∇^1, ∇^2) and is denoted by $II(M, \nabla, \widetilde{\nabla})$. An element $X \in \chi(M)$ is called a characteristic vector field if there is a $\lambda \in F(M)$ such that

$$(8.2) X \circ X = \lambda X.$$

Here by using (8.1), we have

$$\begin{aligned} X \circ X &= \widetilde{\nabla}_X X - \nabla_X X \\ &= \eta(X) X. \end{aligned}$$

Thus we can state the following theorem

Theorem 8.1. In the deformation algebra $II(M, \nabla, \widetilde{\nabla})$, every element is a characteristic vector field.

References

- Agashe, N. S. and Chafle, M. R., A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399-409.
- [2] Biswas, S. C. and De, U. C., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Ganita. 48 (1997), 91-94.
- [3] De, U. C. and Kamilya, D., Hypersurfaces of a Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci. 75 (1995), 707-710.
- [4] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949.
- [5] Friedmann, A. and Schouten, J. A., Über die Geometric der holbsymmetrischen Übertragurgen. Math. Z. 21 (1924), 211-233.
- [6] Hayden, H. A., Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.

- [7] Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N. S.) 47 (1988), 189-197.
- [8] Matsumoto, K., On Lorentzian Paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(2) (1989), 151-156.
- [9] Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publi., Signapore, (1992), 155-169.
- [10] Mihai, I., Shaikh, A. A. and De, U. C., On Lorentzian para-Sasakian manifolds, Rendicontidel Seminario Matematico di Messina, Serie II, 1999.
- [11] Mishra, R. S., Structures on a differentiable manifold and their applications, Chandrama Prakashan, Allahabad, India, 1984.
- [12] Sengupta, J., De, U. C. and Binh, T. Q., On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31(12) (2000), 1659-1670.
- [13] Shaikh,A. A. and Biswas, S., On LP-Sasakian manifolds, Bull. of the Malaysian Math. Sci. Soc. 27,(2004), 17-26.
- [14] Tigaeru, C., v-projective symmetries of fibred manifolds, Arch. Math. 34, (1998), 347-352.
- [15] Tripathi, M. M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67-71.
- [16] Tripathi, M. M. and Nakkar, N., On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Cal. Math. Soc. 16 (2001), no.4, 323-330.
- [17] Tripathi, M. M. and De, U. C., Lorentzian Almost Paracontact Manifolds and their submanifolds, Journal of the Korean Society of Mathematical Education, 2 (2001), 101-125.
- [18] Tripathi, M. M., A new connection in a Riemannian manifold, International Electronic Journal of Geometry. vol. 1 (2008), no.1, 15-24.
- [19] Vaisman, I., Sur quelques formulas du calcul de Ricci global, Comm. Math. Helvv. 4 (1966-67), 73-87.
- [20] Yano, K. and Sawaki, S., Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184.
- [21] Yano, K., On semi-symmetric metric connections, Revue Roumaina De Math. Pures Appl. 15 (1970), 1579-1586.
- [22] Yano, K. and Kon, M., Structures on Manifolds, Series in Pure Mathematics, vol.3, World Scientific, Singapore, 1984.

İNÖNÜ UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS, 44280, MALATYA/TURKEY.

 ${\it E-mail\ address:\ {\tt selcenyuksel@inonu.edu.tr,\ ekilic@inonu.edu.tr,\ skeles@inonu.edu.tr}}$