
International Electronic Journal of Geometry
Volume 4 No. 1 pp. 15-25 (2011) c©IEJG
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Abstract. The purpose of this paper is to determine some remarkable classes
of the induced structures on the product of two Riemannian manifolds, these,
being furnished with an almost complex or an almost contact structure.

1. Introduction

When studying the product of two almost contact metric manifolds, M. Capursi
[3] established that this product is an almost Hermitian manifold. He characterized
it for some classes of manifolds in the topic of cosymplectic geometry. He shows
that this product is Hermitian, Kählerian, almost Kählerian or nearly Kählerian, if
and only if, the two factors are normal, cosymplectic, almost cosymplectic or nearly
cosymplectic respectively.

Regarding this result, one can ask if it is valid only in the case of cosymplectic
geometry. In other words, what remarkable classes of structures can be induced on
the product of two manifolds in Riemannian geometry?

This paper is organized in the following way. In §2 we examine the product of
two almost contact metric manifolds. Since this product is an almost Hermitian
manifold, we complete the study of Capursi. §3 is devoted to the case of the
product of an almost Hermitian manifold with an almost contact metric manifold.
This completes the work of Oubina [8] and [9]. In §4, we deal with the product
of an almost quaternion manifold with an almost Hermitian almost contact metric
manifold. This product has been used to construct other classes of almost contact
metric manifolds with 3-structure in [12], and is a tool to construct some types of
Riemannian submersions as reported in [13] and [14]. We end the study with some
problems for which we have not found suitable response in the field of Riemannian
geometry.
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2. Review of needed notions

An almost Hermitian manifold is a Riemannian manifold (M, g) furnished with
a tensor field J of type (1, 1) satisfying:

(i) J2D = −D, and
(ii) g(JD, JE) = g(D, E),∀D, E ∈ χ(M).

Any almost Hermitian manifold (M, g, J) is of even dimension 2m and admits
a differential 2-form, Ω, defined by Ω(D, E) = g(D, JE). This form is called the
fundamental form or the Kähler form. Let {E1, . . . , Em, JE1, . . . , JEm} be a local
J-basis of an open subset of M, then the coderivative δ of Ω is defined by

(2.1) δΩ(D) = −
m∑

i=1

(∇EΩ)(Ei, D) + (∇JEi
Ω)(JEi, D),

where ∇ denotes the Levi-Civita connection on M .
Almost Hermitian structures have been completely classified by A. Gray and

L.M. Hervella [5]. We just recall the defining relations of some classes, which will
be used in this study.

An almost Hermitian manifold (M2m, g, J) is said to be :

(a) Kählerian if dΩ(D,E, G) = 0 and Nj = 0, where NJ denotes the Nijenhuis
tensor of J ;

(b) almost Kählerian(or W2-manifold) if dΩ(D, E,G) = 0;

(c) nearly Kählerian (or W1-manifold) if (∇DΩ)(D, E) = 0;

(d) W3-manifold if (∇DΩ)(E, G)− (∇JDΩ)(JE, G) = 0 = δΩ;

(e) semi-Kählerian (or W1 ⊕W2 ⊕W3 −manifold) if δΩ = 0;

(f) W1 ⊕W3-manifold if (∇DΩ)(D,E)− (∇JDΩ)(JD,E) = 0 = δΩ;

(g) G1-manifold if (∇DΩ)(D, E)− (∇JDΩ)(JD, E) = 0;

(h) Hermitian or (W3 ⊕W4-manifold) if NJ = 0 or equivalently

(∇DΩ)(E,G)− (∇JDΩ)(JE, G) = 0.

By an almost contact metric manifold, one understands a quintuple (M, g, ϕ, ξ, η)
satisfying the following conditions:

(i) (M, g) is a Riemannian manifold;

(ii) ξ is a distinguished vector field;

(iii) η is a differential 1-form such that η(ξ) = 1;

(iv) ϕ is a tensor field of type (1,1) such that ϕ2 = −I + η ⊗ ξ;

(v) g(ϕD, ϕE) = g(D, E)− η(D)η(E).
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The last condition means that g is a compatible metric with the almost contact
structure (ϕ, ξ, η). Almost contact metric manifolds are of odd dimension, 2m + 1.
The fundamental 2-form, φ, of an almost contact metric manifold is defined by

φ(D, E) = g(D, ϕE).

Let {E1, . . . , Em, ϕE1, . . . , ϕEm, ξ} be a local ϕ-basis of an open subset of M,
then the coderivative, δ, is given by

δφ(D) = −
m∑

i=1

{(∇Eiφ)(Ei, D) + (∇ϕEiφ)(ϕEi, D)} − (∇ξφ)(ξ, D);

δη = −
m∑

i=1

{(∇Ei
η)Ei + (∇ϕEi

η)ϕEi} .

Following Gray and Hervella [5], in the classification of almost Hermitian struc-
tures, D. Chinea an C. Gonzalez [4], have obtained a classification of almost contact
metric manifolds.

Note that, among the 4,096 classes of these structures, only a few of them has
been identified. We recall those which will be used in this paper.

An almost contact metric manifold is said to be :
(a) cosymplectic if ∇ϕ = 0;

(b) almost cosymplectic if dφ = 0 and dη = O;

(c) semi-cosymplectic normal if δφ = 0 = δη = N (1);

(d) G1 semi-cosymplectic if δφ = O = δη and

(∇Dϕ)D − (∇ϕDϕ)ϕD + η(D)(∇ϕDξ) = O;

(e) Sasakian if (∇Dϕ)E = g(D,E)ξ − η(E)D;

(f) quasi-Sasakian if dφ = O and N (1) = O;

(g) semi-Sasakian if η = 1
2mδφ;

(h) G1-Sasakian if (∇Dϕ)D − (∇ϕDϕ)ϕD + η(D)(∇ϕDξ) = O;

(i) Kenmotsu if (∇Dϕ)E = g(ϕD,E)ξ − η(E)ϕD.
Let (ϕ1, ξ1, η1), (ϕ2, ξ2, η2) and (ϕ3, ξ3, η3) be almost contact structures defined

on a Riemannian manifold (M, g) such that each of them is compatible with the
Riemannian metric g. Then (M, g, (ϕ1, ξ1, η1)3i=1) is called an almost contact metric
manifold with 3-structure, [7], [15], if, for any cyclic permutation (i, j, k) of {1, 2, 3},
the following conditions are satisfied :

(a) ηi(ξj) = ηj(ξi) = 0;
(b) ϕi(ξj) = −ϕj(ξi) = ξk;
(c) ηi ◦ ϕj = −ηj ◦ ϕi = ηk;
(d) ϕi ◦ ϕj − ηj ⊗ ξi = −ϕj ◦ ϕi + ηi ⊗ ξj = ϕk.

Note that, for each i, the fundamental local 2-form, φi, is defined by

φi(D, E) = g(D, ϕiE)
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Almost contact metric manifolds with 3-structure are of odd dimension 4m + 3.

3. Product of almost contact metric manifolds

Let (M2m1+1
1 , g1, ϕ1, ξ1, η1) and (M2m2+1

2 , g2, ϕ2, ξ2, η2) be almost contact metric
manifolds. It is known that M1 ×M2 is a differentiable manifold with dimension

dimR(M1 ×M2) = 2m1 + 2m2 + 2 = 2(m1 + m2 + 1).

Putting m1 + m2 + 1 = p, we have dimR(M1 ×M2) = 2p which is even. We will
denote by M̃ = M1 × M2. It is known that (M1, g1) × (M2, g2) is a Riemannian
manifold furnished with the Riemannian metric defined by

(3.1) g̃((D1, D2), (E1, E2)) = g1(D1, E1) + g2(D2, E2).

Since M̃ is a Riemannian manifold of even dimension 2p, one can suspect that it is
equipped with an almost complex structure. We can put

(3.2) J̃(D1, D2) = (ϕ1D1 − η2(D2)ξ1, ϕ2D2 + η1(D1)ξ2).

The following is well known.

Proposition 3.1. The triplet (M̃, g̃, J̃) constructed as above is an almost Hermit-
ian manifold.

Proof. Obvious. ¤

The manifold (M̃, g̃, J̃) possesses a fundamental 2−form , Ω̃, the Kähler form
defined by

Ω̃((D1, D2), (E1, E2)) = g̃((D1, D2), J̃(E1, E2))

From definitions of g̃ and J̃ , we get

Ω̃((D1, D2), (E1, E2)) = φ1(D1, E1) + φ2(D2, E2)(3.3)
+ η1(E1)η2(D2)− η2(E2)η1(D1).

If each φi, and any of the contact forms ηi are closed, so is Ω̃.
Following the same procedure, one can obtain other induced objects such as the

induced covariant derivative, the covariant derivative of the Kähler form and many
others. Concerning the exterior differential of the Kähler form, Capursi [3] has
established that

3dΩ̃((D1, D2), (E1, E2), (F1, F2)) = 3dφ1(D1, E1, F1)(3.4)
+ 3dφ2(D2, E2, F2)− 2η2(E2)dη1(F1, D1)− 2η1(F2)dη1(D1, E1)
+ 2η1(D1)dη2(E2, F2) + 2η1(E1)dη2(F2, D2) + 2η1(F1)dη2(D2, E2)
− 2η2(D2)dη1(E1, F1).

Denoted by N
(3)
ϕ1 (D1) = (Lξ1ϕ1)D1, N

(4)
ϕ1 (D1) = (Lη1ϕ1)D1 other Sasaki-Hatakeyama

tensors [10], it is known that if N
(1)
ϕ1 (D1) = 0, then N

(i)
ϕ1 (D1) = 0 for all i = 2, 3, 4.

The same holds for N
(1)
ϕ2 .

In [3], M. Capursi has shown that the Nijenhuis tensor NJ̃ is related to N
(i)
ϕ1 and

N
(i)
ϕ2 as follows

NJ̃ ((D1, 0), (E1, 0)) = (N (1)
ϕ1

(D1, E1), 0) + (N (2)
ϕ1

(D1, E1))(0, ξ2)
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NJ̃((D1, 0), (0, D2)) = η2(D2)(N (3)
ϕ1

(D1, E1), 0)− η2(D1)(N (4)
ϕ2

(D2))(ξ1, 0)(3.5)

+ η1(D1)(0, N (3)
ϕ2

(D2)) + η2(D2)(N (4)
ϕ1

(D1))(0, ξ2).

(3.6) NJ̃((0, D2), (0, E2)) = (0, N (1)
ϕ2

(D2, E2))− (N (2)
ϕ2

(D2, E2))(ξ1, 0).

Proposition 3.2. Let M1 and M2 be two almost contact metric manifolds such
that their Sasaki-Hatakeyama tensors N

(1)
ϕi vanish. If their fundamental forms φi

and their contact forms ηi are closed, then the product M̃ = M1 ×M2 is Kähler.

Proof. Since N
(1)
ϕi = 0, the structure on the product is integrable. From equation

(3.4), we have dΩ̃ = dφ1 + dφ2 because dηi = 0. As each φi is closed, then dφi = 0
so, dΩ̃ = 0 = NJ̃ . This then defines on M̃ a Kähler structure. ¤

The above proposition applies in the case when M1 and M2 are cosymplectic
manifolds. It improves Proposition 3.4 of Capursi [3].

Proposition 3.3. Let M1 and M2 be two almost contact metric manifolds. If M1

and M2 are almost cosymplectic, then the product M̃ = M1×M2 is almost Kähler.

Proof. Recall that an almost cosymplectic manifold is defined by dφ = 0 = dη.
Using (3.4), one gets dΩ̃ = 0 which is the defining relation of an almost Kähler
structure. ¤

4. Product M ′2m′ ×M2m+1

Let (M ′, g′, J ′) be a 2m′-dimensional almost Hermitian manifold and (M, g, ϕ, ξ, η)
be an almost contact metric manifold of dimension 2m + 1. It is known that the
product M̃ = M ′×M is a differentiable manifold of dimension 2 (m′ + m)+1. One
can put n = m′ + m so that the dimension of M̃ is 2n + 1.

On the product M̃ = M ′ ×M , one defines an almost contact metric structure
(g̃, ϕ̃, ξ̃, η̃) by setting

(4.1) ϕ̃ (D′, D) = (J ′D′, ϕD) ,

(4.2) η̃ (D′, D) =
m

n
η (D) ,

(4.3) g̃ ((D′, D) , (E′, E)) = g′ (D′, E′) +
n2

m2
g (D, E) ,

(4.4) ξ̃ =
n

m
(0, ξ) .

Looking to obtain the classification of this structure, one needs the fundamental
form φ̃, the Riemannian connection ∇̃, the differential dφ̃, the codifferential δφ̃
and many others tensors on M̃ . J.A. Oubina [8], [9] has defined some interesting
identities to this classification; we recall those that will be needed in this study such
as:

(4.5) φ̃ ((D′, D) , (E′, E)) = Ω′ (D′, E′) +
m2

n2
φ (D, E) ;

(4.6)
(
∇̃(D′,D)ϕ̃

)
(E′, E) = ((∇′D′J ′) E′, (∇Dϕ)E) ;

(4.7)
(
∇̃(D′,D)φ̃

)
((E′, E) , (G′, G)) = (∇′D′Ω′) (E′, G′) +

m2

n2
(∇Dφ) (E, G) ;
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(4.8) dφ̃ ((D′, D) , (E′, E) , (G′, G)) = dΩ′ (D′, E′, G′) +
m2

n2
dφ (D, E,G) ;

(4.9) dη̃ ((D′, D) , (E′, E)) =
m

n
dη (D, E) ;

(4.10) δη̃ =
n

m
δη;

(4.11) δφ̃ (D′, D) = δΩ′ (D′) + δφ (D) ;

(4.12) ∇̃(D′,D)ξ̃ =
n

m
(0,∇Dξ) ;

(4.13)
(
∇̃(D′,D)η̃

)
(E′, E) =

m

n
(∇Dη)E;

(4.14) ˜N (1) =
(
N, N (1)

)
.

With these identities, Oubina established a result that we can complete by the
following

Proposition 4.1. Let (M ′, g′, J ′) be an almost Hermitian manifold and (M, g, ϕ, ξ, η)
an almost contact metric manifold. If (M ′×M, g̃, ϕ̃, ξ̃, η̃) is an almost contact met-
ric manifold obtained as above, then it is:

(a) semi-Sasakian if, and only if, M ′ is semi Kähler and M is semi-Sasakian;
(b) G1-Sasakian if, and only if, M ′ is a G1-manifold and M is G1-Sasakian;
(c) Kenmotsu if, and only if, M ′ is Kähler and M is Kenmotsu;
(d) semi-cosymplectic normal if, and only if, M ′ is a W3-manifold and M is

semi-cosymplectic normal;
(e) G1-semi-Sasakian if, and only if, M ′ is a W1 ⊕ W3-manifold and M is

G1-semi-Sasakian.

Proof. First, note that since M̃ = M
′2m′×M2m+1, we have dim M̃ = 2(m′+m)+1.

Suppose that M̃ is semi-Sasakian, we then have

(4.15) η̃ =
1

2(m′ + m)
δφ̃.

From (4.2) and (4.11) we have respectively

(4.16) η̃(D′, D) =
m

m′ + m
η(D),

(4.17) δφ̃(D′, D) = δΩ′(D′) + δφ(D).

Thus, combining (4.16) with (4.15) and (4.17) gives
m

m′ + m
η(D) =

1
2(m′ + m)

(δΩ′(D′) + δφ(D)),

which leads to
m

m′ + m
η(D) =

1
2(m′ + m)

δΩ′(D′) +
1

2(m′ + m)
δφ(D).

Therefore

η(D) =
m′ + m

2m(m′ + m)
δΩ′(D′) +

m′ + m

2(m′ + m)
δφ(D),
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η(D) =
1

2m
δΩ′(D′) +

1
2m

δφ,

and we deduce that η = 1
2mδφ if and only if δΩ′ = 0. This means that M̃ is

semi-Sasakian if and only if M ′ is semi-Kähler and M is semi-Sasakian.

Other statements are proved in the same way. ¤

Some illustrations can be pointed out from [4] as follows.

S6 × R2m+1 is nearly-K-cosymplectic;

S2 × R2m+1 is quasi-K-cosymplectic;

S2m+1 × R2p is quasi Sasakian.

Looking through these examples, it is known that:

S6 is nearly Kählerian and R2m+1 is cosymplectic;

S2 is quasi Kählerian and R2m+1 is cosymplectic;

S2m+1 is Sasakian and R2p is Kählerian.

It is known that there are 4096 classes of almost contact metric structures; thus
the above proposition should take many pages; we then generalize it in the following

Theorem 4.1. Let (M ′, g′, J ′) be an almost Hermitian manifold and (M, g, ϕ, ξ, η)
an almost contact metric manifold. If (M̃, g̃, ϕ̃, ξ̃, η̃) is an almost contact metric
manifold obtained as above, then it is so that:

(a)

dφ̃ ((D′, D) , (E′, E) , (G′, G)) =
b

3
σ

{
η̃ (D′, D) C̃

}

if and only if,

dΩ′ (D′, E′, G′) = 0 and dφ (D,E, G) =
b

3
σ {η (D)C} ;

(b)

dφ̃ ((D′, D) , (E′, E) , (G′, G)) =
b

3
σ

{
φ̃ ((D′, D) , (E′, E)) C̃

}

if and only if,

dΩ′ (D′, E′, G′) =
b

3
σ {Ω′ (D′, E′)C ′} and

dφ (D, E,G) =
b

3
σ {φ (D,E)C} ;

(c) (
∇̃(D′,D)φ̃

)
((D′, D) , (E′, E)) = b.η̃ (D′, D) φ̃ ((E′, E) , (D′, D))

if and only if,

(∇′D′Ω′) (D′, E′) = 0 and (∇Dφ) (D, E) = b.η (D)φ (E, D) ;
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(d)
(
∇̃(D′,D)φ̃

)
((E′, E) , (G′, G)) +

(
∇̃ϕ̃(D′,D)φ̃

)
(ϕ̃ (E′, E) , (G′, G)) =

b.η̃ (D′, D) C̃

if and only if,

(∇′D′Ω′) (E′, G′) + (∇′J ′D′Ω′) (J ′E′, G′) = 0 and

(∇Dφ) (E, G) + (∇ϕDφ) (ϕE, G) = b.η (D)C;

(e)

σ
{(
∇̃(D′,D)φ̃

)
((E′, E) , (G′, G))

}
−

σ
{(
∇̃ϕ̃(D′,D)φ̃

)
(ϕ̃ (E′, E) , (G′, G)) + b.η̃ (D′, D) C̃

}
= 0

if and only if,

σ {(∇′D′Ω′) (E′, G′)− (∇′J ′D′Ω′) (J ′E′, G′)} = 0

and

σ {(∇Dφ) (E,G)− (∇ϕDφ) (ϕE,G) + b.η (D)C} = 0;

(f)
δφ̃ = 0, δη̃ = 0, dη̃ = 0 or N (1) = 0

if and only if,
δφ̃ = 0 = δΩ′(1) = 0 = N

respectively.

Proof. (a) If

dφ̃ ((D′, D) , (E′, E) , (G′, G)) =
b

3
σ

{
η̃ (D′, D) C̃

}
,

then by (4.8) we have

dΩ′ (D′, E′, G′) +
m2

n2
dφ (D, E,G) =

b

3
σ

{m

n
η (D)C

}
;

this implies

dΩ′ (D′, E′, G′) = 0 and
m

n
dφ (D, E,G) =

b

3
σ {η (D)C} .

Putting a = b.n
m , one gets dφ (D, E, G) = a

3σ {η (D)C}.
Conversely, if dΩ′ (D′, E′, G′) = 0 and dφ (D,E, G) = a

3σ {η (D) C},
then dΩ′ (D′, E′, G′) + dφ (D, E,G) = a

3σ {η (D) C}.
Since dφ (D, E, G) = a

3σ {η (D) C}, then m
n dφ (D, E, G) = a.m

3n σ {η (D) C}.
On the other hand, taking a.m

n = b, one gets

m

n
dφ (D, E,G) =

b

3
σ {η (D)C} ,

from which we have
m2

n2
dφ (D, E, G) =

b

3
σ

{m

n
η (D)C

}
.
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Since m
n η (D) = η̃ (D′, D), then

dΩ′ (D′, E′, G′) +
m2

n2
dφ (D, E, G) =

b

3
σ

{
η̃ (D′, D) C̃

}
,

which shows that

dφ̃ ((D′, D) , (E′, E) , (G′, G)) =
b

3
σ

{
η̃ (D′, D) C̃

}
.

(b) If

dφ̃ ((D′, D) , (E′, E) , (G′, G)) =
b

3
σ{φ̃ ((D′, D) , (E′, E)) C̃},

then by (4.8) and (4.5) we get

dΩ′ (D′, E′, G′) =
b

3
σ {Ω′ (D′, E′, G′)}

and
dφ (D, E,G) =

b

3
σ {φ (D,E)C} .

The converse is established as in the above assertion (a).
Other statements are proved in the same procedure. ¤

This theorem is important according to the following proposition, due again to
Oubina [12, Propoition 2.1].

Proposition 4.2. The manifold (M̃, g̃, ϕ̃, ξ̃, η̃) defined as above can not be quasi-
K-Sasakian.

Proof. Recall that a quasi-K-Sasakian manifold is defined by the relation

(∇Dφ) (E, G) + (∇ϕDφ) (ϕE,G) =

2g (D, E) η (G)− 2g (D, G) η (E) + g (∇ϕDξ, G) η (E) .

Therefore, if
(
M̃, g̃, ϕ̃, ξ̃, η̃

)
is quasi-K-Sasakian, thus we get

(∇′D′Ω′) (E′, G′) + (∇′J ′D′Ω′) (J ′E′, G′) = 2g′ (D′, E′)− 2g′ (D′, G′) and

m2

n2
(∇Dφ) (E, G) + (∇ϕDφ) (ϕE, G) =

2n

m
g (D, E) η (G)− g (D,G) η (E) + g (∇ϕDξ,G) η (E) ,

which are absurd. Indeed, the first relation does not define a subclass in the clas-
sification of almost Hermitian structures from Gray and Hervella [5]. The second
implies that m = n from which we deduce m′ = 0. ¤

5. Product M4m ×M ′4m′+2

Definition 5.1. Let (M, g, J) be an almost Hermitian manifold endowed with two
almost contact structures (ϕi, ξi, ηi)i=1,2 such that each of them is compatible with
the metric tensor g. The manifold (M4m+2, g, J, (ϕi, ξi, ηi)2i=1) is said to be an
almost Hermitian almost contact metric manifold [16] if

(a) Jξ1 = −ξ2, Jξ2 = ξ1;
(b) ϕ1 ◦ ϕ1 = ϕ2 ◦ ϕ2 = −Id + η1 ⊗ ξ1 + η2 ⊗ ξ2;
(c) ϕ1 ◦ J = −J ◦ ϕ1 = ϕ2;
(d) ϕ1 ◦ ϕ2 = −ϕ2 ◦ ϕ1 = J + η1 ⊗ ξ2 − η2 ⊗ ξ1;
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(e) ϕ2 ◦ J = −J ◦ ϕ2 = −ϕ1

As in the case of almost contact metric manifolds and almost Hermitian ones,
the fundamental forms are defined by

φi (D, E) = g (D, ϕiE) , i = 1, 2,

Ω(D,E) = g (D,JE) .

In [17] it is shown that the odd dimensional complex projective space P2m+1(C) is
an example of almost Hermitian almost contact metric manifolds. It possesses a
Kähler structure and two Sasakian ones. For this reason, it is called a Sasakian-
Kähler manifold. These manifolds have been studied by Boothby [1], [2], Kobayashi
[6], Shibuya [11], [16], [17], and Wolf [18]. The name almost Hermitian almost
contact metric manifold is due to Watson [16] and [17]. As in §3, it can be shown
that the product of an almost quaternion manifold with an almost Hermitian almost
contact metric manifold is an almost Hermitian almost contact metric one.

Indeed, let
(
M

′4m′+2, g′, J ′, (ϕ′i, ξ
′
i, η

′
i)

2
i=1

)
be an almost Hermitian almost con-

tact metric manifold and
(
M4m, g, (Ji)

3
i=1

)
be an almost quaternion manifold. On

the product M̃ = M ×M ′ one defines an almost Hermitian almost contact metric

structure
(

g̃, J̃ ,
(
ϕ̃i, ξ̃i, η̃i

)2

i=1

)
by putting

ϕ̃1 (D, D′) = (J1D, ϕ′1D
′) ;

ϕ̃2 (D, D′) = (J2D, ϕ′2D
′) ;

J̃ (D, D′) = (J3D,J ′D′) ;

η̃i (D,D′) =
m′

m
η′i (D′) ;

ξ̃i =
m

m′ (0, ξ′i) ;

g̃ ((D,D′) , (E, E′)) = g (D,E) +
m2

m′2 g′ (D′, E′) .

Proposition 5.1. Let
(
M4m, g, (Ji)

3
i=1

)
be an almost quaternion manifold and(

M
′4m′+2, g′, J ′, (ϕ′i, ξ

′
i, η

′
i)

2
i=1

)
be an almost Hermitian almost contact metric man-

ifold. If M̃ = M × M ′ is an almost Hermitian almost contact metric manifold,
constructed as above, then it is such that:

(a) cosymplectic-Kähler if, and only if, M ′ is cosymplectic-Kähler and M is
almost quaternion Kähler;

(b) Sasakian-Kähler if, and only if, M ′ is
Sasakian-Kähler and M is almost quaternion Kähler.

Proof. One can adapt Proposition 4.1. ¤
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6. Some problems

Let (M4m+3, g, (ϕi, ξi, ηi)3i=1) be an almost contact metric manifold with 3-
structure, it is clear that the product M̃ = M4m+3 × M ′4m′+3, has dimension
4p + 2, by putting m + m′ = p. With this, one can suspect the existence of two
almost contact metric structures on M̃ . The problem is to find how to construct
the two almost contact metric structures on this manifold M̃ . The same problem
occurs when we consider the product M̃ = M4m+3×M ′4m′+2, which has dimension
4p + 1; we suspect the existence of an almost contact metric structure that must
be constructed on M̃ . One can be interested by the same problem on the product
M̃ = M4m+2 ×M ′4m′+2, which has 4p as dimension and should possess an almost
quaternion structure. We have to construct this structure on the product M̃ .
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[8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae,

Debrecen, 32 (1985), 187-193.
[9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
[10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which

are closely related to almost contact structure II, Tôhoku Math. J., 13 (1961), 281-294.
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