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CLASSIFICATION OF FLAT LAGRANGIAN H-UMBILICAL
SUBMANIFOLDS IN PARA-KÄHLER n-PLANE

BANG-YEN CHEN

(Communicated by H. Hilmi HACISALÍHOǦLU)

Abstract. Lagrangian submanifolds of Kähler manifolds have been studied
extensively since early 1970s. On the other hand, the study of Lagrangian sub-
manifolds of para-Kähler manifolds was initiated only recently by the author
in [8]. In a subsequence paper [9] the author defines the notion of Lagrangian
H-submanifolds of para-Kähler manifolds and classifies non-flat Lagrangian
H-umbilical submanifolds of the para-Kähler n-plane (E2n

n , g0, P ). The main
purpose of this paper is thus to classify all flat Lagrangian H-umbilical sub-
manifolds of (E2n

n , g0, P ).

1. Introduction.

An almost para-Hermitian manifold is a manifold M endowed with an almost
product structure P 6= ±I and a pseudo-Riemannian metric g such that

P 2 = I, g(PX, PY ) = −g(X, Y )(1.1)

for X, Y tangent to M , where I is the identity map. It follows from (1.1) that
P maps space-like vectors into time-like vectors and verse visa. Consequently, the
dimension of M is even and the signature of g is (n, n), where dimM = 2n.

Let ∇ denote the Levi-Civita connection of M . An almost para-Hermitian man-
ifold is called para-Kähler if it satisfies ∇P = 0 identically.

Properties of para-Kähler manifolds were first studied by R. K. Rashevski in
1948 in which he considered a neutral metric of signature (n, n) defined from a
potential function on a locally product 2n-manifold [17]. He called such manifolds
stratified space. Para-Kähler manifolds were explicitly defined by B. A. Rozenfeld
in 1949 [18]. Rozenfeld compared Rashevskij’s definition with Kähler’s definition
in the complex case and established the analogy between Kähler and para-Kähler
ones. Such manifolds were also defined independently by H. S. Ruse in 1949 [19].

The Levi-Civita connection of a para-Kähler manifold (M, g, P ) preserves P ,
equivalently, its holonomy group Holp, p ∈ M, preserves the eigenspace decompo-
sition TpM = T+

p ⊕ T−p . The parallel eigendistributions T± of P are g-isotropic
integrable distributions. Moreover, they are Lagrangian distributions with respect
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to the Kähler form ω = g ◦ P , which is parallel and hence closed. The leaves of
these distributions are totally geodesic submanifolds. Thus, from the standpoint
of symplectic manifolds, a para-Kähler structure can be regarded as a pair of com-
plementary integrable Lagrangian distributions (T+, T−) on a symplectic manifold
(M, ω). Such a structure is often called a bi-Lagrangian structure or a Lagrangian
2-web (cf. [14]).

There exist many para-Kähler manifolds, for instance, a homogeneous manifold
M = G/H of a semisimple Lie group G admits an invariant para-Kähler structure
(g, P ) if and only if it is a covering of the adjoint orbit AdGh of a semisimple element
h (see [15] for details). Para-Kähler manifolds have been applied in supersymmetric
field theories as well as in string theory in recent years, see for instance, [11, 12, 13].

Analogous to totally real submanifolds in an almost Hermitian manifold (cf.
[10]), we call a space-like submanifold N in an almost para-Hermitian manifold
(M2m

m , g, P ) totally real if P maps each tangent space TpN , p ∈ N , into the normal
space T⊥p N . In particular, we call N Lagrangian if P (TpN) = T⊥p N for each p ∈ N .

Lagrangian submanifolds in Kähler manifolds have been studied extensively since
early 1970s (see [6, 7] for surveys). In contrast, no results on Lagrangian subman-
ifolds in para-Kähler manifolds are known (see [14, Section 5: Open Problems], in
particular, see Open Problem (3)). This is exactly the reason the author initiated
recently the study of Lagrangian submanifolds of para-Kähler manifolds in [8] in
which two optimal inequalities for Lagrangian submanifolds in the para-Kähler n-
plane (E2n

n , g0, P ) were proved. Lagrangian submanifolds satisfying either equality
are also completely classified in [8].

In another paper [9] the author defines the notion of Lagrangian H-submanifolds
of para-Kähler manifolds and classifies non-flat Lagrangian H-umbilical subman-
ifolds of the para-Kähler n-plane (E2n

n , g0, P ). In this paper we classify all flat
Lagrangian H-umbilical submanifolds of (E2n

n , g0, P ).

2. Preliminaries.

Let ψ : N → Mm
s be an isometric immersion of a Riemannian n-manifold N

into a pseudo-Riemannian m-manifold Mm
s with index s. Denote by ∇′ and ∇ the

Levi-Civita connections on N and Mm
s , respectively.

For vector fields X, Y tangent to N and ξ normal to N , the formulas of Gauss
and Weingarten are given respectively by (cf. [1, 2]):

∇XY = ∇′XY + h(X, Y ),(2.1)

∇Xξ = −AξX + DXξ,(2.2)

where h,A and D are the second fundamental form, the shape operator, and the
normal connection of N in Mm

s .
The shape operator and the second fundamental form are related by

〈h(X, Y ), ξ〉 = 〈AξX,Y 〉 ,(2.3)

where 〈 , 〉 is the inner product. The mean curvature vector is defined by

H =
(

1

n

)
trace h.(2.4)
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The equations of Gauss, Codazzi and Ricci are given respectively by

R′(X,Y )Z = R(X,Y )Z + Ah(Y,Z)X −Ah(X,Z)Y,(2.5)

(R(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z),(2.6)

g(RD(X,Y )ξ, η) = g(R(X, Y )ξ, η) + g([Aξ, Aη]X, Y )(2.7)

for X, Y, Z tangent to N and ξ, η normal to N , where R′ (respectively, R) is the
curvature tensor of N (respectively, of Mm

s ), (R(X,Y )Z)⊥ is the normal component
of R(X,Y )Z, and ∇̄h and RD are defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇′XY, Z)− h(Y,∇′XZ),(2.8)

RD(X, Y ) = DXDY −DY DX −D[X,Y ].(2.9)

3. Para-Kähler manifolds

Definition 3.1. An almost para-Hermitian manifold is a manifold M endowed
with an almost product structure P 6= ±I and a pseudo-Riemannian metric g such
that

P 2 = I, and g(Pv, Pw) = −g(v, w)(3.1)

for vectors v, w ∈ Tp(M), p ∈ M , where I is the identity map.

The dimension of an almost para-Hermitian manifold M is even and the metric
is neutral.

Definition 3.2. An almost para-Hermitian manifold (M, g, P ) is called para-Kähler
if it satisfies ∇P = 0 identically, where ∇ is the Levi-Civita connection of M .

The simplest example of para-Kähler manifolds is the pseudo-Euclidean 2n-space
E2n

n endowed with the neutral metric:

g0 = −
n∑

i=1

dx2
i +

n∑

j=1

dy2
j(3.2)

with P being defined by

P

(
∂

∂xj

)
= ∂

∂yj
, P

(
∂

∂yj

)
= ∂

∂xj
(3.3)

for j = 1, . . . , n. We simply called (E2n
n , g0, P ) the para-Kähler n-plane.

For a para-Kähler manifold M , (3.1) implies that

g(Pv, w) + g(v, Pw) = 0, v, w ∈ TpM, p ∈ M.(3.4)

In particular, we obtain

g(v, Pv) = 0.(3.5)

If {v, Pv} spans a non-degenerate plane section, the sectional curvature

HP (v) = K(v ∧ Pv)

of Span{v, Pv} is called a para-sectional curvature.
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A para-Kähler space form, by definition, is a para-Kähler manifold of constant
para-sectional curvature. The Riemann curvature tensor of a para-Kähler space
forms M2n

n (4c) of constant para-sectional curvature 4c satisfies

(3.6)
R(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈PY,Z〉PX

− 〈PX,Z〉PY + 2 〈X,PY 〉PZ}.

The para-Kähler n-plane (E2n
n , g0, P ) is the standard model of flat para-Kähler

space form.

Definition 3.3. Let z : I → (E2n
n , g0, P ) be a unit speed curve in (E2n

n , g0, P ). A
normal vector field F (t) along z(t) is called a parallel normal vector field if F ′(t) is
tangent to the curve z at each point, i.e., the covariant derivative of F along the
curve has no normal component along the curve.

Put

S2n−1
n = {x ∈ E2n

n : 〈x,x〉 = 1}.(3.7)

Then S2n−1
n is the unit pseudo hypersphere of the para-Kähler n-plane (E2n

n , g0, P ).
It follows from (3.5) that 〈x, Px〉 = 0. Thus, for a unit speed curve z : I → Sn−1

n ⊂
E2n

n , Pz is always tangent to S2n−1
n .

Definition 3.4. A unit speed curve z : I → Sn−1
n ⊂ E2n

n is called para-Legendre if
〈z′(t), P z(t)〉 = 0 for each t ∈ I.

For a unit speed space-like para-Legendre curve z : I → Sn−1
n ⊂ E2n

n , we have

〈z, z〉 = 〈z′, z′〉 = 1, 〈z, z′〉 = 〈z, Pz〉 = 〈z′, P z〉 = 0.(3.8)

Thus we may extend z, Pz, z′, P z′ to an orthonormal frame

z, Pz, z′, Pz′, w3, Pw3, . . . , wn, Pwn(3.9)

along the curve. From (3.8) we find

〈z′′, P z〉 = 〈z′′, z′〉 = 0, 〈z′′, z〉 = −1.(3.10)

Hence it follows from (3.8)-(3.10) that

z′′(t) = −z(t) + µ(t)Pz′(t)−
n∑

j=3

aj(t)wj(t) +
n∑

j=3

bj(t)Pwj(t)(3.11)

for some functions µ, a3, . . . , an, b3, . . . , bn.

Definition 3.5. A unit speed space-like para-Legendre curve z : I → Sn−1
n ⊂ E2n

n

is called special para-Legendre if (3.11) reduces to

z′′(t) = −z(t) + µ(t)Pz′(t)−
n∑

j=3

aj(t)wj(t)(3.12)

for some parallel normal vector fields w3, . . . , wn.
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4. Lagrangian submanifolds of Para-Kähler manifolds

We recall the following results from [8, 9].

Lemma 4.1. Let N be a Lagrangian submanifold of a para-Kähler manifold M2n
n .

Then we have
(i) P (∇′XY ) = DX(PY ),
(ii) APXY = −P (h(X,Y )),
(iii) 〈h(X,Y ), PZ〉 = 〈h(Y, Z), PX〉 = 〈h(Z, X), PY 〉,
(iv) P (R′(X, Y )Z) = RD(X, Y )PZ

for X, Y, Z tangent to N .

The equations of Gauss and Codazzi for a Lagrangian submanifold N of a para-
Kähler space form M2n

n (4c) are given respectively by

R′(X, Y ;Z,W ) =
〈
Ah(Y,Z)X, W

〉− 〈
Ah(X,Z)Y, W

〉
(4.1)

+ c (〈X, W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉),
(∇̄Xh)(Y,Z) = (∇̄Y h)(X, Z)(4.2)

for X,Y, Z, W tangent to N .
If we put h = P ◦ σ (equivalently σ = P ◦ h), then (3.1) and Lemma 4.1(iii)

imply that 〈
Ah(Y,Z)X,W

〉
= −〈σ(σ(Y, Z), X), W 〉 .

Therefore equation (4.1) of Gauss can be rephrased as

R′(X,Y )Z = σ(σ(X,Z), Y )− σ(σ(Y,Z), X)

+ c 〈Y,Z〉X − c 〈X,Z〉Y.

It follows Lemma 4.1(i) that the equation of Ricci is nothing but the equation
of Gauss for Lagrangian submanifolds of para-Kähler manifolds.

The fundamental existence and uniqueness theorems for Lagrangian submani-
folds in (E2n

n , g0, P ) are the following.

Existence Theorem. Let N be a simply-connected Riemannian n-manifold. If σ
is a TN -valued symmetric bilinear form on N such that

(a) g(σ(X,Y ), Z) is totally symmetric,
(b) (∇σ)(X, Y, Z) is totally symmetric,
(c) R′(X,Y )Z = σ(σ(X,Z), Y )− σ(σ(Y,Z), X),

then there is a Lagrangian isometric immersion L : N → (E2n
n , g0, P ) whose second

fundamental form is given by h = P ◦ σ.

Uniqueness Theorem. Let L1, L2 : N → (E2n
n , g0, P ) be two Lagrangian isomet-

ric immersions of a Riemannian n-manifold N with second fundamental forms h1

and h2, respectively. If

g(h1(X, Y ), PL1?Z) = g(h2(X, Y ), PL2?Z)

for all vector fields X,Y, Z tangent to N , then there is an isometry Φ of (E2n
n , g0, P )

such that L1 = Φ ◦ L2.
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A pseudo-Riemannian submanifold N of a pseudo-Riemannian manifold is called
totally umbilical if its second fundamental form satisfies

h(X, Y ) = 〈X,Y 〉H(4.3)

for X,Y tangent to N .
The following result was proved in [9].

Proposition 4.1. Every totally umbilical Lagrangian submanifold of a para-Kähler
space form M2n

n (4c) with n ≥ 2 is totally geodesic.

Lagrangian H-umbilical submanifolds in Kähler manifolds were introduced in
[3, 4]. Such submanifolds in complex space forms were classified in [3, 4, 5].

The following definition of Lagrangian H-umbilical submanifolds of para-Kähler
manifolds was given in [9].

Definition 4.1. A Lagrangian submanifold N of a para-Kähler manifold is called
Lagrangian H-umbilical if the second fundamental form satisfies

(4.4)
h(e1, e1) = λPe1, h(e2, e2) = · · · = h(en, en) = µPe1,

h(e1, ej) = µPej , h(ej , ek) = 0, 2 ≤ j 6= k ≤ n,

for some functions λ, µ with respect to some orthonormal local frame {e1, . . . , en}.
In view of Proposition 4.1, Lagrangian H-umbilical submanifolds are the simplest

Lagrangian submanifolds next to totally geodesic ones.
The following classification theorem was obtained in [9].

Theorem 4.1. Let L : N → (E2n
n , g0, P ) be a Lagrangian H-umbilical immersion

of a Riemannian n-manifold N into the para-Kähler n-plane with n ≥ 3. Then
(i) If N is of constant sectional curvature, then either N is flat or L is con-

gruent to an open portion of
1
2b

(
2cosh2(bs) cosh t, z sinh(2bs) sinh t, sinh(2bs) cosh t,

2z cosh2(bs) sinh t
)
, b 6= 0,

where z = (z2, . . . , zn) ∈ En−1 satisfies z2
2 + z2

3 + · · ·+ z2
n = 1.

(ii) If N contains no open subset of constant sectional curvature, then L is
locally congruent to one of the following three types of submanifolds:

(ii.1) a Lagrangian submanifold defined by(
a2

n∑

j=2

x2
j + e2r

8
− e−2r

2r′2
−

∫ s
2r′2 + r′′

e2rr′3
ds,

1− a2e2r

2
x2, . . . ,

1− a2e2r

2
xn,

a2
n∑

j=2

x2
j − e2r

8
− e−2r

2r′2
−

∫ s
2r′2 + r′′

e2rr′3
ds,

1 + a2e2r

2
x2, . . . ,

1 + a2e2r

2
xn

)
,

where r = r(s) is a non-constant function and a is positive number;
(ii.2) a Lagrangian submanifold defined by

1
2

((
e

∫ sλds

µ + ϕ
+

e−
∫ sλds

µ− ϕ

)
sin t,

(
e

∫ sλds

µ + ϕ
+

e−
∫ sλds

µ− ϕ

)
z cos t,

(
e

∫ sλds

µ + ϕ
− e−

∫ sλds

µ− ϕ

)
sin t,

(
e

∫ sλds

µ + ϕ
− e−

∫ sλds

µ− ϕ

)
z cos t

)
, λ = 2µ +

µ

ϕ
,
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where z = (z2, . . . , zn) ∈ En−1 satisfies z2
2 + z2

3 + · · ·+ z2
n = 1 and µ(s) and

ϕ(s) are nonzero functions satisfies µ2 6= ϕ2 and ϕϕ′ − µµ′ = (µ2 − ϕ2)ϕ;
(ii.3) a Lagrangian submanifold defined by

1
2

((
e

∫ sλds

µ + ϕ
+

e−
∫ sλds

µ− ϕ

)
cosh t,

(
e

∫ sλds

µ + ϕ
− e−

∫ sλds

µ− ϕ

)
z sinh t,

(
e

∫ sλds

µ + ϕ
− e−

∫ sλds

µ− ϕ

)
cosh t,

(
e

∫ sλds

µ + ϕ
+

e−
∫ sλds

µ− ϕ

)
z sinh t

)
, λ = 2µ +

µ

ϕ
,

where z = (z2, . . . , zn) ∈ En−1 satisfies z2
2 + z2

3 + · · ·+ z2
n = 1 and µ(s) and

ϕ(s) are nonzero functions satisfies µ2 6= ϕ2 and ϕϕ′ − µµ′ = (µ2 − ϕ2)ϕ.

5. Classification of flat Lagrangian H-umbilical submanifolds

In view of Theorem 4.1, we classify in this section all flat Lagrangian H-umbilical
submanifolds in the para-Kähler n-plane.

Theorem 5.1. Let L : N → (E2n
n , g0, P ), n ≥ 2, be a Lagrangian H-umbilical

immersion of a flat Riemannian n-manifold into the para-Kähler n-plane. Then
locally L is congruent to one of the following two types of submanifolds:

(a) a Lagrangian submanifolds defined by

L(t, u2, . . . , un) = (γ1(t), 0, . . . , 0, γn+1(t), u2, . . . , un),(5.1)

where (γ1(t), γn+1(t)) is a space-like curve in E2
1;

(b) a Lagrangian submanifold defined by

L(t, u2, . . . , un) = u2z(t) +
n∑

j=3

ujwj(t) +
∫ t

0

b(t)z′(t)dt,(5.2)

where b : I → R is a real-valued function defined on an open interval I 3 0
and z : I → S2n−1

n ⊂ E2n
n is a space-like unit speed special para-Legendre

curve satisfying

z′′(t) = −z(t) + ϕ(t)Pz′(t)−
n∑

j=3

aj(t)wj(t)(5.3)

for some nonzero function ϕ and parallel normal vector fields w3, . . . , wn

along z.
Conversely, (5.1) and (5.2) define flat Lagrangian H-umbilical submanifolds of

the para-Kähler n-plane (E2n
n , g0, P ).

Proof. Assume that L : N → (E2n
n , g, P ) is a Lagrangian H-umbilical isometric

immersion of a flat Riemannian n-manifold N into the para-Kähler n-plane without
totally geodesic points. Since N is flat, the second fundamental form h satisfies

(5.4)
h(e1, e1) = λPe1,

h(e1, ej) = h(ej , ek) = 0, j, k = 2, . . . , n,

for some nowhere zero function λ with respect to some suitable orthonormal local
frame {e1, . . . , en}. Without loss of generality, we may assume that λ > 0.

From (5.4) and Codazzi’s equation, we find

ej ln λ = ωj
1(e1), ωj

1(ek) = 0, 2 ≤ j, k ≤ n.(5.5)
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Let D and D⊥ denote the distributions on N spanned by {e1} and {e2, . . . , en},
respectively. Then D is clearly integrable, since it is one-dimensional. Also, it
follows from (5.4) and (5.5) that D⊥ is also integrable and the leaves of D⊥ are
totally geodesic submanifolds of E2n

n . Since D and D⊥ are integrable and they
are perpendicular, there exist local coordinates {x1, x2, . . . , xn} such that ∂/∂x1

spans D and {∂/∂x2, . . . , ∂/∂xn} spans D⊥. Because D is one-dimensional, we
may choose x1 such that ∂/∂x1 = λ−1e1.

With respect to ∂/∂x1, . . . , ∂/∂xn, (5.4) becomes

(5.6)
h

(
∂

∂x1
,

∂

∂x1

)
= P

(
∂

∂x1

)
,

h

(
∂

∂x1
,

∂

∂xj

)
= h

(
∂

∂xj
,

∂

∂xk

)
= 0, j, k = 2, . . . , n.

Let Qn−1 be an integral submanifold of D⊥. Then Qn−1 is a totally geodesic
submanifold of E2n

n . Thus Qn−1 is an open portion of a Euclidean (n − 1)-space
En−1. Hence N is an open portion of the twisted product manifold fI ×En−1 with
twisted product metric [1, 16]

g = f2dx2
1 + dx2

2 + dx2
3 + · · ·+ dx2

n,(5.7)

where f = λ−1 and I is an open interval on which λ is defined.
From (5.7) we know that the Levi-Civita connection of N satisfies

(5.8)
∇∂/∂x1

∂

∂x1
=

f1

f

∂

∂x1
− f

n∑

k=2

fk
∂

∂xk
,

∇∂/∂x1

∂

∂xj
=

fj

f

∂

∂x1
, ∇∂/∂xj

∂

∂xk
= 0,

for 2 ≤ j, k ≤ n, where fi = ∂f/∂xi, i = 1, . . . , n. Using (5.8) we find

R

(
∂

∂x1
,

∂

∂xj

)
∂

∂x1
= f

n∑

k=2

fjk
∂

∂xk
, j = 2, . . . , n.(5.9)

Since N is flat, (5.9) implies that fjk = 0, j, k = 2, . . . , n. Therefore, f is given by

f = β(x1) +
n∑

j=2

αj(x1)xj ,(5.10)

for some functions β, α2, . . . , αn. In view of (5.10), (5.8) reduces to

(5.11)
∇∂/∂x1

∂

∂x1
=

1
f

(
β′(x1) +

n∑

j=2

α′j(x1)xj

)
∂

∂x1
− f

n∑

k=2

αk
∂

∂xk
,

∇∂/∂x1

∂

∂xj
=

αj

f

∂

∂x1
, ∇∂/∂xj

∂

∂xk
= 0, j, k = 2, . . . , n.

By combining (5.6), (5.11) and the formula of Gauss we obtain the following
PDE system:
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Lx1x1 =
1
f

(β′(x1) +
n∑

j=2

α′j(x1)xj)Lx1 − f

n∑

k=2

αkLxk
+ PLx1 ,(5.12)

Lx1xj =
αj

f
Lx1 ,(5.13)

Lxjxk
= 0, j, k = 2, . . . , n.(5.14)

Integrating (5.14) yields

L =
n∑

j=2

Aj(t)xj + γ(t), t = x1,(5.15)

for some E2n
n -valued functions A2, . . . , An, γ of t. Thus

Lt =
n∑

j=2

A′j(t)xj + γ′(t),(5.16)

Lxj
= Aj(t), j = 2, . . . , n.(5.17)

From (5.7) and (5.17), we know that A2, . . . , An are orthonormal tangent vector
fields on N . By applying (5.13), (5.16) and (5.17), we obtain

αj(t)γ′(t) = β(t)A′j(t),(5.18)

αj(t)A′k(t) = αk(t)A′j(t), j, k = 2, . . . , n.(5.19)

Case (1): α2 = · · · = αn = 0. Equation (5.7) and system (5.12)-(5.14) reduce to

g = β2(t)dt2 + dx2
2 + · · ·+ dx2

n,(5.20)

Ltt = (ln β(t))′Lx1 + PLt, Ltxj = Lxjxk
= 0, j, k = 2, . . . , n.(5.21)

Also, it follows from (5.18) that A′2(x1) = · · · = A′n(x1) = 0, due to β 6= 0 by
(5.10). Thus A2, . . . , An are constant vectors, say c2, . . . , cn ∈ E2n

n . Therefore
(5.15) becomes

L(t, x2, . . . , xn) = γ(t) +
n∑

j=2

cjxj .(5.22)

From (5.22) we find

(5.23) Lt = γ′(t), Lxj = cj , j = 2, . . . , n.

Now, by applying (5.20) and (5.22), we conclude that c2, . . . , cn are orthonormal
space-like vectors and γ(t) is a space-like curve in E2n

n with β(t) as its speed.
Without loss of generality, we may put

(5.24)

γ(t) = (γ1(t), . . . , γ2n(t)),

c2 = (0, . . . , 0,

(n+2)−th︷︸︸︷
1 , 0, . . . , 0),

...

cn = (0, . . . , 0, 1).

Since the velocity vector β′ is perpendicular to c2, . . . , cn, we have

γ′n+2 = · · · = γ′2n = 0.
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Thus, after applying a suitable translation on E2n
n , we may put

γ(t) = (γ1(t), . . . , γn+1(t), 0, . . . , 0).(5.25)

It follows from (5.23)-(5.25) and the Lagrangian condition that γ′2 = · · · = γ′n = 0.
Consequently, after applying a suitable translation on E2n

n , we obtain

L(t, x2, . . . , xn) = (γ1(t), 0, . . . , 0, γn+1(t), x2, . . . , xn),(5.26)

where (γ1(t), γn+1(t)) is a space-like curve in E2
1 with speed β(t). This gives flat

Lagrangian submanifolds of type (a) of the theorem.

Case (2): At least one of α2, . . . , αn is nonzero. Without loss of generality, we
may assume α2 6= 0. We may reparameterize x1 by t =

∫ x1

0
α2(x1)dx1, then we

obtain from (5.10) that

f̂ = b(t) + u2 +
n∑

j=3

aj(t)uj ,(5.27)

where uj = xj , j = 2, . . . , n, b(t) = β(x1(t)) and aj(t) = αj(x1(t)). Without loss of
generality, we may assume that b(t) is defined on an open interval I containing 0.
Hence (5.7) becomes

g = f̂2dt2 + du2
2 + · · ·+ du2

n.(5.28)

From (5.6) we derive that

(5.29)
h

(
∂

∂t
,

∂

∂t

)
= ϕ(t)P

(
∂

∂t

)
,

h

(
∂

∂t
,

∂

∂uj

)
= h

(
∂

∂uj
,

∂

∂uk

)
= 0, j, k = 2, . . . , n,

where ϕ(t) = 1/(α2(x1(t)). By applying (5.8), (5.28), (5.27), (5.29) and the formula
of Gauss, we get

Ltt =
1

f̂
(b′(t) +

n∑

j=3

a′j(t)uj)Lt − f̂

n∑

k=2

akLuk
+ ϕ(t)PLt,(5.30)

Ltuj =
aj

f̂
Lt,(5.31)

Lujuk
= 0, j, k = 2, . . . , n,(5.32)

with a2 = 1. After solving (5.32), we find that

L = u2z(t) +
n∑

j=3

ujwj(t) + B(t)(5.33)

for some E2n
n -valued functions z(t), w3(t), . . . , wn(t), B(t). Thus

Lt = u2z
′(t) +

n∑

j=3

ujw
′
j(t) + B′(t),(5.34)

Lu2 = z(t), Luj = wj(t), j = 3, . . . , n.(5.35)

It follows from (5.28) and (5.34) that z(t), w3(t), . . . , wn(t) are space-like orthonor-
mal tangent vector fields. Now, after applying (5.27), (5.31) and (5.33), we find
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that

B′(t) = b(t)z′(t), w′k(t) = ak(t)z′(t), k = 3, . . . , n.(5.36)

Thus, w3(t), . . . , wn(t) are parallel normal vector fields along z(t).
By substituting (5.36) into (5.34) we find that

Lt = f̂ z′(t).(5.37)

It follows from (5.27), (5.28) and (5.37) that z′(t) is a unit vector field. Since L is
Lagrangian, we derive from (5.35) and (5.37) that 〈z′, P z〉 = 0. Thus, z = z(t) is a
unit speed space-like para-Legendre curve in S2n−1

n . Moreover, from (5.35), (5.37)
and the Lagrangian condition, we know that

z(t), P z(t), z′(t), Pz′(t), w3(t), Pw3(t) . . . , wn(t), Pwn(t)

form an orthonormal frame. Furthermore, by using (5.33) and (5.36) we conclude
that

L(t, u2, . . . , un) = u2z(t) +
n∑

j=3

ujwj(t) +
∫ t

0

b(t)z′(t)dt.(5.38)

Finally, it follows from (5.30), (5.36), and (5.38) that the unit speed space-like
para-Legendre curve z satisfies (5.3). Consequently, the unit speed space-like para-
Legendre curve z in S2n−1

n ⊂ E2n
n is special para-Legendre. Thus, we obtain flat

Lagrangian submanifolds of type (b).
The converse can be verified by direct computation. ¤

It follows from Theorem 6.1 that there exists infinitely many flat Lagrangian
submanifolds of type (b) in (E2n

n , g0, P ) as described in Theorem 5.1.

6. Existence of special para-Legendre curves

Theorem 6.1. Let ϕ, a2, a3, . . . , an (n ≥ 2) be real-valued functions defined on an
open interval I 3 0 with a2 = 1 and ϕ nowhere zero. Then there exists a unit speed
space-like special para-Legendre curve

z : I → S2n−1
n ⊂ (E2n

n , g0, P )

satisfying (5.3) for some parallel orthonormal normal vector fields w3, . . . , wn along
the curve z.

Proof. Let ϕ(t), a3(t), . . . , am(t) be n− 1 functions of t defined on an open interval
I 3 0 with ϕ nowhere zero. Put

f = u2 +
n∑

j=3

aj(t)uj .(6.1)

Consider the twisted product manifold N := fI × En−1 equipped with the twisted
product metric

g = f2dt2 + du2
2 + · · ·+ du2

n.(6.2)
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Then N is a flat Riemannian n-manifold. Define a symmetric bilinear form σ on
N by

(6.3)
σ

(
∂

∂t
,

∂

∂t

)
= ϕ

∂

∂t
,

σ

(
∂

∂t
,

∂

∂uj

)
= σ

(
∂

∂uj
,

∂

∂uk

)
= 0, j, k = 2, . . . , n.

Then 〈σ(X, Y ), Z〉 is totally symmetric in X, Y and Z.
From (6.1)-(6.3) it follows that (∇σ)(X, Y, Z) is totally symmetric in X, Y and

Z. Moreover σ and the Riemann curvature tensor R of N satisfy

R′(X, Y )Z = σ(σ(Y, Z), X)− σ(σ(X, Z), Y ).(6.4)

Thus, the Existence and Uniqueness Theorems imply that, up to rigid motions of
(E2n

n , g0, P ), there is a unique Lagrangian immersion L : N → (E2n
n , g0, P ) whose

second fundamental form is given by h = P ◦ σ.
It follows from (6.1)-(6.3) and h = P ◦ σ that L satisfies

Ltt =
1
f

n∑

j=3

a′j(t)ujLt − f

n∑

k=2

akLuk
+ ϕPLt,(6.5)

Ltuj =
aj

f
Lt, Lujuk

= 0, j, k = 2, . . . , n,(6.6)

where a2 = 1. Solving (6.6) yields

L =
n∑

j=2

ujwj(t) + c0,(6.7)

Lt = fw′2(t), Luj = wj(t), j = 2, . . . , n,(6.8)

B′(t) = 0, w′k(t) = ak(t)w′2(t), k = 3, . . . , n,(6.9)

for some E2n
n -valued functions w2, . . . , wn and constant vector c0. From (6.2) and

(6.8), it follows that w′2(t) is a unit vector field and w2(t), . . . , wn(t) are orthonormal
vector fields. Put z(t) = w2(t). Then z : I → S2n−1

n ⊂ E2n
n is a unit speed curve

defined on some open interval I.
Because L is Lagrangian, (6.8) and (6.9) imply that z = z(t) is a unit speed

space-like para-Legendre curve in S2n−1
n ⊂ (E2n

n , g0, P ) and

z(t), P z(t), z′(t)Pz′(t), w3(t), Pw3(t) . . . , wn(t), Pwn(t)

form an orthonormal frame such that w3, . . . , wn are parallel orthonormal normal
vector fields along z. Finally, from (6.5) and (6.8), we conclude that z is a special
para-Legendre curve in S2n−1

n satisfying (5.3). ¤

7. Explicit examples of special para-Legendre curves

Now, we provide some simple explicit examples of unit speed space-like para-
Legendre curves in S5

3 ⊂ (E6
3, g0, P ) as follows:

Example 7.1. Let a, b be real numbers such that a2 + b2 > 1 and a4 < 1. Put

γ = 1− a2, µ =
√

a2 + b2 − 1.
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Consider the following curve in (E6
3, g0, P ):

z(t) =

(
sinh(bt) sinh(µt)

µ
,
µ{sinh(bt) cosh(µt)− a2} − b cosh(bt) sinh(µt)

µ
√

1− a4
,

aµ{sinh(bt) cosh(µt)− a2} − ab cosh(bt) sinh(µt)
µ
√

1− a4
,

cosh(bt) sinh(µt)
µ

,
µ cosh(bt) cosh(µt)− b sinh(bt) sinh(µt)

µ
√

1− a4
,

aµ cosh(bt) cosh(µt)− ab sinh(bt) sinh(µt)2
µ
√

1− a4

)
.

Then z = z(t) is a unit speed space-like special para-Legendre curve in S2n−1
n ⊂

(E2n
n , g0, P ) satisfying

z′′(t) = 2bPz′(t)− z(t)− aw(t),(7.1)

where

w(t) =
1− a2

√
1− a4

(0, a,−1, 0, 0, 0)− az(t).(7.2)

is the associated unit parallel normal vector field.
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