INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VoLUME 4 No. 1 pp. 1-14 (2011) ©IEJG

CLASSIFICATION OF FLAT LAGRANGIAN H-UMBILICAL
SUBMANIFOLDS IN PARA-KAHLER n-PLANE

BANG-YEN CHEN

(Communicated by H. Hilmi HACISALIHOGLU)

ABSTRACT. Lagrangian submanifolds of Kéhler manifolds have been studied
extensively since early 1970s. On the other hand, the study of Lagrangian sub-
manifolds of para-Kahler manifolds was initiated only recently by the author
in [8]. In a subsequence paper [9] the author defines the notion of Lagrangian
H-submanifolds of para-Kéhler manifolds and classifies non-flat Lagrangian
H-umbilical submanifolds of the para-K&hler n-plane (E%",go, P). The main
purpose of this paper is thus to classify all flat Lagrangian H-umbilical sub-
manifolds of (E2™, go, P).

1. INTRODUCTION.

An almost para-Hermitian manifold is a manifold M endowed with an almost
product structure P # £+ and a pseudo-Riemannian metric g such that

(1.1) P?=1, g(PX,PY)=—g(X,Y)

for X, Y tangent to M, where I is the identity map. It follows from (1.1) that
P maps space-like vectors into time-like vectors and verse visa. Consequently, the
dimension of M is even and the signature of g is (n,n), where dim M = 2n.

Let V denote the Levi-Civita connection of M. An almost para-Hermitian man-
ifold is called para-Kdhler if it satisfies VP = 0 identically.

Properties of para-Kéhler manifolds were first studied by R. K. Rashevski in
1948 in which he considered a neutral metric of signature (n,n) defined from a
potential function on a locally product 2n-manifold [17]. He called such manifolds
stratified space. Para-K&hler manifolds were explicitly defined by B. A. Rozenfeld
in 1949 [18]. Rozenfeld compared Rashevskij’s definition with Kéahler’s definition
in the complex case and established the analogy between Kéahler and para-Kahler
ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [19].

The Levi-Civita connection of a para-Kdhler manifold (M, g, P) preserves P,
equivalently, its holonomy group Hol,, p € M, preserves the eigenspace decompo-
sition T, M = T; @ T, . The parallel eigendistributions T’ + of P are g-isotropic
integrable distributions. Moreover, they are Lagrangian distributions with respect
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to the Kéahler form w = g o P, which is parallel and hence closed. The leaves of
these distributions are totally geodesic submanifolds. Thus, from the standpoint
of symplectic manifolds, a para-Kéhler structure can be regarded as a pair of com-
plementary integrable Lagrangian distributions (7", 7~) on a symplectic manifold
(M,w). Such a structure is often called a bi-Lagrangian structure or a Lagrangian
2-web (cf. [14]).

There exist many para-Kéahler manifolds, for instance, a homogeneous manifold
M = G/H of a semisimple Lie group G admits an invariant para-Kéhler structure
(g, P) if and only if it is a covering of the adjoint orbit Adgh of a semisimple element
h (see [15] for details). Para-Kéahler manifolds have been applied in supersymmetric
field theories as well as in string theory in recent years, see for instance, [11, 12, 13].

Analogous to totally real submanifolds in an almost Hermitian manifold (cf.
[10]), we call a space-like submanifold N in an almost para-Hermitian manifold
(M2™, g, P) totally real if P maps each tangent space T,N,p € N, into the normal
space T;-N. In particular, we call N Lagrangian if P(T,N) = T;-N for each p € N.

Lagrangian submanifolds in K&hler manifolds have been studied extensively since
early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian subman-
ifolds in para-Kéhler manifolds are known (see [14, Section 5: Open Problems], in
particular, see Open Problem (3)). This is exactly the reason the author initiated
recently the study of Lagrangian submanifolds of para-Kéhler manifolds in [8] in
which two optimal inequalities for Lagrangian submanifolds in the para-Kéahler n-
plane (E2", g9, P) were proved. Lagrangian submanifolds satisfying either equality
are also completely classified in [8].

In another paper [9] the author defines the notion of Lagrangian H-submanifolds
of para-Kéahler manifolds and classifies non-flat Lagrangian H-umbilical subman-
ifolds of the para-Kihler n-plane (E2", gy, P). In this paper we classify all flat
Lagrangian H-umbilical submanifolds of (E2", go, P).

2. PRELIMINARIES.

Let ¢ : N — M!" be an isometric immersion of a Riemannian n-manifold IV
into a pseudo-Riemannian m-manifold M with index s. Denote by V' and V the
Levi-Civita connections on N and M]", respectively.

For vector fields X, Y tangent to IV and £ normal to IV, the formulas of Gauss
and Weingarten are given respectively by (cf. [1, 2]):

(2.1) ViY = VAY + h(X,Y),
Vx&=—-A:X + Dx¢,

where h, A and D are the second fundamental form, the shape operator, and the
normal connection of N in M".
The shape operator and the second fundamental form are related by

(2.3) (h(X,Y),§) = (A X, Y),

where ( , ) is the inner product. The mean curvature vector is defined by

(2.4) H= (%)trace h.
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The equations of Gauss, Codazzi and Ricci are given respectively by

(2.5) R(X,Y)Z = R(X,Y)Z + Apv.2)X — Anx.2)Y,
(2.6) (R(X,Y)Z)" = (Vxh)(Y,Z) - (Vyh)(X, Z),
(2.7) g(RP(X,Y)¢,n) = g(R(X,Y)& n) + g([Ag, Ay)X,Y)

for XY, Z tangent to N and &,n normal to N, where R’ (respectively, R) is the
curvature tensor of N (respectively, of M["), (R(X,Y)Z)* is the normal component
of R(X,Y)Z, and Vh and RP are defined by

(2.8) (Vxh)(Y,Z) = Dxh(Y,Z) — h(V\Y, Z) = h(Y,V'x Z),
(2.9) RP(X,Y) = DxDy — DyDx — Dix,y).

3. PARA-KAHLER MANIFOLDS

Definition 3.1. An almost para-Hermitian manifold is a manifold M endowed
with an almost product structure P # 41 and a pseudo-Riemannian metric g such
that

(3.1) P2 =1, and g(Pv, Pw) = —g(v,w)
for vectors v, w € T,(M), p € M, where I is the identity map.

The dimension of an almost para-Hermitian manifold M is even and the metric
is neutral.

Definition 3.2. An almost para-Hermitian manifold (M, g, P) is called para-Kdhler
if it satisfies VP = 0 identically, where V is the Levi-Civita connection of M.

The simplest example of para-Kéahler manifolds is the pseudo-Euclidean 2n-space
E2" endowed with the neutral metric:

(3.2) go = — Z dx? + Z dyjz
i=1 j=1
with P being defined by
0 0 17} 0
33 P(o) = o Pan) =%

for j =1,...,n. We simply called (E2", g9, P) the para-Kdihler n-plane.
For a para-Kéahler manifold M, (3.1) implies that

(3.4) g(Pv,w) + g(v,Pw) =0, v,weT,M, pe M.

In particular, we obtain

(3.5) g(v, Pv) = 0.

If {v, Pv} spans a non-degenerate plane section, the sectional curvature
HP® = K(v A Pv)

of Span{v, Pv} is called a para-sectional curvature.
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A para-Kdhler space form, by definition, is a para-K&hler manifold of constant
para-sectional curvature. The Riemann curvature tensor of a para-Kéhler space
forms M?2"(4c) of constant para-sectional curvature 4c satisfies

R(X,Y)Z =c{{Y,2)X — (X, 2Z)Y + (PY, Z) PX

(3.6) —(PX,Z)PY +2(X,PY) PZ}.

The para-Kihler n-plane (E2", go, P) is the standard model of flat para-Kéhler
space form.

Definition 3.3. Let z : I — (E2", go, P) be a unit speed curve in (E2", gg, P). A
normal vector field F'(t) along z(¢) is called a parallel normal vector field if F'(t) is
tangent to the curve z at each point, i.e., the covariant derivative of F' along the
curve has no normal component along the curve.

Put
(3.7) Si"_l ={x¢€ Ein s (x,x) =1}

Then S2"~! is the unit pseudo hypersphere of the para-Kéhler n-plane (E2", go, P).
It follows from (3.5) that (x, Px) = 0. Thus, for a unit speed curve z : I — S"~! C
E2", Pz is always tangent to S2n—1.

Definition 3.4. A unit speed curve z : [ — S"~1 C E2" is called para-Legendre if
(#/(t), Pz(t)y =0 for each t € I.

For a unit speed space-like para-Legendre curve z : I — S"~! C E2", we have
(3.8) (z,2) = (2,2 =1, (2,2) =(2,Pz) = (', Pz) = 0.
Thus we may extend z, Pz, 2, Pz’ to an orthonormal frame
(3.9) 2, Pz, 2 P2 ws, Pws, ..., wy,, Pw,
along the curve. From (3.8) we find
(3.10) (2" Pz) =(2"2") =0, (2 2)=—1.

Hence it follows from (3.8)-(3.10) that

n n

(3.11) (1) = —2(t) + P (1) = 3 a; (s () + 3 by (1) Py (1)

Jj=3 Jj=3
for some functions u, as, ..., an,b3,...,by.

Definition 3.5. A unit speed space-like para-Legendre curve z : I — S*~! C E2"
is called special para-Legendre if (3.11) reduces to

n

(3.12) (1) = —=(t) + u(OPZ (1) — 3 a; (s (t)

Jj=3

for some parallel normal vector fields ws, ..., ws,.
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4. LAGRANGIAN SUBMANIFOLDS OF PARA-KAHLER MANIFOLDS

We recall the following results from [8, 9].

Lemma 4.1. Let N be a Lagrangian submanifold of a para-Kdihler manifold M2™.
Then we have

(i) P(VxY) = Dx(PY),
(ii) ApxY = —P(h(X,Y)),
(iii) (M(X,Y),PZ) = (h(Y,Z),PX) = (h(Z,X), PY),
(iv) P(R'(X,Y)Z) = RP(X,Y)PZ
for X,Y, Z tangent to N.

The equations of Gauss and Codazzi for a Lagrangian submanifold IV of a para-
Kiihler space form M?2"(4c) are given respectively by

(4.1) R(X,Y;Z,W) = A,y X, W) — (Apx,2)Y. W)
c((X,W)(Y, 2) — (X, 2) (Y, W)),
(4.2) (Vxh)(Y,Z) = (Vyh)(X, Z)

for X,Y,Z W tangent to N.
If we put h = P oo (equivalently o = P o h), then (3.1) and Lemma 4.1(iii)
imply that

<Ah(Y,Z)X7 W> = <U(G(Y7 Z)? X)7 W> .
Therefore equation (4.1) of Gauss can be rephrased as
R(X,Y)Z =0(0(X,2),Y)—0o(c(Y,Z),X)
+c{(Y,Z) X —c(X,2)Y.
It follows Lemma 4.1(i) that the equation of Ricci is nothing but the equation
of Gauss for Lagrangian submanifolds of para-Kéhler manifolds.

The fundamental existence and uniqueness theorems for Lagrangian submani-
folds in (E2", go, P) are the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If o
is a TN -valued symmetric bilinear form on N such that

(a) g(0(X,Y), Z) is totally symmetric,

(b) (Vo)(X,Y, Z) is totally symmetric,

(c) RI(X,Y)Z =0(0(X,2),Y) —0o(o(Y, Z), X),
then there is a Lagrangian isometric immersion L : N — (E2", go, P) whose second
fundamental form is given by h = Poo.

Uniqueness Theorem. Let Ly, Ly : N — (E2", go, P) be two Lagrangian isomet-
ric immersions of a Riemannian n-manifold N with second fundamental forms h'
and h?, respectively. If

g(W (X,Y),PL1,7Z) = g(h*(X,Y), PLy,7Z)

for all vector fields X,Y, Z tangent to N, then there is an isometry ® of (E2", go, P)
such that L1 = ® o L.
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A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is called
totally umbilical if its second fundamental form satisfies

(4.3) MX,Y)=(X,Y)H
for X,Y tangent to N.
The following result was proved in [9)].

Proposition 4.1. Every totally umbilical Lagrangian submanifold of a para-Kdhler
space form M2"(4c) with n > 2 is totally geodesic.

Lagrangian H-umbilical submanifolds in Kéahler manifolds were introduced in
[3, 4]. Such submanifolds in complex space forms were classified in [3, 4, 5].

The following definition of Lagrangian H-umbilical submanifolds of para-Kéhler
manifolds was given in [9].

Definition 4.1. A Lagrangian submanifold N of a para-K&hler manifold is called
Lagrangian H-umbilical if the second fundamental form satisfies

w h(e1,e1) = APey, h(es,ea) =--- = h(en,e,) = pPey,
(44) h(ei,e;) = uPej, h(ej,ex) =0, 2<j#k<n,
for some functions A, ;4 with respect to some orthonormal local frame {es,...,e,}.

In view of Proposition 4.1, Lagrangian H-umbilical submanifolds are the simplest
Lagrangian submanifolds next to totally geodesic ones.
The following classification theorem was obtained in [9].

Theorem 4.1. Let L : N — (E2"*, go, P) be a Lagrangian H-umbilical immersion
of a Riemannian n-manifold N into the para-Kdhler n-plane with n > 3. Then

(i) If N is of constant sectional curvature, then either N is flat or L is con-
gruent to an open portion of

1
% <2cosh2(bs) cosh ¢, zsinh(2bs) sinh ¢, sinh(2bs) cosh ¢,

2z cosh? (bs) sinh t) ,b#0,

where z = (22, ..., 2,) € E"! satisfies 25 + 23 + -+ 22 = 1.
(ii) If N contains no open subset of constant sectional curvature, then L s
locally congruent to one of the following three types of submanifolds:
(ii.1) a Lagrangian submanifold defined by

2 —2r S 27,/2 + T//d 1— a262r 1— a2627‘
g 33 + — 2r’2 — 2,73 S, 5 T, ..., — T,
2 2 6 —2r S2T/2+T//ds 1+a262'rx 1+a2€2rx
§: 8 %0 R E T T

where r = r(s) is a non-constant function and a is positive number;
(ii.2) a Lagrangian submanifold defined by

1 efskds e—fs)\ds . t efs)\ds e—fs)\ds t
- + sint, + ZCost,
2\ \pt+e p— pte p—

/% xds — [*Xds /% Xds — [®Xds
‘ — sin t, ‘ - zcost ,)\:2u—|—ﬁ,
pte  p—g pte  p—g @
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where z = (22,...,2,) € E""1 satisfies 23 + 23 + - + 22 =1 and u(s) and

©(s) are nonzero functions satisfies u* # ¢* and o' — ' = (1 — ©?)y;
a Lagrangian submanifold defined by

(ii.3)

1 J°Xds — [ Xds /% Xds — [®Xds

(¢ - cosh t, € — zsinht,
2 [ = Hte B—=

[ Xxds — [®Xds [°Xds — [®Xds
<e - < )COSht,(e + < >zsinht>7 /\:2u—|—ﬁ,
14

nte H—=® Bt n—=@
where z = (22,...,2,) € E"71 satisfies 25+ 23 +---+ 22 =1 and pu(s) and
©(s) are nonzero functions satisfies u? # ©* and o' — up' = (1 — ©?)e.
5. CLASSIFICATION OF FLAT LAGRANGIAN H-UMBILICAL SUBMANIFOLDS

In view of Theorem 4.1, we classify in this section all flat Lagrangian H-umbilical
submanifolds in the para-K&hler n-plane.

Theorem 5.1. Let L : N — (E2" go, P),n > 2, be a Lagrangian H-umbilical
immersion of a flat Riemannian n-manifold into the para-Kdhler n-plane. Then
locally L is congruent to one of the following two types of submanifolds:

(a) a Lagrangian submanifolds defined by
(5.1) L(t,ug, ..., un) = (71(£),0,...,0,v41(), u2, ..., un),
where (71 (t), Yni1(t)) is a space-like curve in E3;
(b) a Lagrangian submanifold defined by

(5.2) L(t,ug, ..., uy) = ugz(t) + Zujwj t)+ /0 b(t)2 (t)dt

where b: I — R is a real-valued functzon defined on an open interval I 50
and z : I — S?"=1 C E2" is a space-like unit speed special para-Legendre
curve satisfying

(5.3) Z(t) = —2(t) + ot Z% w;(t

for some nonzero function ¢ and pamllel normal vector fields ws, ..., wy
along z.
Conversely, (5.1) and (5.2) define flat Lagrangian H-umbilical submanifolds of
the para-Kdhler n-plane (E2", go, P).

Proof. Assume that L : N — (E2" g, P) is a Lagrangian H-umbilical isometric
immersion of a flat Riemannian n-manifold N into the para-Kahler n-plane without
totally geodesic points. Since N is flat, the second fundamental form h satisfies

h(ei,e1) = APey,
h(ei,e;) = h(ej,ex) =0, j,k=2,...,n,
for some nowhere zero function A with respect to some suitable orthonormal local

frame {ey,...,e,}. Without loss of generality, we may assume that A > 0.
From (5.4) and Codazzi’s equation, we find

(5.5) ejlnA:w{(el)7 wl(ex) =0, 2<jk<n.

(5.4)
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Let D and D+ denote the distributions on N spanned by {e;} and {es,...,e,},
respectively. Then D is clearly integrable, since it is one-dimensional. Also, it
follows from (5.4) and (5.5) that D is also integrable and the leaves of D+ are
totally geodesic submanifolds of E2”. Since D and D' are integrable and they
are perpendicular, there exist local coordinates {x1,xs,...,z,} such that 9/0x;
spans D and {0/0xa,...,0/0z,} spans Dt. Because D is one-dimensional, we
may choose x; such that 9/0x; = A\~ le;.

With respect to 9/0x1,...,0/0x,, (5.4) becomes

0 0 0

o 0 o 0
h (8x1’ 8!17]) h <8xj’ a’Ek) 07 J’k ’ "

Let Q™! be an integral submanifold of D. Then Q™! is a totally geodesic
submanifold of E2". Thus Q™! is an open portion of a Euclidean (n — 1)-space
E"~!. Hence N is an open portion of the twisted product manifold ;I x E"~! with
twisted product metric [1, 16]

(5.6)

(5.7) g = f2dz} + do3 +dx3 + - + do?

n’

where f = A~! and I is an open interval on which \ is defined.
From (5.7) we know that the Levi-Civita connection of N satisfies

0
Vojom g Ox1 f 8x -7 Z L 3z

o f 0 )
Va/azlgj = F oy Voo, D2y

(5.8)
=0,

for 2 < j, k < mn, where f; = 0f/0x;,i=1,...,n. Using (5.8) we find
o 0 0 " 0

5.9 R|l—,— | — = i | =2,...,n.

(5.9) (8:61’8:6]-)8961 szﬁfjkaxk, j=2.m

Since N is flat, (5.9) implies that f;x =0, j,k = 2,...,n. Therefore, f is given by

(5.10) f=B)+) ;@)
=2
for some functions (3, ag, ..., an. In view of (5.10), (5.8) reduces to
0 0 - 0
Va/awlaTcl < x +ZO£ z1)w )(91 fZakaT;k’
(5.11) po
3] a; 0 3]
=0 7 — =0 k=2
Vo,ow, x, ~ f omy Voo, o, 0 L

By combining (5.6), (5.11) and the formula of Gauss we obtain the following
PDE system:
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1

(512) L£C1£C1 = f(ﬁ T —|—ZO¢ z1 33_7) 1 fZakak +PL3?17

j=2 k=2
(5.13) Laoye, = %Lm,
(5.14) Luw, =0, jk=2,....n

Integrating (5.14) yields
(5.15) L=>Y Ajt)z; +~(t), t=m,
Jj=2

for some E2"-valued functions As, ..., A,,v of t. Thus

n
(5.16) L =) Aj(t)z; ++'(1),

j=2
(5.17) L., = A;(t), j=2,....,n
From (5.7) and (5.17), we know that As,..., A, are orthonormal tangent vector
fields on N. By applying (5.13), (5.16) and (5.17), we obtain
(5.18) oy (817 () = B A1),
(5.19) ()AL (t) = ap () A1), 4 k=2,...,n

Case (1): ag =--- = a,, = 0. Equation (5.7) and system (5.12)-(5.14) reduce to

(5.20) g = B*(t)dt* + da3 + - - -+ dx?,
(5.21) Ly = (InB(t)) Ly, + PLy, Lig, = Ly,2y, =0, j,k=2,...,n
Also, it follows from (5.18) that AL(x;) = --- = Al (x1) = 0, due to 8 # 0 by
(5.10). Thus As,..., A, are constant vectors, say ca,...,c, € E2". Therefore

(5.15) becomes
(5.22) Lt ;... xn) = 4() + Y _ cjaj.

From (5.22) we find
(523) Lt :’}’I(t), sz = Cj, ] :2,...,77,

Now, by applying (5.20) and (5.22), we conclude that cq,..., ¢, are orthonormal
space-like vectors and «(t) is a space-like curve in E2" with (3(t) as its speed.
Without loss of generality, we may put

’V(t) = (’Yl(t)a s 7’72n(t))7
(n+2)—th

(5.24)

en=(0,...,0,1).
Since the velocity vector (3 is perpendicular to cs,...,c,, we have

’V;LJrZ::’}én:O
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Thus, after applying a suitable translation on E2", we may put

(5.25) (@) = (), Y1 (t),0,....,0).

It follows from (5.23)-(5.25) and the Lagrangian condition that v = --- =~/ = 0.
Consequently, after applying a suitable translation on E2", we obtain

(5.26) L(t,za, ..., xn) = (11(£),0,...,0,vnt1(t), 22y ..., ),

where (v1(t), Yn+1(t)) is a space-like curve in E? with speed ((t). This gives flat
Lagrangian submanifolds of type (a) of the theorem.

Case (2): At least one of aw, ..., ay, is nonzero. Without loss of generality, we
may assume as # 0. We may reparameterize 1 by t = foxl ag(z1)dry, then we
obtain from (5.10) that

(5.27) f=0(t) +uz + En: a;(t)u;,
j=3
where u; = zj,j = 2,. b(t) = B(x1(t)) and a;(t) = o(x1(t)). Without loss of

generality, we may assume that b(t) is defined on an open interval I containing 0.
Hence (5.7) becomes

(5.28) g = fRdt® +dud + -+ du?.
From (5.6) we derive that

(3:5)-v0r(3).

g 0 g 0 .
h(at’%) —h(auj,auk> —07 ],k—2,...7n

where ¢(t) = 1/(aa2(x1(t)). By applying (5.8), (5.28), (5.27), (5.29) and the formula
of Gauss, we get

(5.29)

n
(5.30) Ly ==(b'(t) + Z a(t)u;) Ly — [ axLu, + o(t)PLy,
k=2
(5.31) Liw, = a—th,
f
(5.32) Luju, =0, jk=2,....n

with ay = 1. After solving (5.32), we find that

(5.33) = ug2(t) + Z ujw;(t) + B(t)

for some E2"-valued functions z(t), wg(t), .y wp(t), B(t). Thus
(5.34) Ly = g2 (t) + ZL: ujwi(t) + B'(t),

(535) Lu2 :Z(t)v Luj :wj(t)v j=3,...,n

It follows from (5.28) and (5.34) that z(¢), ws(t),. .., w,(t) are space-like orthonor-
mal tangent vector fields. Now, after applying (5.27), (5.31) and (5.33), we find
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that
(5.36) B'(t) = b(t)2'(t), wi(t) =ax(t)'(t), k=3,...,n.
Thus, ws(t), ..., wy(t) are parallel normal vector fields along z(t).

By substituting (5.36) into (5.34) we find that
(5.37) Ly = f2(t).

It follows from (5.27), (5.28) and (5.37) that 2’(t) is a unit vector field. Since L is
Lagrangian, we derive from (5.35) and (5.37) that (z’, Pz) = 0. Thus, z = z(t) is a
unit speed space-like para-Legendre curve in S2"~1. Moreover, from (5.35), (5.37)
and the Lagrangian condition, we know that

2(t), Pz(t), 2'(t), P2 (t), w3(t), Pws(t) ..., wy(t), Pw,(t)

form an orthonormal frame. Furthermore, by using (5.33) and (5.36) we conclude
that

(5.38) L(t,ug,y ... uy) = u2z(t) + i: ujw;(t) + /t b(t)2 (t)dt.
j=3 0

Finally, it follows from (5.30), (5.36), and (5.38) that the unit speed space-like
para-Legendre curve 2z satisfies (5.3). Consequently, the unit speed space-like para-
Legendre curve z in S?"~1 C E2" is special para-Legendre. Thus, we obtain flat
Lagrangian submanifolds of type (b).

The converse can be verified by direct computation. O

It follows from Theorem 6.1 that there exists infinitely many flat Lagrangian
submanifolds of type (b) in (E2", go, P) as described in Theorem 5.1.

6. EXISTENCE OF SPECIAL PARA-LEGENDRE CURVES

Theorem 6.1. Let ,as,as,...,a, (n > 2) be real-valued functions defined on an
open interval I 5 0 with ag = 1 and ¢ nowhere zero. Then there exists a unit speed
space-like special para-Legendre curve

z: 1 — §*~1 c (E2", gy, P)

satisfying (5.3) for some parallel orthonormal normal vector fields ws, . .., w, along
the curve z.

Proof. Let o(t),as(t), ..., an(t) be n — 1 functions of ¢ defined on an open interval
I 5 0 with ¢ nowhere zero. Put

(6.1) f=uat ) ().

Consider the twisted product manifold N := ;I x E"~! equipped with the twisted
product metric

(6.2) g = f2dt* + du3 + - - - + du?

n.
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Then N is a flat Riemannian n-manifold. Define a symmetric bilinear form o on

N by
s(2 9)_ 9
o) Tor
o0 0 g 0 .
O'(at,auj>—O'(auj,awc>—0,],k—27...,n.

Then (o(X,Y), Z) is totally symmetric in X, Y and Z.
From (6.1)-(6.3) it follows that (Vo)(X,Y, Z) is totally symmetric in X,Y and
Z. Moreover o and the Riemann curvature tensor R of N satisfy

(6.4) R(X,Y)Z =o(o(Y, Z),X) - o(0(X, Z),Y).

(6.3)

Thus, the Existence and Uniqueness Theorems imply that, up to rigid motions of
(E2", go, P), there is a unique Lagrangian immersion L : N — (E2", gg, P) whose
second fundamental form is given by h = Poo.

It follows from (6.1)-(6.3) and h = P o o that L satisfies

1 n n

(6.5) Ly = 7 > aj(t)uiLe — f Y axLu, +9PLy,

j=3 k=2

a;j )
(66) Ltuj = 71Lt7 Lujuk = O7 75 k= 2, ey,
where ag = 1. Solving (6.6) yields
(6.7) L= ujw;(t)+ co,

j=2

(6.8) Ly = fwy(t), Ly, =w;(t), j=2,...,m,
(6.9) B'(t) = 0, wy,(t) = ax(t)wy(t), k=3,...,m,
for some E2"-valued functions ws, ..., w, and constant vector cy. From (6.2) and
(6.8), it follows that w}(t) is a unit vector field and wa(t), ..., w,(t) are orthonormal

vector fields. Put z(t) = wa(t). Then z : I — S§?"~1 C E2" is a unit speed curve
defined on some open interval I.

Because L is Lagrangian, (6.8) and (6.9) imply that z = z(t) is a unit speed
space-like para-Legendre curve in S2"~1 C (E2", gg, P) and

2(t), Pz(t), 2/ (t)PZ'(t), w3(t), Pws(t) ..., wy(t), Pw,(t)

form an orthonormal frame such that ws,...,w, are parallel orthonormal normal
vector fields along z. Finally, from (6.5) and (6.8), we conclude that z is a special
para-Legendre curve in S2"~! satisfying (5.3). O

7. EXPLICIT EXAMPLES OF SPECIAL PARA-LEGENDRE CURVES

Now, we provide some simple explicit examples of unit speed space-like para-
Legendre curves in S5 C (ES, go, P) as follows:

Example 7.1. Let a,b be real numbers such that a? + 5% > 1 and a* < 1. Put

y=1-a* p=+a?+b2—-1.
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Consider the following curve in (ES, go, P):

sinh(bt) sinh(ut) p{sinh(bt) cosh(ut) — a®} — bcosh(bt) sinh(jut)
H 7 pv'1—at ’
ap{sinh(bt) cosh(ut) — a?} — abcosh(bt) sinh(ut)
V1 —at ’
cosh(bt) sinh(ut) pcosh(bt) cosh(ut) — bsinh(bt) sinh(pt)
p ’ /1 —at ’
ap cosh(bt) cosh(pt) — absinh(bt) sinh(ut)2
pV/1 —at

Then z = z(t) is a unit speed space-like special para-Legendre curve in S2"~! C
(E2", go, P) satisfying

z(t) =

(7.1) 2"(t) = 2bP2' (t) — 2(t) — aw(t),
where
(7.2) w(t) = 1_7612(07a, ~1,0,0,0) — az(t).

V1 —at

is the associated unit parallel normal vector field.
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