ON TIMELIKE PARALLEL p_i -EQUIDISTANT RULED SURFACES WITH A SPACELIKE BASE CURVE IN THE MINKOWSKI 3-SPACE R_1^3

MELEK MASAL AND NURI KURUOĞLU

(Communicated by Yusuf YAYLI)

Abstract. The purpose of this paper is first, to give radii and curvature axes of osculator Lorentz spheres of the timelike parallel p_i -equidistant ruled surfaces by a spacelike base curve in the Minkowski 3-space R_1^3 ; second, to give arc lengths of indicatrix curves of base curves of these surfaces.

1. INTRODUCTION

I. E. Valeontis, $\lbrack 3\rbrack$ defined parallel p-equidistant ruled surfaces in E^3 and gave some results related with striction curves of ruled surfaces.

M. Masal, N. Kuruoğlu, [1] obtained arc lengths, curvature radii, curvature axes, spherical involut and areas of real closed spherical indicatrix curves of base curves of parallel *p*-equidistant ruled surfaces in E^3 .

And also, M. Masal, N. Kuruoğlu, $[2]$ defined timelike parallel p_i -equidistant ruled surfaces with a spacelike base curve in the Minkowski 3-space and obtained dralls, the shape operators, Gaussian curvatures, mean curvatures, shape tensor, q^{th} fundamental forms of these surfaces.

In this paper, radii and curvature axes of osculator Lorentz spheres, arc lengths of indicatrix curves of base curves of the timelike parallel p_i -equidistant ruled surfaces with a spacelike base curve in the Minkowski 3-space are obtained.

2. Preliminaries

Let $\alpha: I \to R_1^3$, $\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$ be a differentiable spacelike curve parameterized by arc-length in the Minkowski 3-space, where I is an open interval in R containing the origin. Let V_1 be the tangent vector field of α , D be the Levi-Civita connection on R_1^3 and $D_{V_1}V_1$ be a timelike vector. If V_1 moves along α , then a timelike ruled surface with base curve α given by the parameterization

$$
(2.1) \t\t\t M: \varphi(t, v) = \alpha(t) + vV_1(t)
$$

²⁰⁰⁰ Mathematics Subject Classification. 53C50.

Key words and phrases. ruled surface, Minkowski, timelike, parallel p_i -equidistant.

can be obtained in the Minkowski 3-space. Let ${V_1, V_2, V_3}$ be an orthonormal frame field along α in R_1^3 , where V_2 is a timelike vector and V_3 is a spacelike vector. If k_1 and k_2 are the natural curvature and torsion of $\alpha(t)$, respectively, then the Frenet formulas are, [4],

(2.2)
$$
V_1' = k_1 V_2, \qquad V_2' = k_1 V_1 + k_2 V_3, \qquad V_3' = k_2 V_2.
$$

Using $V_1 = \alpha'$ and $V_2 = \frac{\alpha''}{\ln \alpha''}$ $\frac{\alpha^{\prime\prime}}{\|\alpha^{\prime\prime}\|}$, we have $k_1 = \|\alpha^{\prime\prime}\| > 0$, where "'" means derivate with respect to time t .

Definition 2.1. The planes which are corresponding to the subspaces $Sp\{V_1, V_2\}$, $Sp{V_2,V_3}, Sp{V_3,V_1};$ are called **asymptotic plane**, polar plane and central plane, respectively, [2].

Definition 2.2. Let M and M^* be two timelike ruled surfaces with a spacelike base curve in R_1^3 and p_1 , p_2 and p_3 denote the distances between the polar planes, central planes and asymptotic planes, respectively. If

1) The generator vectors of M and M^* are parallel,

2) The distances p_i , $1 \leq i \leq 3$, at the corresponding points of α and α^* are constant,

then the pair of ruled surfaces M and M^* are called the **timelike parallel** p_i equidistant ruled surfaces with a spacelike base curve in R_1^3 . If $p_i = 0$, then the pair of M and M^* are called the **timelike parallel** p_i -equivalent ruled surfaces with a spacelike base curve in R_1^3 , [2].

From the definition 2.2, the timelike parallel p_i -equidistant ruled surfaces with a spacelike base curve have the following parametric representations

$$
M: \varphi(t, v) = \alpha(t) + vV_1(t), \qquad (t, v) \in I \times R
$$

$$
M^* : \varphi^*(t^*, v^*) = \alpha^*(t^*) + v^* V_1(t^*), \qquad (t^*, v^*) \in I \times R.
$$

Throughout this paper, M and M^* will be used for the timelike parallel p_i -equidistant ruled surfaces with a spacelike base curve.

Theorem 2.1. i) The Frenet frames $\{V_1, V_2, V_3\}$ and $\{V_1^*, V_2^*, V_3^*\}$ are equivalent at the corresponding points in M and M^* , respectively. (For $\frac{dt^*}{dt}$)0.)

 $ii)$ If k_1 and k_1^* are the naturel curvatures of base curves of M and M^* and similarly, k_2 and k_2^* are the torsions of base curves of M and M^* , respectively, then we have, [2].

$$
k_i^* = k_i \frac{dt}{dt^*}, \ 1 \le i \le 2.
$$

3. ON THE OSCULATOR LORENTZ SPHERES OF TIMELIKE PARALLEL p_i -EQUIDISTANT RULED SURFACES WITH A SPACELIKE BASE CURVE

In this Section, we find the locus of center of the osculator sphere S_1^2 which is fourth order contact with the base curve α of M. Let us consider the function f denoted by

(3.1)
$$
f: I \to R \n t \to f(t) = \langle \alpha(t) - a, \alpha(t) - a \rangle - R^2,
$$

where a and R are the center and radius of S_1^2 , respectively. Since S_1^2 is fourth order contact with the curve α , we can write

$$
f(t) = f'(t) = f''(t) = f'''(t) = 0.
$$

Using $f(t) = f'(t) = f''(t) = 0$ and (2.2) we have (3.2) $\langle \alpha(t) - a, \alpha(t) - a \rangle = R^2$,

(3.3) $\langle V_1(t), \alpha(t) - a \rangle = 0,$

(3.4)
$$
\langle V_2(t), \alpha(t) - a \rangle = \frac{1}{k_1(t)}.
$$

Also, for the vector $\alpha(t) - a$, we can write

(3.5)
$$
\alpha(t) - a = m_1(t)V_1(t) + m_2(t)V_2(t) + m_3(t)V_3(t), \quad m_i(t) \in R,
$$
where $\{V_1, V_2, V_3\}$ is the orthonormal frame field of M . From here, we have
(3.6)
 $\langle \alpha(t) - a, V_1(t) \rangle = m_1(t), \quad \langle \alpha(t) - a, V_2(t) \rangle = -m_2(t), \quad \langle \alpha(t) - a, V_3(t) \rangle = m_3(t).$

.

Since $f'(t) = f''(t) = 0$, we find

(3.7)
$$
m_1(t) = 0, \quad m_2(t) = -\frac{1}{k_1(t)}
$$

Using (3.2) , (3.5) and (3.7) we get

(3.8)
$$
R = \sqrt{m_3^2 - m_2^2}
$$

or

(3.9)
$$
m_3 = \pm \sqrt{m_2^2 + R^2}.
$$

From (3.5), for the center a of S_1^2 , we can write

(3.10)
$$
a = \alpha(t) + \frac{1}{k_1} V_2 - \lambda V_3, \quad \lambda = m_3(t) \in R.
$$

Using $f'''(t) = 0$, we have

$$
k_1' \langle V_2(t), \alpha(t) - a \rangle + k_1 \langle V_2'(t), \alpha(t) - a \rangle + k_1 \langle V_2(t), V_1(t) \rangle = 0.
$$

Thus, from (2.2) , (3.6) and (3.7) , we find

(3.11)
$$
m_3 = \frac{-k_1'}{k_1^2 k_2} = -\frac{m_2'}{k_2}.
$$

Similarly, we compute the locus of center of osculator sphere S_1^{*2} which is fourth order contact with the spacelike base curve α^* of M^* . Let us consider the function f^* defined by

(3.12)
$$
f^*: I \to R t^* \to f^* (t^*) = \langle \alpha^*(t^*) - a^*, \alpha^*(t^*) - a^* \rangle - R^{*2},
$$

where a^* and R^* are the center and the radius of S_1^{*2} . Since S_1^{*2} is fourth order contact with the curve α^* , we can write

$$
f^{*}(t^{*}) = f^{*'}(t^{*}) = f^{*''}(t^{*}) = f^{*'''}(t^{*}) = 0.
$$

From $f^*(t^*) = f^{*'}(t^*) = f^{*''}(t^*) = 0$ and (2.2), we have (3.13) * $(t^*) - a^*, \alpha^*(t^*) - a^* \rangle = R^{*2},$

(3.14)
$$
\langle V_1^*(t^*), \alpha^*(t^*) - a^* \rangle = 0,
$$

(3.15)
$$
\langle V_2^*(t^*), \alpha^*(t^*) - a^* \rangle = \frac{1}{k_1^*(t^*)}.
$$

Furthermore, for the vector $\alpha^*(t^*) - a^*$, we can write

(3.16)
$$
\alpha^*(t^*) - a^* = m_1^*(t^*)V_1^*(t^*) + m_2^*(t^*)V_2^*(t^*) + m_3^*(t^*)V_3^*(t^*), \quad m_i^*(t^*) \in R
$$
,
where $\{V_1^*, V_2^*, V_3^*\}$ is orthonormal frame field of M^* . From here, we have

(3.17)
$$
\begin{aligned}\n\langle \alpha^*(t^*) - a^*, V_1^*(t^*) \rangle &= m_1^*(t^*), \\
\langle \alpha^*(t^*) - a^*, V_2^*(t^*) \rangle &= -m_2^*(t^*), \\
\langle \alpha^*(t^*) - a^*, V_3^*(t^*) \rangle &= m_3^*(t^*).\n\end{aligned}
$$

Since $f^{*'}(t^*) = f^{*''}(t^*) = 0$, we get

(3.18)
$$
m_1^*(t^*) = 0, \quad m_2^*(t^*) = -\frac{1}{k_1^*(t^*)}.
$$

Using (3.13), (3.16) and (3.18), we obtain

(3.19)
$$
R^* = \sqrt{m_3^*^2 - m_2^*^2}
$$

or

(3.20)
$$
m_3^* = \pm \sqrt{m_2^*^2 + {R^*}^2}
$$

Using (3.16), for the center a^* of S_1^{*2} , we can write

(3.21)
$$
a^* = \alpha^*(t^*) + \frac{1}{k_1^*} V_2^* - \lambda^* V_3^*, \quad \lambda^* = m_3^*(t^*) \in R.
$$

From $f^{*'''}(t^*)=0$ we have

$$
k_1^{*'}\left\langle V_2^*(t^*),\alpha^*(t^*)-a^*\right\rangle + k_1^*\left\langle V_2^{*'}(t^*),\alpha^*(t^*)-a^*\right\rangle + k_1^*\left\langle V_2^*(t^*),V_1^*(t^*)\right\rangle = 0.
$$

So from (2.2), (3.17) and (3.18), we get

(3.22)
$$
m_3^* = \frac{-k_1^{*^{\prime}}}{k_1^{*2}k_2^{*}} = -\frac{m_2^{*^{\prime}}}{k_2^{*}}
$$

Now, we can compute the relations between the radii of osculator Lorentz spheres and curvature axes of the base curves of the timelike parallel p_i -equidistant ruled surfaces by a spacelike base curve M and M^* :

.

Using equation (3.7) and equation (3.18) from (ii) of Theorem 2.1, we find,

(3.23)
$$
m_1^*(t^*) = m_1(t) = 0, \quad m_2^*(t^*) = \frac{dt^*}{dt}m_2(t).
$$

If $\frac{dt}{dt^*}$ is constant, then from (ii) of Theorem 2.1, we have

(3.24)
$$
k_1^{*'} = k_1' \left(\frac{dt}{dt^*}\right)^2.
$$

Thus, using (3.22) , (3.24) , (3.11) and (ii) of Theorem 2.1, we obtain

(3.25)
$$
m_3^* = \frac{dt^*}{dt} m_3.
$$

Combining (3.23) , (3.25) and (ii) of Theorem 2.1, we have

(3.26)
$$
\alpha^* - a^* = \frac{dt^*}{dt} (\alpha - a).
$$

Similarly, combining (3.8) , (3.9) , (3.23) and (3.25) , we get

$$
{R^*}^2 = {\left(\frac{dt^*}{dt}\right)}^2 R^2
$$

or

(3.27)
$$
R^* = \left| \frac{dt^*}{dt} \right| R.
$$

So, we may give the following Theorem without proof:

Theorem 3.1. Let M and M^* be the timelike parallel p_i -equidistant ruled surfaces by a spacelike base curve.

i) If q_{α} and q_{α^*} are the curvature axes (the locus of center of osculator Lorentz spheres) of the base curves α and α^* of M and M^* , respectively, then we have

$$
q_{\alpha^*} - \alpha^* = \frac{dt^*}{dt} (q_\alpha - \alpha).
$$

ii) If R and R^{*} are the radii of osculator Lorentz spheres of base curves α and α^* of M and M^* , respectively, then we have

$$
R^* = \left| \frac{dt^*}{dt} \right| R.
$$

4. ARC LENGTHS OF INDICATRIX CURVES OF THE TIMELIKE PARALEL p_i -EQUIDISTANT RULED SURFACES WITH A SPACELIKE BASE CURVE

In this section, we will investigate arc lengths of indicatrix curves of spacelike base curves of the timelike parallel p_i -equidistant ruled surfaces with a spacelike base curve.

Since V_1 and V_3 are spacelike vectors, the curves (V_1) and (V_3) generated by the spacelike vectors V_1 and V_3 on the pseudosphere S_1^2 , are called the pseudo-spherical indicatrix curves. The curve (V_2) generated by the timelike vector V_2 on the pseudohyperbolic space H_1^2 is called indicatrix curve. Let us denote the arc lengths of indicatrix curves (V_i) and (V_i^*) generated by the vector fields V_i and V_i^* by S_{V_i} and $S_{V_i^*}$, respectively. Thus, we can write

$$
S_{V_i} = \int ||V_i'||dt \text{ and } S_{V_i^*} = \int ||V_i^{*'}||dt^*, \quad 1 \le i \le 3.
$$

Using the Frenet formulas and (ii) of Theorem 2.1, we have

$$
S_{V_1^*} = \int -k_1 dt = S_{V_1}, \quad S_{V_2^*} = \int \sqrt{|k_1^2 + k_2^2|} dt = S_{V_2}, \quad S_{V_3^*} = \int |k_2| dt = S_{V_3},
$$
where $dt > 0$

where $\frac{dt}{dt^*} > 0$.

Similarly, for the arc lengths S_{α} and S_{α^*} of the indicatrix curves (α) and (α^*) generated by the spacelike curves α and α^* on the pseudosphere S_1^2 , we can write $S_{\alpha} =$ R $\|\alpha'\| dt =$ dt and $S_{\alpha^*} =$ $\int \|\alpha^{*'}\| dt^{*} = \int dt^{*},$ respectively. If $\frac{k_1}{k_1^*}$ is constant, then (ii) of Theorem 2.1, we get

$$
S_{\alpha^*} = \frac{k_1}{k_1^*} S_{\alpha}.
$$

So, we can give the following theorems without proofs:

Theorem 4.1. If S_{V_i} and $S_{V_i^*}$, $1 \leq i \leq 3$, are the arc lengths of indicatrix curves of Frenet vectors V_i and V_i^* of spacelike base curves α and α^* of the timelike parallel p_i -equidistant ruled surfaces M and M^* , respectively, then we have

$$
S_{V_i^*} = S_{V_i}, \ 1 \le i \le 3.
$$

Theorem 4.2. Let S_{α} and S_{α^*} be the arc lengths of indicatrix curves of base curves α and α^* of the timelike parallel p_i -equidistant ruled surfaces M and M^* , respectively. If $\frac{k_1}{k_1^*}$ is constant, then we have $S_{\alpha^*} = \frac{k_1}{k_1^*} S_{\alpha}$.

REFERENCES

- [1] Masal, M. and Kuruoğlu, N., Some characteristics properties of the spherical indicatrices leading curves of parallel p-equidistant ruled surfaces, Bulletin of Pure and Applied Sciences, 19E(2000), no. 1, 405-410.
- [2] Masal, M. and Kuruoğlu, N., Timelike parallel p_i -equidistant ruled surfaces by a spacelike base curve in the Minkowski 3-space R_1^3 , (In press).
- [3] Valeontis, I. E., Parallel p-Aquidistante regelflächen, Manuscripta math., 54(1986), 391-404.
- [4] Woestijne, I., Minimal surfaces of the 3-dimensional Minkowski space, World scientific publishing, Singapore, pp. 344-369, 1990.

Sakarya University, Faculty of Education, Department of Elementery Education Hendek- Sakarya-TURKEY

Bahcesehir University, Faculty of Arts and Sciences Department of Mathematics and Computer Sciences, Istanbul-TURKEY

E-mail address: mmasal@sakarya.edu.tr E-mail address: kuruoglu@bahcesehir.edu.tr