CANONICAL EQUATIONS FOR NONSINGULAR QUADRICS AND HERMITIAN VARIETIES OF WITT INDEX AT LEAST $\frac{n-1}{2}$ OF $\operatorname{PG}(n, \mathbb{K}), n$ ODD

BART DE BRUYN

(Communicated by Levent KULA)

Abstract

Let V be a vector space of even dimension $n+1 \geq 4$ over a field \mathbb{K}, and let \mathcal{F} be a nonsingular quadric or Hermitian variety of Witt index at least $\frac{n-1}{2}$ of $\operatorname{PG}(V) . \mathcal{F}$ is described by a certain equation, which depends on the chosen reference system. We give a survey of the methods which allow to determine a canonical equation for \mathcal{F} without performing the actual coordinate transformations, and give complete proofs for these methods. We give necessary and sufficient conditions for two nonsingular quadrics or Hermitian varieties of Witt index at least $\frac{n-1}{2}$ to be projectively equivalent (respectively, to be equivalent under an automorphism of $\mathrm{PG}(V)$). Many of the things we will discuss here are only implicit in the literature.

1. Introduction

Throughout this manuscript, $n \geq 3$ denotes a given strictly positive odd integer, \mathbb{K} denotes a given field and V denotes a given $(n+1)$-dimensional vector space over \mathbb{K}.
1.1. The case of quadrics. Let $X_{i j}, i, j \in\{0, \ldots, n\}$, be $(n+1)^{2}$ indeterminates. The $(n+1)^{2}$-tuple $\left(X_{00}, X_{01}, \ldots, X_{0 n}, X_{10}, X_{11}, \ldots, X_{1 n}, \ldots, X_{n 0}, X_{n 1}\right.$, $\ldots, X_{n n}$) will also be denoted by $\left(X_{i j} \mid 0 \leq i, j \leq n\right)$ and the $\frac{(n+1)(n+2)}{2}$-tuple $\left(X_{00}, X_{01}, \ldots, X_{0 n}, X_{11}, X_{12}, \ldots, X_{1 n}, \ldots, X_{n-1, n-1}, X_{n-1, n}, X_{n, n}\right)$ will also be denoted by $\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)$. The $X_{i j}$'s will serve as indeterminates for the polynomial rings $\mathbb{Z}\left[X_{i j} \mid 0 \leq i, j \leq n\right]$ and $\mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$. Define

[^0]the following polynomials of $\mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$:
\[

$$
\begin{aligned}
& h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]:=\left|\begin{array}{ccccc}
2 \cdot X_{00} & X_{01} & X_{02} & \cdots & X_{0 n} \\
X_{01} & 2 \cdot X_{11} & X_{12} & \cdots & X_{1 n} \\
X_{02} & X_{12} & 2 \cdot X_{22} & \cdots & X_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{0 n} & X_{1 n} & X_{2 n} & \cdots & 2 \cdot X_{n n}
\end{array}\right|, \\
& g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]:=\left|\begin{array}{ccccc}
0 & X_{01} & X_{02} & \cdots & X_{0 n} \\
-X_{01} & 0 & X_{12} & \cdots & X_{1 n} \\
-X_{02} & -X_{12} & 0 & \cdots & X_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-X_{0 n} & -X_{1 n} & -X_{2 n} & \cdots & 0
\end{array}\right|, \\
& f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]:= \\
& g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+ \\
& 0(-1)^{\frac{n-1}{2}} \cdot h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] .
\end{aligned}
$$
\]

Since the matrix M_{g} whose determinant defines g is a skew-symmetric matrix, there exists a polynomial $\operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \in \mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ such that $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\left(\operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}$, see e.g. Jacobson [4, Theorem 6.4] or Lang [5, XV §9]. The polynomial $\operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right.$] is called the Pfaffian of M_{g}. For an explicit description of this Pfaffian in terms of the indeterminates $X_{i j}$, see e.g. Marcus [6, p. 280].

We will prove the following proposition in Section 2:
Proposition 1.1. All the coefficients of the polynomial $f_{1} \in \mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ are multiples of 4 .

Now, define the following polynomial of $\mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$:

$$
f\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]:=\frac{f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]}{4}
$$

Let $\phi_{\mathbb{K}}: \mathbb{Z} \rightarrow \mathbb{K}$ denote the unique group homomorphism from $(\mathbb{Z},+)$ to $(\mathbb{K},+)$ which maps the element $1 \in \mathbb{Z}$ to the identity element for the multiplication of \mathbb{K}. For every polynomial $p \in \mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$, let $p_{\mathbb{K}}$ denote the unique element of $\mathbb{K}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ obtained from p by replacing each coefficient of p by its image under the map $\phi_{\mathbb{K}}$.

Now, let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V. For all $i, j \in\{0, \ldots, n\}$ satisfying $i \leq j$, choose an element $a_{i j} \in \mathbb{K}$ and consider the quadric Q of $\mathrm{PG}(V)$ whose equation with respect to B is given by

$$
\begin{equation*}
F\left(X_{0}, \ldots, X_{n}\right):=\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0 . \tag{1.1}
\end{equation*}
$$

A point $p \in Q$ is called a singular point of Q if $p r \subseteq Q$ for every point $r \in Q \backslash\{p\}$. The quadric Q is called singular if it has a singular point; otherwise, it is called nonsingular. If Q is nonsingular, then its Witt index is at most $\frac{n+1}{2}$. If the quadric Q is singular, then the linear system $\frac{\partial F}{\partial X_{0}}=\frac{\partial F}{\partial X_{1}}=\cdots=\frac{\partial F}{\partial X_{n}}=0$ has a nonzero
solution for $\left(X_{0}, \ldots, X_{n}\right)$, i.e., the matrix

$$
A:=\left[\begin{array}{ccccc}
2 \cdot a_{00} & a_{01} & a_{02} & \cdots & a_{0 n} \tag{1.2}\\
a_{01} & 2 \cdot a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{02} & a_{12} & 2 \cdot a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{0 n} & a_{1 n} & a_{2 n} & \cdots & 2 \cdot a_{n n}
\end{array}\right]
$$

is singular. If $\operatorname{char}(\mathbb{K}) \neq 2$, then also the converse is true: if A is singular, then Q is singular. A similar conclusion cannot be drawn in the case $\operatorname{char}(\mathbb{K})=2$.

The quadric Q of $\operatorname{PG}(V)$ is called a hyperbolic quadric if it is a nonsingular quadric of Witt index $\frac{n+1}{2}$. If Q is a nonsingular quadric of Witt index $\frac{n-1}{2}$, then Q is called an elliptic quadric when its equation (1) defines a nonsingular quadric of Witt index $\frac{n+1}{2}$ over a suitable quadratic Galois extension of \mathbb{K}; otherwise it is called a pseudo-elliptic quadric. We will see in Section 3.3 that this definition is independent from the chosen ordered basis B and the quadratic equation which determines Q with respect to such a basis B.

Suppose the quadric Q is nonsingular and that in some way we know that the Witt index of Q is at least $\frac{n-1}{2}$. The following questions can then be raised.
(Q1) Is there some nice criterion (stated in terms of the coefficients $a_{i j}$) which allows us to decide whether Q is a hyperbolic quadric, an elliptic quadric or a pseudo-elliptic quadric?
(Q2) Is there a canonical equation to which Q can be reduced by means of linear coordinate transformations?
(Q3) Is there a direct way to decide which canonical equation this is without explicitly performing the coordinate transformations?
The following theorem provides complete answers to the questions (Q1), (Q2) and (Q3).

Theorem 1.1. Let Q be a nonsingular quadric of Witt index at least $\frac{n-1}{2}$ of $\mathrm{PG}(V)$ whose equation with respect to a given ordered basis of V is given by $F\left(X_{0}, X_{1}, \ldots\right.$, $\left.X_{n}\right)=\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$. Let A be the matrix as defined in equation (1.2) above.
(1) If $\operatorname{char}(\mathbb{K}) \neq 2$, then $\operatorname{det}(A) \neq 0$ and Q is either a hyperbolic or elliptic quadric. If $\eta:=h_{\mathbb{K}}\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)=\operatorname{det}(A)$, then Q is projectively equivalent to the quadric with equation $X_{0}^{2}-(-1)^{\frac{n+1}{2}} \eta \cdot X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. The quadric Q is a hyperbolic quadric if and only if $(-1)^{\frac{n+1}{2}} \eta$ is a square of \mathbb{K}. In this case, Q is projectively equivalent to the quadric with equation $X_{0} X_{1}+X_{2} X_{3}+\cdots+$ $X_{n-1} X_{n}=0$.
(2) Suppose $\operatorname{char}(\mathbb{K})=2$ and $\operatorname{det}(A) \neq 0$. Then Q is either a hyperbolic or elliptic quadric. Moreover, if $\eta_{1}:=f_{\mathbb{K}}\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)$ and $\eta_{2}=g_{\mathbb{K}}\left(a_{i j} \mid 0 \leq\right.$ $i \leq j \leq n)$, then $\eta_{2} \neq 0$ and Q is projectively equivalent to the quadric with equation $X_{0}^{2}+X_{0} X_{1}+\frac{\eta_{1}}{\eta_{2}} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. The quadric Q is a hyperbolic quadric if and only if there exists a $\lambda \in \mathbb{K}$ such that $\frac{\eta_{1}}{\eta_{2}}=\lambda^{2}+\lambda$. In this case, Q is projectively equivalent to the quadric with equation $X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=$ 0 .
(3) Suppose $\operatorname{char}(\mathbb{K})=2$ and $\operatorname{det}(A)=0$. Then Q is a pseudo-elliptic quadric. Moreover, $\operatorname{rank}(A)=n-1$ and Q is projectively equivalent to the quadric with equation $X_{0}^{2}+\eta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ where $\eta:=F\left(u_{0}, \ldots, u_{n}\right) \cdot F\left(v_{0}, \ldots, v_{n}\right)$ with $\left[u_{0} \cdots u_{n}\right]^{T}$ and $\left[v_{0} \cdots v_{n}\right]^{T}$ two linearly independent $(n \times 1)$-matrices over \mathbb{K} belonging to the kernel of the matrix A. The element η is a non-square of \mathbb{K}.

The following theorem, in combination with Theorem 1.1, gives necessary and sufficient conditions for two nonsingular quadrics of Witt index at least $\frac{n-1}{2}$ to be projectively equivalent (respectively, to be equivalent under an automorphism of $\mathrm{PG}(V)$). Notice that by Theorem $1.1(1)+(2)$, any two hyperbolic quadrics of $\mathrm{PG}(V)$ are projectively equivalent.
Theorem 1.2. (1) Suppose $\operatorname{char}(\mathbb{K}) \neq 2$ and $\mu_{1}, \mu_{2} \in \mathbb{K} \backslash\{0\}$. Then the quadrics Q_{1} and Q_{2} with respective equations $X_{0}^{2}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ (with respect to some given reference system) are projectively equivalent if and only if there exists $a \lambda \in \mathbb{K} \backslash\{0\}$ such that $\mu_{2}=\mu_{1} \cdot \lambda^{2}$. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\mathrm{PG}(V)$ if and only if there exists an automorphism θ of \mathbb{K} and $a \lambda \in \mathbb{K} \backslash\{0\}$ such that $\mu_{2}=\mu_{1}^{\theta} \cdot \lambda^{2}$.
(2) Suppose $\operatorname{char}(\mathbb{K})=2$ and $\mu_{1}, \mu_{2} \in \mathbb{K}$. Then the quadrics Q_{1} and Q_{2} with respective equations $X_{0}^{2}+X_{0} X_{1}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+X_{0} X_{1}+$ $\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ are projectively equivalent if and only if there exists a $\lambda \in \mathbb{K}$ such that $\mu_{2}=\lambda^{2}+\lambda+\mu_{1}$. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\mathrm{PG}(V)$ if and only if there exists an automorphism θ of \mathbb{K} and $a \lambda \in \mathbb{K}$ such that $\mu_{2}=\lambda^{2}+\lambda+\mu_{1}^{\theta}$.
(3) Suppose char $(\mathbb{K})=2$ and μ_{1}, μ_{2} non-squares of \mathbb{K}. Then the quadrics Q_{1} and Q_{2} with respective equations $X_{0}^{2}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ are projectively equivalent if and only if there exist $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ with $\lambda_{2} \neq 0$ such that $\mu_{2}=\lambda_{1}^{2}+\lambda_{2}^{2} \cdot \mu_{1}$. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\mathrm{PG}(V)$ if and only if there exists an automorphism θ of \mathbb{K} and $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ with $\lambda_{2} \neq 0$ such that $\mu_{2}=\lambda_{1}^{2}+\lambda_{2}^{2} \cdot \mu_{1}^{\theta}$.

One of the motivations for writing this survey paper was the need to deal with questions (Q1), (Q2) and (Q3) in some specific cases where the characteristic of the field is equal to 2 (for the purpose to study isometric embeddings between some classes of near polygons).

Theorem 1.1(1) was proved in the finite case by Hirschfeld [2, Section 3] and Hirschfeld \& Thas [3, Section 22.2]. Theorem 1.1(2) is inspired by the German paper of Witt [9] which discusses an invariant of a quadratic form discovered by Arf [1]. (For a discussion of this invariant, see also Scharlau [7, §9.4].) For the finite case, Theorem 1.1(2) is also mentioned without proof in Hirschfeld [2, Section 3] and Hirschfeld \& Thas [3, Theorem 22.2.1]. (Notice here that, using the notations and conventions of [3], the number $\alpha:=\frac{|B|-(-1)^{\frac{n+1}{2}}|A|}{4|B|}$ is not necessarily fixed under a projectivity, but the set $\left\{\alpha+t+t^{2} \mid t \in \mathbb{K}\right\}$ certainly is).
1.2. The case of Hermitian varieties. Let ψ be an involutary automorphism of \mathbb{K} and let $\mathbb{K}_{\psi} \subset \mathbb{K}$ denote the fix field of ψ. Then $\left[\mathbb{K}: \mathbb{K}_{\psi}\right]=2$ and $\mathbb{K} / \mathbb{K}_{\psi}$ is a Galois extension. Let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V, and let $a_{i j}$,
$i, j \in\{0, \ldots, n\}$, be elements of \mathbb{K} such that $a_{i j}^{\psi}=a_{j i}$. So, $A^{\psi}=A^{T}$, where A is the $(n+1) \times(n+1)$-matrix $\left(a_{i j}\right)_{0 \leq i, j \leq n}$. Let \mathcal{H} be the ψ-Hermitian variety of $\mathrm{PG}(V)$ whose equation with respect to B is given by

$$
\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}=0
$$

i.e.

$$
\left[X_{0} \cdots X_{n}\right] \cdot A \cdot\left[Y_{0} \cdots Y_{n}\right]^{T}=0
$$

where we take the convention to identify each (1×1)-matrix with its unique entry.
A point $p \in \mathcal{H}$ is called a singular point of \mathcal{H} if $p r \subseteq \mathcal{H}$ for every point $r \in$ $\mathcal{H} \backslash\{p\}$. The ψ-Hermitian variety \mathcal{H} is called singular if it contains a singular point; otherwise it is called nonsingular. \mathcal{H} is singular if and only if $\operatorname{det}(A)=0$. If \mathcal{H} is nonsingular, then its Witt index is at most $\frac{n+1}{2}$.

We will now state results for Hermitian varieties which are similar to the ones for quadrics mentioned in Theorems 1.1 and 1.2.

Theorem 1.3. If \mathcal{H} is a nonsingular ψ-Hermitian variety of Witt index at least $\frac{n-1}{2}$, then \mathcal{H} is projectively equivalent to the ψ-Hermitian variety with equation $X_{0}^{\psi+1}-(-1)^{\frac{n+1}{2}} \operatorname{det}(A) \cdot X_{1}^{\psi+1}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$. \mathcal{H} has Witt index $\frac{n+1}{2}$ if and only if there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\lambda^{\psi+1}=$ $(-1)^{\frac{n+1}{2}} \cdot \operatorname{det}(A)$. In this case, \mathcal{H} is projectively equivalent to the ψ-Hermitian variety with equation $X_{0} X_{1}^{\psi}+X_{1} X_{0}^{\psi}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$.

Notice that since $A^{T}=A^{\psi}$, we have $\operatorname{det}(A) \in K_{\psi} \backslash\{0\}$ if \mathcal{H} is nonsingular.
Theorem 1.4. Let ψ_{1} and ψ_{2} be two involutary automorphisms of \mathbb{K} and let $\mu_{i} \in$ $\mathbb{K}_{\psi_{i}} \backslash\{0\}, i \in\{1,2\}$. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two Hermitian varieties of $\mathrm{PG}(V)$ whose equations with respect to a given ordered basis of V are given by respectively $X_{0}^{\psi_{1}+1}+$ $\mu_{1} \cdot X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}=0$ and $X_{0}^{\psi_{2}+1}+\mu_{2}$. $X_{1}^{\psi_{2}+1}+X_{2} X_{3}^{\psi_{2}}+X_{3} X_{2}^{\psi_{2}}+\cdots+X_{n-1} X_{n}^{\psi_{2}}+X_{n} X_{n-1}^{\psi_{2}}=0$. Then \mathcal{H}_{1} and \mathcal{H}_{2} are projectively equivalent if and only if $\psi_{1}=\psi_{2}$ and there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\mu_{2}=\lambda^{\psi_{1}+1} \cdot \mu_{1}$. The Hermitian varieties \mathcal{H}_{1} and \mathcal{H}_{2} are equivalent under an automorphism of $\mathrm{PG}(V)$ if and only if there exists an automorphism θ of \mathbb{K} and a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\psi_{2}=\theta^{-1} \psi_{1} \theta$ and $\mu_{2}=\lambda^{\psi_{2}+1} \mu_{1}^{\theta}$.

2. Proof of Proposition 1.1

In this section, we will prove Proposition 1.1.
Let $M=\left(m_{i j}\right)_{0 \leq i, j \leq n}$ be one of the two matrices whose determinant defines either $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ or $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$. For every permutation σ of $\{0, \ldots, n\}, \operatorname{sgn}(\sigma) \cdot m_{0, \sigma(0)} \cdot m_{1, \sigma(1)} \cdots m_{n, \sigma(n)}$ is of the form $\epsilon X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ where $\epsilon \in \mathbb{Z}$ and $i_{0}, j_{0}, \ldots, i_{n}, j_{n}$ is a sequence of $2 n+2$ natural numbers satisfying: (i) $i_{k} \leq j_{k}$ for every $k \in\{0, \ldots, n\}$; (ii) each number of the set $\{0, \ldots, n\}$ occurs precisely two times in the sequence. So, in order to prove Proposition 1.1, it suffices to prove the following lemma.
Lemma 2.1. Let $i_{0}, j_{0}, \ldots, i_{n}, j_{n}$ be a sequence of $2 n+2$ natural numbers satisfying (i) $i_{k} \leq j_{k}$ for every $k \in\{0, \ldots, n\}$, (ii) each number of the set $\{0, \ldots, n\}$ occurs precisely two times in the sequence. Then the coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .

We divide the proof of Lemma 2.1 into three parts according to the number of $k \in\{0, \ldots, n\}$ satisfying $i_{k}=j_{k}$.
(I) Let $i_{0}, j_{0}, \ldots, i_{n}, j_{n}$ be a sequence of $2 n+2$ natural numbers satisfying the following properties: (i) $i_{k} \leq j_{k}$ for every $k \in\{0, \ldots, n\}$; (ii) there are at least two $k \in\{0, \ldots, n\}$ for which $i_{k}=j_{k}$; (iii) each number of the set $\{0, \ldots, n\}$ occurs precisely two times in the sequence.
Lemma 2.2. (1) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .
(2) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to 0.

Proof. Let $k, l \in\{0, \ldots, n\}$ such that $k \neq l, i_{k}=j_{k}$ and $i_{l}=j_{l}$.
(1) If we expand the determinant which defines h into $(n+1)$! terms, then we see that the monomial $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ can only occur in terms which involve the product $\left(2 \cdot X_{i_{k} i_{k}}\right) \cdot\left(2 \cdot X_{i_{l} i_{l}}\right)$. So, the coefficient of this monomial must indeed be a multiple of 4 .
(2) This follows from the fact that the indeterminates $X_{i_{k} i_{k}}$ and $X_{i_{l} i_{l}}$ do not occur in the matrix whose determinant defines g.

Corollary 2.1. The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .
(II) Let $i_{0}, j_{0}, \ldots, i_{n}, j_{n}$ be a sequence of $2 n+2$ natural numbers satisfying the following properties: (i) $i_{k} \leq j_{k}$ for every $k \in\{0, \ldots, n\}$; (ii) there exists precisely one $k \in\{0, \ldots, n\}$ for which $i_{k}=j_{k}$; (iii) each number of the set $\{0, \ldots, n\}$ occurs precisely two times in the sequence.
Lemma 2.3. (1) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .
(2) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to 0.

Proof. Let k^{*} denote the unique element of $\{0, \ldots, n\}$ for which $i_{k^{*}}=j_{k^{*}}$.
(1) Let M_{h} denote the symmetric matrix whose determinant defines h and let $M=\left(m_{i j}\right)_{1 \leq i \leq j \leq n}$ denote the symmetric matrix obtained from M_{h} by deleting the $\left(k^{*}+1\right)$-th row and the $\left(k^{*}+1\right)$-th column. The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to two times the coefficient of $X_{i_{0} j_{0}} \cdots \widehat{X_{i^{*}} j_{k^{*}}}$ $\cdots X_{i_{n} j_{n}}$ in $\operatorname{det}(M)$, i.e. equal to $2 \cdot \Sigma_{\sigma} \operatorname{sgn}(\sigma)$ where the summation ranges over all permutations σ of $\{1, \ldots, n\}$ such that $m_{1, \sigma(1)} \cdot m_{2, \sigma(2)} \cdots \cdots m_{n, \sigma(n)}=X_{i_{0} j_{0}} \cdots$ $\widehat{X_{i_{k^{*}} j_{k^{*}}}} \cdots X_{i_{n} j_{n}}(*)$. Now, if σ is a permutation of $\{1, \ldots, n\}$ satisfying $(*)$, then $\sigma \neq \sigma^{-1}$ (since n is odd and $i_{l} \neq j_{l}$ for every $l \in\{0, \ldots, n\} \backslash\left\{k^{*}\right\}$) and also σ^{-1} satisfies ($*$) (since M is symmetric). So, the number of permutations σ of $\{1, \ldots, n\}$ satisfying $(*)$ is a multiple of 2 . It follows that the coefficient $2 \cdot \Sigma_{\sigma} \operatorname{sgn}(\sigma)$ of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in h is a multiple of 4 .
(2) This follows from the fact that the indeterminate $X_{i_{k^{*}} i_{k^{*}}}$ does not occur in the matrix whose determinant defines g.

Corollary 2.2. The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .
(III) Let $i_{0}, j_{0}, \ldots, i_{n}, j_{n}$ be a sequence of $2 n+2$ natural numbers satisfying the following properties: (i) $i_{k}<j_{k}$ for every $k \in\{0, \ldots, n\}$; (ii) each number of the set $\{0, \ldots, n\}$ occurs precisely two times in the sequence.

For every permutation σ of $\{0, \ldots, n\}$ without fixpoints, let N_{σ} denote the number of $k \in\{0, \ldots, n\}$ for which $\sigma(k)<k$. Let ψ denote the ring homomorphism from $\mathbb{Z}\left[X_{i j} \mid 0 \leq i, j \leq n\right]$ to $\mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ which maps $X_{i j}$ to $X_{i j}$ if $i \leq j$ and $X_{i j}$ to $X_{j i}$ if $j<i$. Consider the following polynomials in $\mathbb{Z}\left[X_{i j} \mid 0 \leq i, j \leq n\right]$:

$$
\left.\begin{array}{rl}
\tilde{h}\left[\left(X_{i j} \mid 0 \leq i, j \leq n\right)\right] & :=\left|\begin{array}{ccccc}
2 \cdot X_{00} & X_{01} & X_{02} & \cdots & X_{0 n} \\
X_{10} & 2 \cdot X_{11} & X_{12} & \cdots & X_{1 n} \\
X_{20} & X_{21} & 2 \cdot X_{22} & \cdots & X_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{n 0} & X_{n 1} & X_{n 2} & \cdots & 2 \cdot X_{n n}
\end{array}\right|, \\
0 & X_{01} \\
\tilde{g}\left[\left(X_{i j} \mid 0 \leq i, j \leq n\right)\right] & \cdots \\
X_{02} & X_{0 n} \\
-X_{10} & 0 \\
X_{12} & \cdots \\
X_{1 n} \\
-X_{20} & -X_{21} \\
\vdots & \vdots \\
\vdots & \cdots \\
X_{2 n} \\
-X_{n 0} & -X_{n 1} \\
-X_{2 n} & \cdots
\end{array}\right] .
$$

Since $h=\psi(\tilde{h})$ and $g=\psi(\tilde{g})$, we have:
Lemma 2.4. (1) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq\right.\right.$ $n)$] is equal to $\sum \operatorname{sgn}(\sigma)$, where the summation ranges over all permutations σ of $\{0, \ldots, n\}$ satisfying $\psi\left(X_{0, \sigma(0)} \cdots X_{n, \sigma(n)}\right)=X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$.
(2) The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to $\sum \operatorname{sgn}(\sigma) \cdot(-1)^{N_{\sigma}}$, where the summation ranges over all permutations σ of $\{0, \ldots, n\}$ satisfying $\psi\left(X_{0, \sigma(0)} \cdots X_{n, \sigma(n)}\right)=X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$.

Let Γ be the undirected graph with vertex set $\{0, \ldots, n\}$ where for each $k \in$ $\{0, \ldots, n\}$ an edge is drawn between the vertices i_{k} and j_{k}. Notice that any two distinct vertices of Γ are connected by either 0,1 or 2 edges. The graph Γ has valency 2 and hence is a disjoint union of cycles. We define the following numbers:

- $n_{1}=$ the number of cycles of length 2 ;
- $n_{2}=$ the number of cycles whose length is even and at least $4 ;$
- $n_{3}=$ the number of cycles of odd length.

The following lemma immediately follows from the fact that the total number $n+1$ of vertices of Γ is even.
Lemma 2.5. (1) n_{3} is even.
(2) If $n_{2}=n_{3}=0$, then $n_{1}=\frac{n+1}{2}$.

Definitions. (1) Let Γ^{\prime} be a directed graph with vertex set $\{0, \ldots, n\}$. We say that Γ^{\prime} is compatible with Γ if the following conditions are satisfied: (i) the inner and outer degrees of all vertices of Γ^{\prime} are equal to 1 ; (ii) the undirected graph obtained from Γ^{\prime} by replacing each directed edge by an undirected edge is equal to Γ. We denote by $\mathcal{D}(\Gamma)$ the set of all directed graphs on the vertex set $\{0, \ldots, n\}$ which are compatible with Γ.
(2) Let σ be a permutation of $\{0, \ldots, n\}$ without fixpoints. Then Γ_{σ}^{\prime} denotes the directed graph with vertex set $\{0, \ldots, n\}$ where for each $k \in\{0, \ldots, n\}$ there is an
edge from k to $\sigma(k)$. The graph Γ_{σ} is obtained from Γ_{σ}^{\prime} by replacing each directed edge by an undirected edge. The graph Γ_{σ}^{\prime} has no loops and the inner and outer degrees of all its vertices are equal to 1 . Conversely, if Γ^{\prime} is a directed graph on the vertex set $\{0, \ldots, n\}$ without loops such that the inner and outer degrees of all its vertices are equal to 1 , then $\Gamma^{\prime}=\Gamma_{\sigma}^{\prime}$ for a unique permutation σ of $\{0, \ldots, n\}$. In particular, this latter remark holds for any directed graph on the vertex set $\{0, \ldots, n\}$ which is compatible with Γ. We denote by Σ the set of all permutations σ of $\{0, \ldots, n\}$ without fixpoints for which $\Gamma_{\sigma}^{\prime} \in \mathcal{D}(\Gamma)$. Clearly, $|\Sigma|=|\mathcal{D}(\Gamma)|$ and $\sigma^{-1} \in \Sigma$ if $\sigma \in \Sigma$.
(3) Let $C_{1}, C_{2}, \ldots, C_{n_{2}}$ denote the n_{2} cycles of Γ whose length is even and at least 4. Let $C_{n_{2}+1}, \ldots, C_{n_{2}+n_{3}}$ denote the n_{3} cycles of Γ whose length is odd. Each of these cycles can be turned in precisely two ways into a directed cycle (i.e. into a connected directed graph in which the indegrees and outdegrees of all vertices are equal to 1). We label one of these directed cycles by the symbol " + " and the other by the symbol "-". There exists a bijective correspondence μ between the set $\{+,-\}^{n_{2}+n_{3}}$ and the set $\mathcal{D}(\Gamma)$. If $\bar{c}=\left(c_{1}, c_{2}, \ldots, c_{n_{2}+n_{3}}\right) \in\{+,-\}^{n_{2}+n_{3}}$, then $\mu(\bar{c})$ is the unique element of $\mathcal{D}(\Gamma)$ such that for each $i \in\left\{1, \ldots, n_{2}+n_{3}\right\}$, the directed cycle of $\mu(\bar{c})$ induced on C_{i} corresponds with the label " c_{i} ".

Lemma 2.6. (1) $|\Sigma|=|\mathcal{D}(\Gamma)|=2^{n_{2}+n_{3}}$.
(2) For each $\sigma \in \Sigma, \operatorname{sgn}(\sigma)=(-1)^{n_{1}+n_{2}}$.
(3) Let σ be a permutation of $\{0, \ldots, n\}$ without fixpoints. Then $\sigma \in \Sigma$ if and only if ψ maps the elements $X_{0, \sigma(0)} X_{1, \sigma(1)} \cdots X_{n, \sigma(n)}$ of $\mathbb{Z}\left[X_{i j} \mid 0 \leq i, j \leq n\right]$ to the element $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ of $\mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$.

Proof. (1) This follows from the fact that the map μ defines a bijection between the set $\{+,-\}^{n_{2}+n_{3}}$ and the set $\mathcal{D}(\Gamma)$.
(2) If $\sigma \in \Sigma$, then since Γ_{σ}^{\prime} is compatible with $\Gamma, \Gamma_{\sigma}^{\prime}$ consists of n_{1} cycles of length $2, n_{2}$ cycles whose length is even and at least 4 and n_{3} cycles of odd length. Hence, $\operatorname{sgn}(\sigma)=(-1)^{n_{1}+n_{2}}$.
(3) We have $\sigma \in \Sigma$ if and only if $\Gamma_{\sigma}=\Gamma$, i.e. if and only if the multisets $\{\{0, \sigma(0)\},\{1, \sigma(1)\}, \ldots,\{n, \sigma(n)\}\}$ and $\left\{\left\{i_{0}, j_{0}\right\},\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{n}, j_{n}\right\}\right\}$ are equal. Since $i_{k}<j_{k}$ for every $k \in\{0, \ldots, n\}$, this precisely happens when ψ maps $X_{0, \sigma(0)} X_{1, \sigma(1)} \cdots X_{n, \sigma(n)}$ to $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$.

Combining Lemma 2.6 with Lemma 2.4(1), we find
Corollary 2.3. The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to $(-1)^{n_{1}+n_{2}} \cdot 2^{n_{2}+n_{3}}$.

Now, for every $\sigma \in \Sigma$ and every $i \in\left\{1, \ldots, n_{2}+n_{3}\right\}$, let $N_{\sigma}^{(i)}$ denote the number of $k \in\{0, \ldots, n\}$ for which: $(i) \sigma(k)<k,(i i)\{k, \sigma(k)\}$ is an edge of the cycle C_{i}. The following is obvious.

Lemma 2.7. (1) For every $\sigma \in \Sigma, N_{\sigma}=n_{1}+N_{\sigma}^{(1)}+N_{\sigma}^{(2)}+\cdots+N_{\sigma}^{\left(n_{2}+n_{3}\right)}$.
(2) If $\sigma_{1}, \sigma_{2} \in \Sigma$ and $i \in\left\{1, \ldots, n_{2}+n_{3}\right\}$ such that $\mu^{-1}\left(\Gamma_{\sigma_{1}}^{\prime}\right)$ and $\mu^{-1}\left(\Gamma_{\sigma_{2}}^{\prime}\right)$ have the same i-th components, then $N_{\sigma_{1}}^{(i)}=N_{\sigma_{2}}^{(i)}$.
(3) If $\sigma_{1}, \sigma_{2} \in \Sigma$ and $i \in\left\{1, \ldots, n_{2}+n_{3}\right\}$ such that $\mu^{-1}\left(\Gamma_{\sigma_{1}}^{\prime}\right)$ and $\mu^{-1}\left(\Gamma_{\sigma_{2}}^{\prime}\right)$ have distinct i-th components, then $N_{\sigma_{1}}^{(i)}+N_{\sigma_{2}}^{(i)}$ is the number of vertices of the cycle C_{i}.

By Lemma 2.7(2)+(3), we have
Corollary 2.4. (1) If $\sigma_{1}, \sigma_{2} \in \Sigma$ and $i \in\left\{1, \ldots, n_{2}\right\}$, then $(-1)^{N_{\sigma_{1}}^{(i)}}=(-1)^{N_{\sigma_{2}}^{(i)}}$.
(2) If $\sigma_{1}, \sigma_{2} \in \Sigma$ and $i \in\left\{n_{2}+1, \ldots, n_{2}+n_{3}\right\}$ such that $\mu^{-1}\left(\Gamma_{\sigma_{1}}^{\prime}\right)$ and $\mu^{-1}\left(\Gamma_{\sigma_{2}}^{\prime}\right)$ have the same i-th components, then $(-1)^{N_{\sigma_{1}}^{(i)}}=(-1)^{N_{\sigma_{2}}^{(i)}}$.
(3) If $\sigma_{1}, \sigma_{2} \in \Sigma$ and $i \in\left\{n_{2}+1, \ldots, n_{2}+n_{3}\right\}$ such that $\mu^{-1}\left(\Gamma_{\sigma_{1}}^{\prime}\right)$ and $\mu^{-1}\left(\Gamma_{\sigma_{2}}^{\prime}\right)$ have distinct i-th components, then $(-1)^{N_{\sigma_{1}}^{(i)}}=-(-1)^{N_{\sigma_{2}}^{(i)}}$.

Now, let σ^{*} be a fixed element of Σ and put $M_{1}:=N_{\sigma^{*}}^{(1)}+N_{\sigma^{*}}^{(2)}+\cdots+N_{\sigma^{*}}^{\left(n_{2}\right)}$ and $M_{2}:=N_{\sigma^{*}}^{\left(n_{2}+1\right)}+N_{\sigma^{*}}^{\left(n_{2}+2\right)}+\cdots+N_{\sigma^{*}}^{\left(n_{2}+n_{3}\right)}$.
Lemma 2.8. The coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to $(-1)^{n_{2}+M_{1}+M_{2}} \cdot 2^{n_{2}} \cdot 0^{n_{3}}$, where $0^{n_{3}}=1$ if $n_{3}=0$.

Proof. By Lemma 2.4(2), Lemma 2.6(2)+(3), Lemma 2.7(1) and Corollary 2.4, the coefficient of $X_{i_{0} j_{0}} X_{i_{1} j_{1}} \cdots X_{i_{n} j_{n}}$ in $g\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is equal to

$$
\begin{aligned}
& \sum_{\sigma \in \Sigma}(-1)^{N_{\sigma}} \cdot \operatorname{sgn}(\sigma) \\
= & (-1)^{n_{1}+n_{2}} \cdot \sum_{\sigma \in \Sigma}(-1)^{N_{\sigma}} \\
= & (-1)^{n_{1}+n_{2}} \cdot(-1)^{n_{1}+M_{1}+M_{2}} \cdot \underbrace{(1+1) \cdots(1+1)}_{n_{2} \text { times }} \cdot \underbrace{(1+(-1)) \cdots(1+(-1))}_{n_{3} \text { times }} \\
= & (-1)^{n_{2}+M_{1}+M_{2}} \cdot 2^{n_{2}} \cdot 0^{n_{3}} .
\end{aligned}
$$

Lemma 2.9. The coefficient N of $X_{i_{0} j_{0}} \cdots X_{i_{n} j_{n}}$ in $f_{1}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ is a multiple of 4 .
Proof. By Corollary 2.3 and Lemma 2.8, we have $N=(-1)^{n_{1}+n_{2}+\frac{n-1}{2}} \cdot 2^{n_{2}+n_{3}}+$ $(-1)^{n_{2}+M_{1}+M_{2}} \cdot 2^{n_{2}} \cdot 0^{n_{3}}$.

Suppose $n_{3} \neq 0$. Then $n_{3} \geq 2$ by Lemma 2.5(1). Hence $N=4 \cdot(-1)^{n_{1}+n_{2}+\frac{n-1}{2}}$. $2^{n_{2}+n_{3}-2}$ is a multiple of 4 .

Suppose $n_{3}=0$ and $n_{2} \geq 1$. Then $M_{2}=0$ and the number $N=4 \cdot 2^{n_{2}-1}$. $\frac{(-1)^{n_{1}+n_{2}+\frac{n-1}{2}}+(-1)^{n_{2}+M_{1}}}{2}$ is a multiple of 4 .

Suppose $n_{2}=n_{3}=0$. Then $n_{1}=\frac{n+1}{2}$ (recall Lemma 2.5(2)) and $M_{1}=M_{2}=0$. Hence, $N=(-1)^{\frac{n+1}{2}+\frac{n-1}{2}}+1=0$.

3. Proofs of Theorems 1.1 and 1.2

3.1. Coordinate transformations. Let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V. For all $i, j \in\{0, \ldots, n\}$ satisfying $i \leq j$, choose an element $a_{i j} \in \mathbb{K}$ and consider the quadric Q of $\operatorname{PG}(V)$ whose equation with respect to B is given by $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$.

Now, consider the coordinate transformation with associate nonsingular matrix $M=\left(m_{i j}\right)_{0 \leq i, j \leq n}: X_{i}=\sum_{k=0}^{n} m_{i k} Y_{k}, i \in\{0, \ldots, n\}$. The equation of Q in the new coordinates is equal to $\sum_{0 \leq k \leq l \leq n} a_{k l}^{\prime} Y_{k} Y_{l}=0$, where $a_{k k}^{\prime}=\sum_{0 \leq i \leq j \leq n} a_{i j}$.
$\left(m_{i k} m_{j k}\right)$ and $a_{k l}^{\prime}=\sum_{0 \leq i \leq j \leq n} a_{i j} \cdot\left(m_{i k} m_{j l}+m_{i l} m_{j k}\right)$ for all $k, l \in\{0, \ldots, n\}$ satisfying $k \leq l$. In the sequel, we will say that the quadratic polynomial $\sum_{0 \leq i \leq j \leq n} a_{i j}^{\prime}$ $X_{i} X_{j}$ is related to $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}$ via a linear coordinate transformation.

The two latter equations above imply that $A^{\prime}=M^{T} \cdot A \cdot M$, where A^{\prime} and A are the matrices obtained from the coefficients $a_{i j}^{\prime}$ and $a_{i j}$ as described in equation (1.2) of Section 1.1. It follows that $h_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq i \leq j \leq n\right)\right]=[\operatorname{det}(M)]^{2} \cdot h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq\right.\right.$ $i \leq j \leq n)$]. So, we have established the following.
Lemma 3.1. If the quadratic polynomials $\sum a_{i j} X_{i} X_{j}$ and $\sum a_{i j}^{\prime} X_{i} X_{j}$ are related via a linear coordinate transformation, then
(1) there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $h_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq i \leq j \leq n\right)\right]=\lambda^{2} \cdot h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq\right.\right.$ $i \leq j \leq n)]$;
(2) the matrices A and A^{\prime} have the same rank.

3.2. The quadratic equations describing certain quadrics.

Lemma 3.2. Let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V and suppose Q is a quadric of $\mathrm{PG}(V)$ whose equation with respect to B is given by $X_{0}^{2}+\alpha X_{0} X_{1}+$ $\beta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. If the equation $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$ describes Q with respect to the same ordered basis B, then $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=\lambda \cdot\left(X_{0}^{2}+\right.$ $\alpha X_{0} X_{1}+\beta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$) for some $\lambda \in \mathbb{K} \backslash\{0\}$.

Proof. • For all $i \in\{2, \ldots, n\}$, we have $a_{i i}=0$ since $\left\langle\bar{e}_{i}\right\rangle \in Q$.
\bullet For all $i, j \in\{2, \ldots, n\}$ satisfying $i<j$ and $(i, j) \notin\{(2,3),(4,5), \ldots,(n-1, n)\}$, we have $a_{i j}=0$ since $\left\langle\bar{e}_{i}+\bar{e}_{j}\right\rangle \in Q$.

- For every $i \in\{2, \ldots, n\}$ and every $\lambda \in \mathbb{K}$, we have $a_{00}+a_{0 i} \lambda \neq 0$ since $\left\langle\bar{e}_{0}+\lambda \bar{e}_{i}\right\rangle \notin Q$. Hence, $a_{00} \neq 0$ and $a_{0 i}=0$ for all $i \in\{2, \ldots, n\}$.
\bullet Suppose $\beta \neq 0$. For every $i \in\{2, \ldots, n\}$ and every $\lambda \in \mathbb{K}$, we have $a_{11}+a_{1 i} \lambda \neq$ 0 since $\left\langle\bar{e}_{1}+\lambda \bar{e}_{i}\right\rangle \notin Q$. Hence, $a_{11} \neq 0$ and $a_{1 i}=0$ for all $i \in\{2, \ldots, n\}$.
- Suppose $\beta=0$. Then $a_{11}=0$ since $\left\langle\bar{e}_{1}\right\rangle \in Q$. For every $i \in\{2, \ldots, n\}$, we have $a_{1 i}=0$ since $\left\langle\bar{e}_{1}+\bar{e}_{i}\right\rangle \in Q$.
- For every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$, we have $a_{00}=a_{2 i, 2 i+1}$ since $\left\langle\bar{e}_{0}+\bar{e}_{2 i}-\bar{e}_{2 i+1}\right\rangle \in Q$.
- For every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$, we have $a_{11}=\beta \cdot a_{2 i, 2 i+1}$ since $\left\langle\bar{e}_{1}+\bar{e}_{2 i}-\beta \bar{e}_{2 i+1}\right\rangle \in$ Q.
- For every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$, we have $a_{00}+a_{01}+a_{11}-(1+\alpha+\beta) a_{2 i, 2 i+1}=0$ since $\left\langle\bar{e}_{0}+\bar{e}_{1}+\bar{e}_{2 i}-(1+\alpha+\beta) \bar{e}_{2 i+1}\right\rangle \in Q$. Hence, $a_{01}=\alpha \cdot a_{2 i, 2 i+1}$ for all $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$.
By the above discussion, we have that $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=a_{00}\left(X_{0}^{2}+\alpha X_{0} X_{1}+\right.$ $\left.\beta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}\right)$ where $a_{00} \neq 0$.

Remark. The conclusion of the above lemma would not necessarily be true if n would be allowed to be equal to 1 .

3.3. Canonical quadratic equations for hyperbolic and (pseudo-)elliptic quadrics.

Lemma 3.3. Let Q be a nonsingular quadric of Witt index at least $\frac{n-1}{2}$ of $\operatorname{PG}(V)$.
(1) If $\operatorname{char}(\mathbb{K}) \neq 2$, then there exists an $\alpha \in \mathbb{K} \backslash\{0\}$ and a reference system with respect to which Q is described by the equation $X_{0}^{2}-\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+$ $X_{n-1} X_{n}=0$. The quadric Q has Witt index $\frac{n+1}{2}$ if and only if α is a square of
\mathbb{K}. In this case there exists a reference system with respect to which Q has equation $X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$.
(2) If $\operatorname{char}(\mathbb{K})=2$, then there exists a reference system with respect to which Q has equation $X_{0}^{2}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ with α a non-square of \mathbb{K} or equation $X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ with $\alpha \in \mathbb{K}$. In the former case, Q always has Witt index $\frac{n-1}{2}$. In the latter case, Q has Witt index $\frac{n+1}{2}$ if and only if there exists a $\lambda \in \mathbb{K}$ such that $\lambda^{2}+\lambda=\alpha$. In this case there exists a reference system with respect to which Q has equation $X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$.

Proof. Suppose Q is described by the quadratic form q of V. Let b denote the symmetric bilinear form of V associated with q, i.e. $b(\bar{x}, \bar{y})=q(\bar{x}+\bar{y})-q(\bar{x})-q(\bar{y})$ for all $\bar{x}, \bar{y} \in V$. Let m^{\prime} be the Witt index of Q and put $m:=\frac{n-1}{2}$. The following properties of Q hold more generally for any non-degenerate polar space of rank m^{\prime}, see Tits [8, Chapter 7]:
(P1) There exist two disjoint $\left(m^{\prime}-1\right)$-dimensional subspaces of Q.
(P2) Let W_{1} and W_{2} be two disjoint ($m^{\prime}-1$)-dimensional subspaces of Q, and consider the map $\Pi_{W_{1}, W_{2}}$ which associates with every subspace U_{1} of W_{1} the subspace U_{2} of W_{2} consisting of all points of W_{2} which are collinear on Q with every point of U_{1}. Then $\Pi_{W_{1}, W_{2}}$ defines an isomorphism between the projective space W_{1} and the dual of the projective space W_{2}.
Now, let π_{1} and π_{2} be two m^{\prime}-dimensional subspaces of V satisfying (i) $\pi_{1} \cap \pi_{2}=\{\bar{o}\}$ and (ii) $q(\bar{x})=0$ for all $\bar{x} \in \pi_{1} \cup \pi_{2}$. Let $\bar{e}_{1}, \ldots, \bar{e}_{m^{\prime}}$ be a basis of π_{1}. For every $i \in\left\{1, \ldots, m^{\prime}\right\}$, there exists by Property (P2) a unique vector \bar{f}_{i} of π_{2} satisfying $b\left(\bar{e}_{i}, \bar{f}_{i}\right)=1$ and $b\left(\bar{e}_{j}, \bar{f}_{i}\right)=0$ for all $j \in\left\{1, \ldots, m^{\prime}\right\} \backslash\{i\}$. By (P2), it also follows that $\left\{\bar{f}_{1}, \cdots, \bar{f}_{m^{\prime}}\right\}$ is a basis of π_{2}.
If $m^{\prime}=m+1=\frac{n+1}{2}$, then $\left\{\bar{e}_{1}, \ldots, \bar{e}_{m^{\prime}}, \bar{f}_{1}, \ldots, \bar{f}_{m^{\prime}}\right\}$ is a basis of V and $q\left(X_{0} \bar{e}_{1}+\right.$ $\left.X_{1} \bar{f}_{1}+X_{2} \bar{e}_{2}+X_{3} \bar{f}_{2}+\cdots+X_{n-1} \bar{e}_{m^{\prime}}+X_{n} \bar{f}_{m^{\prime}}\right)=X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$.
Consider now the most general case $m^{\prime} \in\{m, m+1\}$. Let W denote the subspace of V consisting of all vectors which are b-orthogonal with all vectors of $U:=\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}, \bar{f}_{1}, \ldots, \bar{f}_{m}\right\rangle$. Since U has co-dimension 2 in V, W has dimension at least 2 .

Suppose \bar{x} is a vector of $W \cap U$. Then there exist $k_{1}, \ldots, k_{m}, l_{1}, \ldots, l_{m} \in \mathbb{K}$ such that $\bar{x}=k_{1} \bar{e}_{1}+\cdots+k_{m} \bar{e}_{m}+l_{1} \bar{f}_{1}+\cdots+l_{m} \bar{f}_{m}$. We have $l_{i}=b\left(\bar{x}, \bar{e}_{i}\right)=0$ and $k_{i}=b\left(\bar{x}, \bar{f}_{i}\right)=0$ for all $i \in\{1, \ldots, m\}$. Hence, $\bar{x}=\bar{o}$. So, $W \cap U=\{\bar{o}\}$. Since $\operatorname{dim}(U)=n-1$ and $\operatorname{dim}(W) \geq 2$, we have $\operatorname{dim}(W)=2$ and $V=U \oplus W$. We have $q\left(X_{2} \bar{e}_{1}+X_{3} \bar{f}_{1}+\cdots+X_{n-1} \bar{e}_{m}+X_{n} \bar{f}_{m}\right)=X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ and $q\left(\bar{x}_{1}+\bar{x}_{2}\right)=q\left(\bar{x}_{1}\right)+q\left(\bar{x}_{2}\right)$ for any vectors $\bar{x}_{1} \in W$ and $\bar{x}_{2} \in U$. If $\operatorname{char}(\mathbb{K}) \neq 2$, then it is easily verified that there exists a basis $\left\{\bar{e}_{m+1}^{\prime}, \bar{f}_{m+1}^{\prime}\right\}$ of W such that $f\left(X_{0}, X_{1}\right):=q\left(X_{0} \bar{e}_{m+1}^{\prime}+X_{1} \bar{f}_{m+1}^{\prime}\right)=\beta\left(X_{0}^{2}-\alpha X_{1}^{2}\right)$ for some $\alpha, \beta \in \mathbb{K} \backslash\{0\}$. If $\operatorname{char}(\mathbb{K})=2$, then it is easily verified that there exists a basis $\left\{\bar{e}_{m+1}^{\prime}, \bar{f}_{m+1}^{\prime}\right\}$ of W such that $f\left(X_{0}, X_{1}\right):=q\left(X_{0} \bar{e}_{m+1}^{\prime}+X_{1} \bar{f}_{m+1}^{\prime}\right)$ is equal to $\beta\left(X_{0}^{2}+\alpha X_{1}^{2}\right)$ for some $\beta \in \mathbb{K} \backslash\{0\}$ and some non-square α of \mathbb{K} or equal to $\beta\left(X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}\right)$ for some $\alpha, \beta \in \mathbb{K}$ with $\beta \neq 0$. (Notice that in all the above cases $f\left(X_{0}, X_{1}\right)=0$ determines a nonsingular quadric of $\mathrm{PG}(W)$ since Q itself is nonsingular.) With respect to the reference system $\left(\bar{e}_{m+1}^{\prime}, \bar{f}_{m+1}^{\prime}, \bar{e}_{1}, \beta \cdot \bar{f}_{1}, \ldots, \bar{e}_{m}, \beta \cdot \bar{f}_{m}\right), Q$ has equation $\frac{f\left(X_{0}, X_{1}\right)}{\beta}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. Now, $\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}\right\rangle$ is a subspace of Q. So, Q has Witt index $\frac{n+1}{2}$ if and only if there exists an $\frac{n-1}{2}$-dimensional subspace of Q
containing $\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}\right\rangle$. This precisely happens when the equation $f\left(X_{0}, X_{1}\right)=0$ has a nonzero solution for $\left(X_{0}, X_{1}\right)$. The conclusions of the lemma follow.

By Lemmas 3.2 and 3.3, we have
Corollary 3.1. Let Q be a nonsingular quadric of Witt index $m \in\left\{\frac{n-1}{2}, \frac{n+1}{2}\right\}$ of $\mathrm{PG}(V)$ and let B be an ordered basis of V. Then the quadratic polynomial in the quadratic equation which describes Q with respect to B is uniquely determined up to a nonzero factor of \mathbb{K}.

From Corollary 3.1, it should now be clear that the definition of the notion "elliptic quadric" and "pseudo-elliptic quadric" as given in Section 1.1 is independent from the quadratic equation which represents Q. These notions are invariant under linear coordinate transformations and also the fact that one could multiply the quadratic polynomial in a given quadratic equation with a nonzero constant does not have any influence.

Lemma 3.4. (1) Suppose char $(\mathbb{K}) \neq 2, \alpha \in \mathbb{K} \backslash\{0\}$ and that B is an ordered basis of V. Let Q be the nonsingular quadric of $\mathrm{PG}(V)$ whose equation with respect to B is given by $X_{0}^{2}-\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. If α is a square of \mathbb{K}, then Q is a hyperbolic quadric; otherwise, Q is an elliptic quadric.
(2) Suppose $\operatorname{char}(\mathbb{K})=2, \alpha \in \mathbb{K}$ and that B is an ordered basis of V. Let Q be the nonsingular quadric of $\mathrm{PG}(V)$ whose equation with respect to B is given by $X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. If there exists a $\lambda \in \mathbb{K}$ such that $\alpha=\lambda^{2}+\lambda$, then Q is a hyperbolic quadric; otherwise Q is an elliptic quadric.
(3) Suppose char $(\mathbb{K})=2$, α a non-square of \mathbb{K} and that $B=\left(\bar{e}_{0}, \ldots, \bar{e}_{n}\right)$ an ordered basis of V. Then the nonsingular quadric of $\mathrm{PG}(V)$ whose equation with respect to B is given by $X_{0}^{2}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ is a pseudo-elliptic quadric.
Proof. (1) If α is a square of \mathbb{K}, then Q is a hyperbolic quadric since Q has Witt index $\frac{n+1}{2}$. Suppose now that α is a non-square of \mathbb{K}. Let $\sqrt{\alpha}$ denote one of the two square roots of α in a given algebraic closure of \mathbb{K}. Then $\mathbb{K}(\sqrt{\alpha})$ is a quadratic Galois extension of \mathbb{K} over which the equation $X_{0}^{2}-\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ defines a nonsingular quadric of Witt index $\frac{n+1}{2}$. So, Q is an elliptic quadric.
(2) If there exists a $\lambda \in \mathbb{K}$ such that $\alpha=\lambda^{2}+\lambda$, then Q is a hyperbolic quadric since Q has Witt index $\frac{n+1}{2}$. Suppose now that there exists no $\lambda \in \mathbb{K}$ for which $\alpha=\lambda^{2}+\lambda$. Let $\widetilde{\alpha}$ be one of the two roots of the polynomial $X^{2}+X+\alpha \in \mathbb{K}[X]$ in a given algebraic closure of \mathbb{K}. (Then the other root is $1+\widetilde{\alpha} \neq \widetilde{\alpha}$.) Then $\mathbb{K}(\widetilde{\alpha})$ is a quadratic Galois extension of \mathbb{K} over which the equation $X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}+$ $X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ defines a nonsingular quadric of Witt index $\frac{n+1}{2}$. So, Q is an elliptic quadric.
(3) We prove that Q is a pseudo-elliptic quadric. Suppose to the contrary that Q is an elliptic quadric. Then there exists a quadratic Galois extension \mathbb{K}^{\prime} of \mathbb{K} over which $X_{0}^{2}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ defines a nonsingular quadric Q^{\prime} of Witt index $\frac{n+1}{2}$. Let $\overline{\mathbb{K}^{\prime}}$ denote an algebraic closure of \mathbb{K}^{\prime} and let $\sqrt{\alpha}$ denote the unique square root of α in $\overline{\mathbb{K}^{\prime}}$. The subspace $\left\langle\bar{e}_{2}, \bar{e}_{4}, \ldots, \bar{e}_{n-1}\right\rangle$ of Q^{\prime} must be contained in a subspace of maximal dimension $\frac{n-1}{2}$. This subspace necessarily coincides with $\left\langle\sqrt{\alpha} \cdot \bar{e}_{0}+\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{4}, \ldots, \bar{e}_{n-1}\right\rangle$. This implies that $\mathbb{K}^{\prime}=\mathbb{K}(\sqrt{\alpha})$. But
this is in contradiction with the fact that $\mathbb{K}(\sqrt{\alpha})$ is not a Galois extension of \mathbb{K}. So, Q must be a pseudo-elliptic quadric.
Lemma 3.5. Let Q be a nonsingular quadric of Witt index $m \in\left\{\frac{n-1}{2}, \frac{n+1}{2}\right\}$ of $\mathrm{PG}(V)$ and suppose $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$ is the equation of Q with respect to a given ordered basis B of \bar{V}. Let A be the matrix as defined in equation (1.2) of Section 1.1. Then Q is a pseudo-elliptic quadric if and only if $\operatorname{det}(A)=0$. Moreover, if Q is a pseudo-elliptic quadric, then the rank of A is equal to $n-1$.

Proof. By Lemma 3.1 and Corollary 3.1, we may without loss of generality suppose that B is an ordered basis of V with respect to which Q has an "easy" equation.

If Q is hyperbolic, then we may suppose that $\sum a_{i j} X_{i} X_{j}=X_{0} X_{1}+\cdots+X_{n-1} X_{n}$. In this case, $\operatorname{det}(A)=(-1)^{\frac{n+1}{2}} \neq 0$.

If Q is elliptic, then we may suppose that $\sum a_{i j} X_{i} X_{j}=X_{0}^{2}-\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+$ $X_{n-1} X_{n}$ if $\operatorname{char}(\mathbb{K}) \neq 2$ and $\sum a_{i j} X_{i} X_{j}=X_{0}^{2}+X_{0} X_{1}+\beta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ if $\operatorname{char}(\mathbb{K})=2$. Here, α is a non-square of \mathbb{K} if $\operatorname{char}(\mathbb{K}) \neq 2$ and $X^{2}+X+\beta \in \mathbb{K}[X]$ is irreducible if $\operatorname{char}(\mathbb{K})=2$. If $\operatorname{char}(\mathbb{K}) \neq 2$, we have $\operatorname{det}(A)=(-1)^{\frac{n+1}{2}} \cdot 4 \alpha \neq 0$. If $\operatorname{char}(\mathbb{K})=2$, we have $\operatorname{det}(A)=1 \neq 0$.

If Q is pseudo-elliptic, then we may suppose that $\sum a_{i j} X_{i} X_{j}=X_{0}^{2}+\alpha X_{1}^{2}+$ $X_{2} X_{3}+\cdots+X_{n-1} X_{n}$, where α is a non-square of \mathbb{K}. Clearly, A is a singular matrix of rank $n-1$.
3.4. Proofs of Theorem 1.1(1) and Theorem 1.2(1). Throughout this subsection, we suppose that $\operatorname{char}(\mathbb{K}) \neq 2$.

Let Q be a nonsingular quadric of Witt index at least $\frac{n-1}{2}$ of $\operatorname{PG}(V)$ whose equation with respect to a given ordered basis of V is given by $\sum a_{i j} X_{i} X_{j}=0$. By Lemma 3.3, we know that there exist quadratic polynomials $\sum b_{i j} X_{i} X_{j}$ and $\sum c_{i j} X_{i} X_{j}$ such that the following holds:

- $\sum b_{i j} X_{i} X_{j}$ is related to $\sum a_{i j} X_{i} X_{j}$ via a linear coordinate transformation;
- $\sum c_{i j} X_{i} X_{j}=\lambda_{3} \cdot\left(\sum b_{i j} X_{i} X_{j}\right)=X_{0}^{2}-\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ for some $\lambda_{3}, \alpha \in \mathbb{K} \backslash\{0\}$.
Now, put $\lambda_{2}:=\lambda_{3}^{\frac{n+1}{2}}$. By Lemma 3.1, we have $h_{\mathbb{K}}\left[\left(b_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=$ $\lambda_{1}^{2} \cdot h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ for some $\lambda_{1} \in \mathbb{K} \backslash\{0\}$. So, we have $(-1)^{\frac{n+1}{2}} 4 \alpha=$ $h_{\mathbb{K}}\left[\left(c_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\lambda_{2}^{2} \cdot h_{\mathbb{K}}\left[\left(b_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\lambda_{1}^{2} \lambda_{2}^{2} \cdot h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq\right.\right.$ $n)]$. Putting $\eta:=h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\operatorname{det}(A)$, we find $\alpha=(-1)^{\frac{n+1}{2}}\left(\frac{\lambda_{1} \lambda_{2}}{2}\right)^{2} \eta$. Hence, $\eta \neq 0$ and Q has equation $X_{0}^{2}-(-1)^{\frac{n+1}{2}} \eta \cdot\left(\frac{\lambda_{1} \lambda_{2}}{2} X_{1}\right)^{2}+X_{2} X_{3}+\cdots+$ $X_{n-1} X_{n}=0$ with respect to a suitable reference system. This completes the proof of Theorem 1.1(1).

Now, suppose $\mu_{1}, \mu_{2} \in \mathbb{K} \backslash\{0\}$ and consider the quadrics Q_{1} and Q_{2} with respective equations $X_{0}^{2}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+$ $\cdots+X_{n-1} X_{n}=0$ with respect to a given ordered basis $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ of V.

If $\mu_{2}=\mu_{1} \cdot \lambda^{2}$ for some $\lambda \in \mathbb{K} \backslash\{0\}$, then Q_{1} and Q_{2} are projectively equivalent since $X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=X_{0}^{2}+\mu_{1}\left(\lambda X_{1}\right)^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$.

Conversely, suppose that Q_{1} and Q_{2} are projectively equivalent. Then by Corollary 3.1 , there exists a quadratic polynomial $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}$ such that the following holds:
(i) $X_{0}^{2}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ and $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}$ are related via a linear coordinate transformation. By Lemma 3.1 , $h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq\right.\right.$ $n)]=\lambda_{1}^{2} \cdot \mu_{1} \cdot 4(-1)^{\frac{n-1}{2}}$ for some $\lambda_{1} \in \mathbb{K} \backslash\{0\}$.
(ii) $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=\lambda_{3} \cdot\left(X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}\right)$ for some $\lambda_{3} \in \mathbb{K} \backslash\{0\}$. Then $h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\left(\lambda_{3}^{\frac{n+1}{2}}\right)^{2} \cdot \mu_{2} \cdot 4(-1)^{\frac{n-1}{2}}$.
By (i) and (ii), it follows that $\mu_{2}=\lambda^{2} \cdot \mu_{1}$ for some $\lambda \in \mathbb{K} \backslash\{0\}$.
For every automorphism θ of \mathbb{K}, let Q_{1}^{θ} denote the quadric whose equation with respect to B is given by $X_{0}^{2}+\mu_{1}^{\theta} \cdot X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. Notice that a point $\left\langle\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right\rangle$ of $\mathrm{PG}(V)$ belongs to Q_{1} if and only if $\left\langle\sum_{i=0}^{n} X_{i}^{\theta} \bar{e}_{i}\right\rangle$ belongs to Q_{1}^{θ}. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\operatorname{PG}(V)$ if and only if Q_{2} and Q_{1}^{θ} are projectively equivalent for some automorphism θ of \mathbb{K}, i.e. if and only if there exists an automorphism θ of \mathbb{K} and a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\mu_{2}=\mu_{1}^{\theta} \cdot \lambda^{2}$. This completes the proof of Theorem 1.2(1).
3.5. A decomposition of the polynomials $f_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ and $g_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$. Let $I_{\mathbb{Z}}$, respectively $I_{\mathbb{K}}$, denote the ideal of $\mathbb{Z}\left[X_{i j} \mid 0 \leq\right.$ $i \leq j \leq n]$, respectively $\mathbb{K}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$, generated by the set $\left\{X_{i j} \mid(i, j) \notin\right.$ $\{(0,0),(0,1),(1,1),(2,3),(4,5), \ldots,(n-1, n)\}\}$.

Every polynomial $p \in \mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ can be written in a unique way as $p^{\prime}+p^{\prime \prime}$ where $p^{\prime} \in \mathbb{Z}\left[X_{00}, X_{01}, X_{11}, X_{23}, X_{45}, \ldots, X_{n-1, n}\right]$ and $p^{\prime \prime} \in I_{\mathbb{Z}}$. We have

$$
\begin{aligned}
h^{\prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] & =(-1)^{\frac{n-1}{2}} \cdot\left(4 \cdot X_{00} X_{11}-X_{01}^{2}\right) X_{23}^{2} \cdots X_{n-1, n}^{2} \\
g^{\prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] & =X_{01}^{2} X_{23}^{2} \cdots X_{n-1, n}^{2}
\end{aligned}
$$

Hence,

$$
f_{1}^{\prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=4 X_{00} X_{11} X_{23}^{2} \cdots X_{n-1, n}^{2}
$$

and

$$
f^{\prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=X_{00} X_{11} X_{23}^{2} \cdots X_{n-1, n}^{2}
$$

This allows us to conclude the following:
Lemma 3.6. We have $f_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=X_{00} X_{11} X_{23}^{2} \cdots X_{n-1, n}^{2}+$ $f_{\mathbb{K}}^{\prime \prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ and $g_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=X_{01}^{2} X_{23}^{2} \cdots X_{n-1, n}^{2}+$ $g_{\mathbb{K}}^{\prime \prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$, where $X_{00} X_{11} X_{23}^{2} \cdots X_{n-1, n}^{2}$ and $X_{01}^{2} X_{23}^{2} \cdots X_{n-1, n}^{2}$ are regarded as polynomials of $\mathbb{K}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ and $f_{\mathbb{K}}^{\prime \prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq\right.\right.$ $n)], g_{\mathbb{K}}^{\prime \prime}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \in I_{\mathbb{K}}$.

Corollary 3.2. If $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ for some $\alpha \in \mathbb{K}$, then $\bar{f}_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\alpha$ and $g_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=$ 1.
3.6. The polynomials $R_{\mathbb{K}}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$. Let $M=\left(m_{i j}\right)_{0 \leq i \leq j \leq n}$ be an $(n+1) \times(n+1)$-matrix with entries in \mathbb{Z} such that $\operatorname{det}(M) \in\{1,-1\}$. For all $k, l \in\{0, \ldots, n\}$ with $k \leq l$, put

$$
\begin{aligned}
Y_{k k} & :=\sum_{0 \leq i \leq j \leq n}\left(m_{i k} m_{j k}\right) X_{i j}, \\
Y_{k l} & :=\sum_{0 \leq i \leq j \leq n}\left(m_{i k} m_{j l}+m_{i l} m_{j k}\right) X_{i j} .
\end{aligned}
$$

From the discussion given in Section 3.1, we immediately have that

$$
h\left[\left(Y_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]
$$

Now, let $R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \in \mathbb{Z}\left[X_{i j} \mid 0 \leq i \leq j \leq n\right]$ such that

$$
\left.\begin{array}{rl}
\operatorname{Pf}\left[\left(Y_{i j} \mid 0 \leq i \leq j \leq n\right)\right]= & \operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq\right.\right.
\end{array}\right)
$$

Lemma 3.7. There exists a polynomial $R^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \in \mathbb{Z}\left[X_{i j} \mid 0 \leq\right.$ $i \leq j \leq n]$ such that $R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=2 \cdot R^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$. Moreover, $f\left[\left(Y_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=f\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+\operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq i \leq\right.\right.$ $j \leq n)] \cdot R^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+\left(R^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}$.
Proof. By Proposition 1.1, all coefficients of the polynomial $\left(\operatorname{Pf}\left[\left(Y_{i j} \mid 0 \leq i \leq\right.\right.\right.$ $j \leq n)])^{2}+(-1)^{\frac{n-1}{2}} \cdot h\left[\left(Y_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\left(\operatorname{Pf}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq\right.\right.\right.$ $n)])^{2}+(-1)^{\frac{n-1}{2}} \cdot h\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+2 \cdot P f\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \cdot R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq\right.\right.$ $i \leq j \leq n)]+\left(R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}$ are multiples op 4. Applying Proposition 1.1 once more, we see that all coefficients of $\left(R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq\right.\right.\right.$ $j \leq n)])^{2}$ must be multiples of 2 . This is only possible when all coefficients of $R_{1}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]$ are multiples of 2 . The claims of the lemma now readily follow.

Corollary 3.3. Put $Z_{k k}:=\sum_{0 \leq i \leq j \leq n} \phi_{\mathbb{K}}\left(m_{i k} m_{j k}\right) X_{i j}$ and $Z_{k l}:=\sum_{0 \leq i \leq j \leq n}$ $\phi_{\mathbb{K}}\left(m_{i k} m_{j l}+m_{i l} m_{j k}\right) X_{i j}$ for all $k, l \in\{0, \ldots, n\}$ satisfying $k \leq l$. Then $f_{\mathbb{K}}\left[\left(Z_{i j} \mid 0\right.\right.$ $\leq i \leq j \leq n)]=f_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+P f_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq\right.\right.$ $n)] \cdot R_{\mathbb{K}}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+\left(R_{\mathbb{K}}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}$ and $g_{\mathbb{K}}\left[\left(Z_{i j} \mid 0 \leq i \leq\right.\right.$ $j \leq n)]=g_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]+4 \cdot P f_{\mathbb{K}}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \cdot R_{\mathbb{K}}^{M}\left[\left(X_{i j} \mid 0 \leq\right.\right.$ $i \leq j \leq n)]+4 \cdot\left(R_{\mathbb{K}}^{M}\left[\left(X_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}$.
3.7. Proofs of Theorem 1.1(2) and Theorem 1.2(2). Throughout this subsection, \mathbb{K} is a field of characteristic 2.

Notice that if Q is a hyperbolic or elliptic quadric whose equation with respect to a given ordered basis is given by $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$, then $g_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq\right.\right.$ $j \leq n)]=h_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]=\operatorname{det}(A) \neq 0$, where A is the matrix as defined in equation (1.2) of Section 1.1.

Proposition 3.1. Suppose $\operatorname{char}(\mathbb{K})=2$ and that Q is a hyperbolic or elliptic quadric of $\mathrm{PG}(V)$. Let $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$ and $\sum_{0 \leq i \leq j \leq n} a_{i j}^{\prime} X_{i} X_{j}=0$ be equations of Q with respect to two ordered bases of V. $\bar{P} u t \eta_{1}=f_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq\right.\right.$ $i \leq j \leq n)], \eta_{2}=g_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right], \eta_{1}^{\prime}=f_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq i \leq j \leq n\right)\right]$ and $\eta_{2}^{\prime}=g_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq i \leq j \leq n\right)\right]$. Then there exists a $\lambda \in \mathbb{K}$ such that $\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{1}}{\eta_{2}}+\lambda^{2}+\lambda$.
Proof. (1) Suppose that $\sum a_{i j} X_{i} X_{j}$ and $\sum a_{i j}^{\prime} X_{i} X_{j}$ are related via one of the following coordinate transformations:
(i) $X_{0}=Y_{i}, X_{i}=Y_{0}, X_{j}=Y_{j}(j \in\{1, \ldots, n\} \backslash\{i\})$ for a certain $i \in\{1, \ldots, n\}$;
(ii) $X_{0}=Y_{0}+Y_{1}, X_{j}=Y_{j}$ for all $j \in\{1, \ldots, n\}$.

Let $M=\left(m_{i j}\right)_{0 \leq i \leq j \leq n}$ be an $(n+1) \times(n+1)$-matrix over \mathbb{Z} with all entries equal to 0 or 1 such that $X_{i}=\sum_{k=0}^{n} \phi_{\mathbb{K}}\left(m_{i k}\right) Y_{k}$ for every $i \in\{0, \ldots, n\}$. Then $\operatorname{det}(M) \in\{1,-1\}$ and

$$
\begin{aligned}
a_{k k}^{\prime} & =\sum_{0 \leq i \leq j \leq n} \phi_{\mathbb{K}}\left(m_{i k} m_{j k}\right) \cdot a_{i j}, \\
a_{k l}^{\prime} & =\sum_{0 \leq i \leq j \leq n} \phi_{\mathbb{K}}\left(m_{i k} m_{j l}+m_{i l} m_{j k}\right) \cdot a_{i j}
\end{aligned}
$$

for all $k, l \in\{0, \ldots, n\}$ satisfying $k \leq l$. By Corollary 3.3, we have

$$
\begin{aligned}
& \eta_{1}^{\prime}=\eta_{1}+P f_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right] \cdot R_{\mathbb{K}}^{M} {\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right] } \\
&+\left(R_{\mathbb{K}}^{M}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2}, \\
& \eta_{2}^{\prime}=\eta_{2}=\left(P f_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]\right)^{2} .
\end{aligned}
$$

Hence,

$$
\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{1}}{\eta_{2}}+\lambda^{2}+\lambda
$$

where

$$
\lambda=\frac{R_{\mathbb{K}}^{M}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]}{P f_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right]} .
$$

(2) Suppose that $\sum a_{i j} X_{i} X_{j}$ and $\sum a_{i j}^{\prime} X_{i} X_{j}$ are related via the following coordinate transformation $(\mu \neq 0): X_{0}=\mu Y_{0}, X_{j}=Y_{j}$ for all $j \in\{1, \ldots, n\}$. Then $a_{00}^{\prime}=\mu^{2} a_{00}, a_{0 i}^{\prime}=\mu \cdot a_{0 i}$ for every $i \in\{1, \ldots, n\}$ and $a_{i j}^{\prime}=a_{i j}$ for all $i, j \in\{1, \ldots, n\}$ with $i \leq j$. We have $\eta_{1}^{\prime}=\mu^{2} \eta_{1}$ and $\eta_{2}^{\prime}=\mu^{2} \eta_{2}$. Hence, $\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{1}}{\eta_{2}}$.
(3) Notice that any linear coordinate transformation is a composition of coordinate transformations as mentioned in (1) and (2). So, if $\sum a_{i j} X_{i} X_{j}$ and $\sum a_{i j}^{\prime} X_{i} X_{j}$ are related via a linear coordinate transformation, then by (1), (2) and the fact that the set $\left\{\lambda+\lambda^{2} \mid \lambda \in \mathbb{K}\right\}$ is closed under addition, it follows that there exists a $\lambda \in \mathbb{K}$ such that $\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{1}}{\eta_{2}}+\lambda^{2}+\lambda$.
(4) Suppose $\sum a_{i j}^{\prime} X_{i} X_{j}=\mu \cdot\left(\sum a_{i j} X_{i} X_{j}\right)$ for some $\mu \in \mathbb{K} \backslash\{0\}$. Then $\eta_{1}^{\prime}=$ $\mu^{n+1} \cdot \eta_{1}$ and $\eta_{2}^{\prime}=\mu^{n+1} \cdot \eta_{2}$. Hence, $\frac{\eta_{1}^{\prime}}{\eta_{2}^{\prime}}=\frac{\eta_{1}}{\eta_{2}}$.

The proposition now follows from (3), (4) and Corollary 3.1.
Suppose Q is a hyperbolic or elliptic quadric of $\operatorname{PG}(V)$ whose equation with respect to a given reference system is equal to $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$. By Lemma 3.3, there exists an $\alpha \in \mathbb{K}$ and a reference system with respect to which Q has equation $\sum_{0 \leq i \leq j \leq n} a_{i j}^{\prime} X_{i} X_{j}=X_{0}^{2}+X_{0} X_{1}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. Put $\eta_{1}=f_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right], \eta_{2}=g_{\mathbb{K}}\left[\left(a_{i j} \mid 0 \leq i \leq j \leq n\right)\right], \eta_{1}^{\prime}=f_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq\right.\right.$ $i \leq j \leq n)]$ and $\eta_{2}^{\prime}=g_{\mathbb{K}}\left[\left(a_{i j}^{\prime} \mid 0 \leq i \leq j \leq n\right)\right]$. By Corollary 3.2, we have $\eta_{1}^{\prime}=\alpha$ and $\eta_{2}^{\prime}=1$. So, by Proposition 3.1, we have $\alpha=\frac{\eta_{1}}{\eta_{2}}+\lambda^{2}+\lambda$ for some $\lambda \in \mathbb{K}$. Since $\sum_{0 \leq i \leq j \leq n} a_{i j}^{\prime} X_{i} X_{j}=\left(X_{0}+\lambda X_{1}\right)^{2}+\left(X_{0}+\lambda X_{1}\right) X_{1}+\frac{\eta_{1}}{\eta_{2}} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$,
there exists a reference system with respect to which Q has equation $X_{0}^{2}+X_{0} X_{1}+$ $\frac{\eta_{1}}{\eta_{2}} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. This completes the proof of Theorem 1.1(2).

Now, let $\mu_{1}, \mu_{2} \in \mathbb{K}$ and consider the quadrics Q_{1} and Q_{2} with respective equations $X_{0}^{2}+X_{0} X_{1}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+X_{0} X_{1}+\mu_{2} X_{1}^{2}+$ $X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ with respect to a given ordered basis $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ of V. If $\mu_{2}=\mu_{1}+\lambda^{2}+\lambda$ for some $\lambda \in \mathbb{K}$, then Q_{1} and Q_{2} are projectively equivalent since $X_{0}^{2}+X_{0} X_{1}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=\left(X_{0}+\lambda X_{1}\right)^{2}+X_{1}\left(X_{0}+\right.$ $\left.\lambda X_{1}\right)+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$. Conversely, if Q_{1} and Q_{2} are projectively equivalent, then by Corollary 3.2 and Proposition 3.1, $\mu_{2}=\mu_{1}+\lambda^{2}+\lambda$ for a certain $\lambda \in \mathbb{K}$.

Now, for every automorphism θ of \mathbb{K}, let Q_{1}^{θ} denote the quadric with equation $X_{0}^{2}+X_{0} X_{1}+\mu_{1}^{\theta} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ with respect to B. Notice that a point $\left\langle\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right\rangle$ of $\mathrm{PG}(V)$ belongs to Q_{1} if and only if $\left\langle\sum_{i=0}^{n} X_{i}^{\theta} \bar{e}_{i}\right\rangle$ belongs to Q_{1}^{θ}. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\operatorname{PG}(V)$ if and only if Q_{2} and Q_{1}^{θ} are projectively equivalent for some automorphism θ of \mathbb{K}, i.e. if and only if there exists an automorphism θ of \mathbb{K} and a $\lambda \in \mathbb{K}$ such that $\mu_{2}=\mu_{1}^{\theta}+\lambda^{2}+\lambda$. This completes the proof of Theorem 1.2(2).
3.8. Proofs of Theorem 1.1(3) and Theorem 1.2(3). Throughout this paragraph, we suppose that $\operatorname{char}(\mathbb{K})=2$.

Let Q be a pseudo-elliptic quadric of $\operatorname{PG}(V)$ whose equation with respect to a given ordered basis $\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ of V is given by $\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}=0$. Put $q\left(\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right)=\sum_{0 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}$. Then q is a quadratic form of V. If b is the symmetric bilinear form of V associated to q, then $b\left(\sum_{i=0}^{n} X_{i} \bar{e}_{i}, \sum_{i=0}^{n} Y_{i} \bar{e}_{i}\right)=$ $\left[X_{0} \cdots X_{n}\right] \cdot A \cdot\left[Y_{0} \cdots Y_{n}\right]^{T}$, where A is the matrix as defined in equation (1.2) of Section 1.1. The radical R of b consists of all vectors $\sum_{i=0}^{n} X_{i} \bar{e}_{i}$ of V such that $\left[X_{0} \cdots X_{n}\right]^{T}$ belongs to the kernel of A.

Now, by Lemma 3.3, we can choose an ordered basis $\left(\bar{e}_{0}^{\prime}, \bar{e}_{1}^{\prime}, \ldots, \bar{e}_{n}^{\prime}\right)$ of V such that $q\left(\sum_{i=0}^{n} X_{i} \bar{e}_{i}^{\prime}\right)=\sum_{0 \leq i \leq j \leq n} a_{i j}^{\prime} X_{i} X_{j}=\lambda \cdot\left(X_{0}^{2}+\alpha X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}\right)$ for some $\lambda \in \mathbb{K} \backslash\{0\}$ and some non-square α of \mathbb{K}. One calculates that $R=\left\langle\bar{e}_{0}^{\prime}, \bar{e}_{1}^{\prime}\right\rangle$. Now, let $\delta_{0} \bar{e}_{0}^{\prime}+\delta_{1} \bar{e}_{1}^{\prime}$ and $\delta_{2} \bar{e}_{0}^{\prime}+\delta_{3} \bar{e}_{1}^{\prime}$ be two linearly independent vectors of R. So, $\delta_{0} \delta_{3}+\delta_{1} \delta_{2} \neq 0$. We have $\eta:=q\left(\delta_{0} \bar{e}_{0}^{\prime}+\delta_{1} \bar{e}_{1}^{\prime}\right) \cdot q\left(\delta_{2} \bar{e}_{0}^{\prime}+\delta_{3} \bar{e}_{1}^{\prime}\right)=\lambda^{2} \cdot\left(\delta_{0}^{2}+\alpha \delta_{1}^{2}\right) \cdot\left(\delta_{2}^{2}+\right.$ $\left.\alpha \delta_{3}^{2}\right)=\left[\lambda\left(\delta_{0} \delta_{2}+\alpha \delta_{1} \delta_{3}\right)\right]^{2}+\left[\lambda\left(\delta_{0} \delta_{3}+\delta_{1} \delta_{2}\right)\right]^{2} \cdot \alpha=\gamma_{1}^{2}+\gamma_{2}^{2} \cdot \alpha$, where $\gamma_{1}=\lambda\left(\delta_{0} \delta_{2}+\right.$ $\left.\alpha \delta_{1} \delta_{3}\right)$ and $\gamma_{2}=\lambda\left(\delta_{0} \delta_{3}+\delta_{1} \delta_{2}\right) \neq 0$. Since $X_{0}^{2}+\eta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=$ $\left(X_{0}+\gamma_{1} X_{1}\right)^{2}+\alpha\left(\gamma_{2} X_{1}\right)^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$, the quadric Q is projectively equivalent to the quadric with equation $X_{0}^{2}+\eta X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. This proves Theorem 1.1(3).

Let μ_{1} and μ_{2} be two non-squares of \mathbb{K}. Let Q_{1} and Q_{2} be the quadrics with respective equations $X_{0}^{2}+\mu_{1} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ and $X_{0}^{2}+\mu_{2} X_{1}^{2}+$ $X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ with respect to a given ordered basis $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$. If $\mu_{2}=\lambda_{1}^{2}+\lambda_{2}^{2} \cdot \mu_{1}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ with $\lambda_{2} \neq 0$, then Q_{1} and Q_{2} are projectively equivalent since $\left(X_{0}+\lambda_{1} X_{1}\right)^{2}+\mu_{1}\left(\lambda_{2} X_{1}\right)^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=$ $X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}$.

Conversely, suppose that Q_{1} and Q_{2} are projectively equivalent. Then by Corollary 3.1 there exists a quadratic form q of V, a $\lambda \in \mathbb{K} \backslash\{0\}$ and two ordered bases $\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ and $\left(\bar{e}_{0}^{\prime}, \bar{e}_{1}^{\prime}, \ldots, \bar{e}_{n}^{\prime}\right)$ of V such that $q\left(\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right)=X_{0}^{2}+\mu_{1} X_{1}^{2}+$
$X_{2} X_{3}+\cdots+X_{n-1} X_{n}$ and $q\left(\sum_{i=0}^{n} X_{i} \bar{e}_{i}^{\prime}\right)=\lambda\left(X_{0}^{2}+\mu_{2} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}\right)$. The radical of the bilinear form associated to q is equal to $\left\langle\bar{e}_{0}, \bar{e}_{1}\right\rangle=\left\langle\bar{e}_{0}^{\prime}, \bar{e}_{1}^{\prime}\right\rangle$. Put $\bar{e}_{0}^{\prime}=\delta_{0} \bar{e}_{0}+\delta_{1} \bar{e}_{1}$ and $\bar{e}_{1}^{\prime}=\delta_{2} \bar{e}_{0}+\delta_{3} \bar{e}_{1}$. Here, $\delta_{0} \delta_{3}+\delta_{1} \delta_{2} \neq 0$. We have $\mu_{1}=q\left(\bar{e}_{0}\right) \cdot q\left(\bar{e}_{1}\right)$ and $\lambda^{2} \mu_{2}=q\left(\bar{e}_{0}^{\prime}\right) \cdot q\left(\bar{e}_{1}^{\prime}\right)=q\left(\delta_{0} \bar{e}_{0}+\delta_{1} \bar{e}_{1}\right) \cdot q\left(\delta_{2} \bar{e}_{0}+\delta_{3} \bar{e}_{1}\right)=$ $\left(\delta_{0}^{2}+\mu_{1} \delta_{1}^{2}\right) \cdot\left(\delta_{2}^{2}+\mu_{1} \delta_{3}^{2}\right)=\left(\delta_{0} \delta_{2}+\mu_{1} \delta_{1} \delta_{3}\right)^{2}+\left(\delta_{0} \delta_{3}+\delta_{1} \delta_{2}\right)^{2} \mu_{1}$. Hence, $\mu_{2}=$ $\left(\frac{\delta_{0} \delta_{2}+\mu_{1} \delta_{1} \delta_{3}}{\lambda}\right)^{2}+\left(\frac{\delta_{0} \delta_{3}+\delta_{1} \delta_{2}}{\lambda}\right)^{2} \mu_{1}$, where $\frac{\delta_{0} \delta_{3}+\delta_{1} \delta_{2}}{\lambda} \neq 0$.

For every automorphism θ of \mathbb{K}, let Q_{1}^{θ} denote the quadric whose equation with respect to B is given by $X_{0}^{2}+\mu_{1}^{\theta} X_{1}^{2}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. Notice that a point $\left\langle\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right\rangle$ of $\mathrm{PG}(V)$ belongs to Q_{1} if and only if $\left\langle\sum_{i=0}^{n} X_{i}^{\theta} \bar{e}_{i}\right\rangle$ belongs to Q_{1}^{θ}. The quadrics Q_{1} and Q_{2} are equivalent under an automorphism of $\operatorname{PG}(V)$ if and only if Q_{2} and Q_{1}^{θ} are projectively equivalent for some automorphism θ of \mathbb{K}, i.e. if and only if there exists an automorphism θ of \mathbb{K} and $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ with $\lambda_{2} \neq 0$ such that $\mu_{2}=\lambda_{1}^{2}+\lambda_{2}^{2} \cdot \mu_{1}$. This completes the proof of Theorem 1.2(3).

4. Proofs of Theorems 1.3 and 1.4

4.1. Coordinate transformations. Let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V, let ψ be an involutary automorphism of \mathbb{K} and let $a_{i j}, i, j \in\{0, \ldots, n\}$, be elements of \mathbb{K} satisfying $a_{j i}=a_{i j}^{\psi}$. Let \mathcal{H} be the ψ-Hermitian variety of $\operatorname{PG}(V)$ whose equation with respect to B is given by

$$
\left[X_{0} \cdots X_{n}\right] \cdot A \cdot\left[X_{0}^{\psi} \cdots X_{n}^{\psi}\right]^{T}=\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}=0 .
$$

Now, consider the coordinate transformation with associated nonsingular matrix $M=\left(m_{i j}\right)_{0 \leq i, j \leq n}:\left[X_{0} \cdots X_{n}\right]^{T}=M \cdot\left[Y_{0} \cdots Y_{n}\right]^{T}$. The equation of \mathcal{H} in the new coordinates is equal to $\left[Y_{0} \cdots Y_{n}\right] \cdot A^{\prime} \cdot\left[Y_{0}^{\psi} \cdots Y_{n}^{\psi}\right]^{T}=\sum_{0 \leq i, j \leq n} a_{i j}^{\prime} X_{i} X_{j}^{\psi}$, where $A^{\prime}=\left(a_{i j}^{\prime}\right)_{0 \leq i, j \leq n}=M^{T} A M^{\psi}$. In the sequel, we will say that $\sum_{0 \leq i, j \leq n} a_{i j}^{\prime} X_{i} X_{j}^{\psi}$ and $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}$ are related via a linear coordinate transformation.

Since $A^{\prime}=M^{T} A M^{\psi}$ we have that $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(M^{T}\right) \cdot \operatorname{det}(A) \cdot \operatorname{det}\left(M^{\psi}\right)=$ $[\operatorname{det}(M)]^{\psi+1} \cdot \operatorname{det}(A)$. So, we have established the following.
Lemma 4.1. Let ψ_{1} and ψ_{2} be two involutary automorphisms of \mathbb{K}. If $\sum a_{i j} X_{i} X_{j}^{\psi_{1}}$ and $\sum a_{i j}^{\prime} X_{i} X_{j}^{\psi_{2}}$ are related via a linear coordinate transformation, then $\psi_{1}=\psi_{2}$ and there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A) \cdot \lambda^{\psi_{1}+1}$.
4.2. The equations representing certain Hermitian varieties.

Lemma 4.2. Let $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ be an ordered basis of V, let ψ_{1} and ψ_{2} be two involutary automorphisms of \mathbb{K}, let $\alpha \in \mathbb{K} \backslash\{0\}$ such that $\alpha^{\psi_{1}}=\alpha$ and let $a_{i j}, i, j \in\{0, \ldots, n\}$, be elements of \mathbb{K} satisfying $a_{j i}=a_{i j}^{\psi_{2}}$. Suppose \mathcal{H} is the ψ_{1}-Hermitian variety of $\mathrm{PG}(V)$ whose equation with respect to B is given by $X_{0}^{\psi_{1}+1}+\alpha X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}=0$. If the equation $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi_{2}}$ describes \mathcal{H} with respect to the same ordered basis B, then $\psi_{1}=\psi_{2}$ and $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi_{2}}=\lambda \cdot\left(X_{0}^{\psi_{1}+1}+\alpha X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\right.$ $\left.\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}\right)$ for some $\lambda \in \mathbb{K} \backslash\{0\}$ satisfying $\lambda^{\psi_{1}}=\lambda$.
Proof. Notice first that $\mathbb{K} / \mathbb{K}_{\psi_{i}}(i \in\{1,2\})$ is a Galois extension and ψ_{i} is the unique nontrivial element of $\operatorname{Gal}\left(\mathbb{K} / \mathbb{K}_{\psi_{i}}\right)$. So, if $\mathbb{K}_{\psi_{1}}=\mathbb{K}_{\psi_{2}}$, then $\psi_{1}=\psi_{2}$.

- For all $i \in\{2, \ldots, n\}$, we have $a_{i i}=0$ since $\left\langle\bar{e}_{i}\right\rangle \in \mathcal{H}$.
\bullet Let $i, j \in\{2, \ldots, n\}$ such that $i \neq j$ and $\{i, j\} \notin\{\{2,3\},\{4,5\}, \ldots,\{n-1, n\}\}$. For every $\lambda \in \mathbb{K}$, we have $\lambda a_{i j}+\lambda^{\psi_{2}} a_{j i}=\lambda a_{i j}+\left(\lambda a_{i j}\right)^{\psi_{2}}=0$ since $\left\langle\lambda \bar{e}_{i}+\bar{e}_{j}\right\rangle \in \mathcal{H}$. This implies that $a_{i j}=0$.
- We prove that $\psi_{1}=\psi_{2}$ and $a_{2 i, 2 i+1}=a_{2 i+1,2 i} \neq 0$ for every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$. Let $k \in \mathbb{K} \backslash\{0\}$ such that $k+k^{\psi_{1}}=0$ (e.g., $k=l-l^{\psi_{1}}$ where $l \in \mathbb{K} \backslash \mathbb{K}_{\psi_{1}}$). Then since $\left\langle k \bar{e}_{2 i}+\bar{e}_{2 i+1}\right\rangle \in \mathcal{H}$, we have $k a_{2 i, 2 i+1}+k^{\psi_{2}} a_{2 i+1,2 i}=0$. Now, a point $\left\langle k \lambda \bar{e}_{2 i}+\bar{e}_{2 i+1}\right\rangle, \lambda \in \mathbb{K}$, belongs to \mathcal{H} if and only if $k \lambda+(k \lambda)^{\psi_{1}}=k\left(\lambda-\lambda^{\psi_{1}}\right)=0$, i.e. if and only if $\lambda \in \mathbb{K}_{\psi_{1}}$. On the other hand, $\left\langle k \lambda \bar{e}_{2 i}+\bar{e}_{2 i+1}\right\rangle \in \mathcal{H}$ if and only if $k \lambda a_{2 i, 2 i+1}+(k \lambda)^{\psi_{2}} a_{2 i+1,2 i}=k a_{2 i, 2 i+1}\left(\lambda-\lambda^{\psi_{2}}\right)=0$. Hence, $a_{2 i, 2 i+1} \neq 0$ and $\mathbb{K}_{\psi_{1}}=\mathbb{K}_{\psi_{2}}$. This implies that $\psi_{1}=\psi_{2}$. Since $0=k a_{2 i, 2 i+1}+k^{\psi_{2}} a_{2 i+1,2 i}=$ $k a_{2 i, 2 i+1}+k^{\psi_{1}} a_{2 i+1,2 i}=k\left(a_{2 i, 2 i+1}-a_{2 i+1,2 i}\right)$, we also have $a_{2 i, 2 i+1}=a_{2 i+1,2 i}$.
- We prove that $a_{00} \neq 0$ and $a_{0 i}=a_{i 0}=0$ for every $i \in\{2, \ldots, n\}$. Since $\left\langle\bar{e}_{0}+\lambda^{\psi_{1}} \bar{e}_{i}\right\rangle \notin \mathcal{H}$ for every $\lambda \in \mathbb{K}$, we have $a_{00}+\lambda a_{0 i}+\lambda^{\psi_{1}} a_{i 0}=a_{00}+\lambda a_{0 i}+$ $\left(\lambda a_{0 i}\right)^{\psi_{1}} \neq 0$ for every $\lambda \in \mathbb{K}$. This implies that $a_{00} \neq 0$ and $a_{0 i}=0$. (Otherwise, we can take $\lambda=-\frac{a_{00}}{a_{0 i}} \cdot \frac{a}{a-a^{\psi_{1}}}$ where a is an arbitrary element of $\mathbb{K} \backslash \mathbb{K}_{\psi_{1}}$.) Hence, also $a_{i 0}=a_{0 i}^{\psi_{1}}=0$.
- We prove that $a_{11} \neq 0$ and $a_{1 i}=a_{i 1}=0$ for every $i \in\{2, \ldots, n\}$. Since $\left\langle\bar{e}_{1}+\right.$ $\left.\lambda^{\psi_{1}} \bar{e}_{i}\right\rangle \notin \mathcal{H}$ for every $\lambda \in \mathbb{K}$, we have $a_{11}+\lambda a_{1 i}+\lambda^{\psi_{1}} a_{i 1}=a_{11}+\lambda a_{1 i}+\left(\lambda a_{1 i}\right)^{\psi_{1}} \neq 0$ for every $\lambda \in \mathbb{K}$. As in the previous case, this implies that $a_{11} \neq 0$ and $a_{1 i}=0$. Hence, also $a_{i 1}=a_{1 i}^{\psi_{1}}=0$.
- We prove that $a_{00}=a_{2 i, 2 i+1}$ for every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$. Let $k \in \mathbb{K} \backslash \mathbb{K}_{\psi_{1}}$. Since $\left\langle\bar{e}_{0}-\frac{k}{k-k^{\psi_{1}}} \bar{e}_{2 i}+\bar{e}_{2 i+1}\right\rangle \in \mathcal{H}$, we have $a_{00}-\frac{k}{k-k^{\psi_{1}}} a_{2 i, 2 i+1}+\frac{k^{\psi_{1}}}{k-k^{\psi_{1}}} a_{2 i+1,2 i}=$ $a_{00}-a_{2 i, 2 i+1}=0$.
- We prove that $a_{11}=\alpha \cdot a_{2 i, 2 i+1}$ for every $i \in\left\{1, \ldots, \frac{n-1}{2}\right\}$. Let $k \in \mathbb{K} \backslash \mathbb{K}_{\psi_{1}}$.

Since $\left\langle\bar{e}_{1}-\frac{k \alpha}{k-k^{\psi_{1}}} \bar{e}_{2 i}+\bar{e}_{2 i+1}\right\rangle \in \mathcal{H}$, we have $a_{11}-\frac{k \alpha}{k-k^{\psi_{1}}} a_{2 i, 2 i+1}+\frac{k^{\psi_{1}} \alpha}{k-k^{\psi_{1}}} a_{2 i+1,2 i}=$ $a_{11}-\alpha \cdot a_{2 i, 2 i+1}=0$.

- We prove that $a_{01}=0$. Let $k \in \mathbb{K} \backslash \mathbb{K}_{\psi_{1}}$. Since $\left\langle\lambda \bar{e}_{0}+\bar{e}_{1}-\frac{k\left(\lambda^{\psi_{1}+1}+\alpha\right)}{k-k^{\psi_{1}}} \bar{e}_{2 i}+\right.$ $\left.\bar{e}_{2 i+1}\right\rangle \in \mathcal{H}$ for every $\lambda \in \mathbb{K}$, we have $a_{00} \lambda^{\psi_{1}+1}+\lambda a_{01}+\lambda^{\psi} a_{10}+a_{11}-\left(\lambda^{\psi_{1}+1}+\right.$ $\alpha) a_{2 i, 2 i+1}=\lambda a_{01}+\left(\lambda a_{01}\right)^{\psi_{1}}=0$ for every $\lambda \in \mathbb{K}$. This implies that $a_{01}=0$.
By the above, we know that $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi_{2}}=a_{00}\left(X_{0}^{\psi_{1}+1}+\alpha X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+\right.$ $\left.X_{3} X_{2}^{\psi_{1}}+\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}\right)$. Here, $a_{00} \in \mathbb{K} \backslash\{0\}$ satisfies $a_{00}^{\psi_{1}}=a_{00}$.

4.3. Canonical equations for nonsingular Hermitian varieties of Witt in-

 dex at least $\frac{n-1}{2}$.Lemma 4.3. Let ψ be an involutary automorphism of \mathbb{K}. If \mathcal{H} is a nonsingular ψ Hermitian variety of Witt index at least $\frac{n-1}{2}$ of $\mathrm{PG}(V)$, then there exists an $\alpha \in \mathbb{K} \backslash$ $\{0\}$ satisfying $\alpha^{\psi}=\alpha$ and an ordered basis $\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ of V with respect to which \mathcal{H} has equation $X_{0}^{\psi+1}-\alpha X_{1}^{\psi+1}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$. \mathcal{H} has Witt index $\frac{n+1}{2}$ if and only if there exists a $\lambda \in \mathbb{K}$ satisfying $\lambda^{\psi+1}=\alpha$. In this case, there exists an ordered basis of V with respect to which \mathcal{H} has equation $X_{0} X_{1}^{\psi}+X_{1} X_{0}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$.
Proof. The proof is similar to the proof of Lemma 3.3. Let $h: V \times V \rightarrow \mathbb{K}$ be a sesquilinear form satisfying:

- $h\left(\lambda_{1} \bar{x}_{1}+\lambda_{2} \bar{x}_{2}, \bar{y}\right)=\lambda_{1} \cdot h\left(\bar{x}_{1}, \bar{y}\right)+\lambda_{2} \cdot h\left(\bar{x}_{2}, \bar{y}\right)$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ and all $\bar{x}_{1}, \bar{x}_{2}, \bar{y} \in V$.
- $h\left(\bar{x}, \lambda_{1} \bar{y}_{1}+\lambda_{2} \bar{y}_{2}\right)=\lambda_{1}^{\psi} \cdot h\left(\bar{x}, \bar{y}_{1}\right)+\lambda_{2}^{\psi} \cdot h\left(\bar{x}, \bar{y}_{2}\right)$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ and all $\bar{x}, \bar{y}_{1}, \bar{y}_{2} \in V$.
- $h(\bar{y}, \bar{x})=h(\bar{x}, \bar{y})^{\psi}$ for all $\bar{x}, \bar{y} \in V$.
- \mathcal{H} consists of all points $\langle\bar{x}\rangle$ of $\operatorname{PG}(V)$ for which $H(\bar{x}):=h(\bar{x}, \bar{x})=0$.

Since \mathcal{H} is nonsingular, h is nondegenerate, i.e. there exists no $\bar{x} \in V \backslash\{\bar{o}\}$ such that $h(\bar{x}, \bar{y})=0$ for all $\bar{y} \in V$. Suppose the Witt index m^{\prime} of \mathcal{H} is at least $m:=\frac{n-1}{2}$.

Now, let π_{1} and π_{2} be two m^{\prime}-dimensional subspaces of V satisfying (i) $\pi_{1} \cap \pi_{2}=$ $\{\bar{o}\}$ and (ii) $H(\bar{x})=0$ for all $\bar{x} \in \pi_{1} \cup \pi_{2}$. Let $\left\{\bar{e}_{1}, \ldots, \bar{e}_{m^{\prime}}\right\}$ be a basis of π_{1}. Similarly as in the proof of Lemma 3.3, there exists a basis $\left\{\bar{f}_{1}, \ldots, \bar{f}_{m^{\prime}}\right\}$ of π_{2} such that $h\left(\bar{e}_{i}, \bar{f}_{i}\right)=1$ and $h\left(\bar{e}_{j}, \bar{f}_{i}\right)=0$ for all $i \in\left\{1, \ldots, m^{\prime}\right\}$ and all $j \in\left\{1, \ldots, m^{\prime}\right\} \backslash\{i\}$.

If $m^{\prime}=m+1=\frac{n+1}{2}$, then $\left\{\bar{e}_{1}, \ldots, \bar{e}_{m^{\prime}}, \bar{f}_{1}, \ldots, \bar{f}_{m^{\prime}}\right\}$ is a basis of V and $H\left(X_{0} \bar{e}_{1}+\right.$ $\left.X_{1} \bar{f}_{1}+X_{2} \bar{e}_{2}+X_{3} \bar{f}_{2}+\cdots+X_{n-1} \bar{e}_{m^{\prime}}+X_{n} \bar{f}_{m^{\prime}}\right)=X_{0} X_{1}^{\psi}+X_{1} X_{0}^{\psi}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+$ $\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}$.

Consider now the most general case $m^{\prime} \in\{m, m+1\}$. Let W denote the subspace of V consisting of all vectors which are h-orthogonal with all vectors of $U:=$ $\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}, \bar{f}_{1}, \ldots, \bar{f}_{m}\right\rangle$. Since U has co-dimension 2 in V, W has dimension 2. We have $H\left(X_{2} \bar{e}_{1}+X_{3} \bar{f}_{1}+\cdots+X_{n-1} \bar{e}_{m}+X_{n} \bar{f}_{m}\right)=X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+\cdots+$ $X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}$ and $H\left(\bar{x}_{1}+\bar{x}_{2}\right)=H\left(\bar{x}_{1}\right)+H\left(\bar{x}_{2}\right)$ for all vectors $\bar{x}_{1} \in W$ and $\bar{x}_{2} \in U$. It is easily verified that there exists a basis $\left\{\bar{e}_{m+1}^{\prime}, \bar{f}_{m+1}^{\prime}\right\}$ of W such that $H\left(X_{0} \bar{e}_{m+1}^{\prime}+X_{1} \bar{f}_{m+1}^{\prime}\right)=\beta\left(X_{0}^{\psi+1}-\alpha X_{1}^{\psi+1}\right)$ for some $\alpha, \beta \in \mathbb{K}_{\psi} \backslash\{0\}$. With respect to the reference system $\left(\bar{e}_{m+1}^{\prime}, \bar{f}_{m+1}^{\prime}, \bar{e}_{1}, \beta \cdot \bar{f}_{1}, \ldots, \bar{e}_{m}, \beta \cdot \bar{f}_{m}\right)$, \mathcal{H} has equation $X_{0}^{\psi+1}-\alpha X_{1}^{\psi+1}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$. Now, $\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}\right\rangle$ is a subspace of \mathcal{H}. So, \mathcal{H} has Witt index $\frac{n+1}{2}$ if and only if there exists an $\frac{n-1}{2}$-dimensional subspace of \mathcal{H} containing $\left\langle\bar{e}_{1}, \ldots, \bar{e}_{m}\right\rangle$. This precisely happens when the equation $X_{0}^{\psi+1}-\alpha X_{1}^{\psi+1}=0$ has a nonzero solution for $\left(X_{0}, X_{1}\right)$. The claims of the lemma follow.

By Lemmas 4.2 and 4.3, we have
Corollary 4.1. Let \mathcal{H} be a nonsingular ψ-Hermitian variety of Witt index $m \in$ $\left\{\frac{n-1}{2}, \frac{n+1}{2}\right\}$ of $\mathrm{PG}(V)$ and let B be an ordered basis of V. Then the left hand side of an equation $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}=0\left(a_{j i}=a_{i j}^{\psi}\right)$ which describes \mathcal{H} with respect to B is uniquely determined up to a nonzero factor of \mathbb{K}_{ψ}.
4.4. Proofs of Theorems $\mathbf{1 . 3}$ and 1.4. Let ψ be an involutary automorphism of \mathbb{K} and let \mathcal{H} be the nonsingular ψ-Hermitian variety of Witt index at least $\frac{n-1}{2}$ of $\mathrm{PG}(V)$ whose equation with respect to a given reference system is given by $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}=0$. Here, $a_{j i}=a_{i j}^{\psi}$ for all $i, j \in\{0, \ldots, n\}$. By Lemma 4.3, we know that there exist $b_{i j}$ and $c_{i j}(0 \leq i, j \leq n)$ such that
(i) $b_{j i}=b_{i j}^{\psi}$ and $c_{j i}=c_{i j}^{\psi}$ for all $i, j \in\{0, \ldots, n\}$;
(ii) $\sum_{0 \leq i, j \leq n} b_{i j} X_{i} X_{j}^{\psi}$ is related to $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi}$ via a linear coordinate transformation;
(iii) $\sum_{0 \leq i, j \leq n} c_{i j} X_{i} X_{j}^{\psi}=\lambda_{3}\left(\sum_{0 \leq i, j \leq n} b_{i j} X_{i} X_{j}^{\psi}\right)=X_{0}^{\psi+1}-\alpha X_{1}^{\psi+1}+X_{2} X_{3}^{\psi}+$ $X_{3} X_{2}^{\psi}+\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}$ for some $\lambda_{3}, \alpha \in \mathbb{K}_{\psi} \backslash\{0\}$.
Now, put $\lambda_{2}=\lambda_{3}^{\frac{n+1}{2}}$. Then $\lambda_{2}^{\psi+1}=\lambda_{3}^{n+1}$ since $\lambda_{2} \in \mathbb{K}_{\psi}$. Consider the matrices $A=\left(a_{i j}\right)_{0 \leq i, j \leq n}, B=\left(b_{i j}\right)_{0 \leq i, j \leq n}$ and $C=\left(c_{i j}\right)_{0 \leq i, j \leq n}$. By Lemma 4.1, there
exists a $\lambda_{1} \in \mathbb{K} \backslash\{0\}$ such that $\operatorname{det}(B)=\lambda_{1}^{\psi+1} \operatorname{det}(A)$. So, we have $(-1)^{\frac{n+1}{2}} \alpha=$ $\operatorname{det}(C)=\lambda_{3}^{n+1} \operatorname{det}(B)=\left(\lambda_{1} \lambda_{2}\right)^{\psi+1} \operatorname{det}(A)$. Hence, $\alpha=\left(\lambda_{1} \lambda_{2}\right)^{\psi+1}(-1)^{\frac{n+1}{2}} \operatorname{det}(A)$ and \mathcal{H} has equation $X_{0}^{\psi+1}-(-1)^{\frac{n+1}{2}} \operatorname{det}(A) \cdot\left(\lambda_{1} \lambda_{2} X_{1}\right)^{\psi+1}+X_{2} X_{3}^{\psi}+X_{3} X_{2}^{\psi}+$ $\cdots+X_{n-1} X_{n}^{\psi}+X_{n} X_{n-1}^{\psi}=0$ with respect to a suitable reference system. This completes the proof of Theorem 1.3.

Now, let ψ_{1} and ψ_{2} be two involutary automorphisms of \mathbb{K} and let $\mu_{i} \in \mathbb{K}_{\psi_{i}} \backslash$ $\{0\}, i \in\{1,2\}$. Let \mathcal{H}_{1} and \mathcal{H}_{2} be two Hermitian varieties whose equations with respect to a given ordered basis $B=\left(\bar{e}_{0}, \bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ of V are given by respectively $X_{0}^{\psi_{1}+1}+\mu_{1} \cdot X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}=0$ and $X_{0}^{\psi_{2}+1}+\mu_{2} \cdot X_{1}^{\psi_{2}+1}+X_{2} X_{3}^{\psi_{2}}+X_{3} X_{2}^{\psi_{2}}+\cdots+X_{n-1} X_{n}^{\psi_{2}}+X_{n} X_{n-1}^{\psi_{2}}=0$. If $\psi_{1}=\psi_{2}$ and there exists a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\mu_{2}=\lambda^{\psi_{1}+1} \mu_{1}$, then \mathcal{H}_{1} and \mathcal{H}_{2} are projectively equivalent since $X_{0}^{\psi_{2}+1}+\mu_{2} \cdot X_{1}^{\psi_{2}+1}+X_{2} X_{3}^{\psi_{2}}+X_{3} X_{2}^{\psi_{2}}+\cdots+X_{n-1} X_{n}^{\psi_{2}}+$ $X_{n} X_{n-1}^{\psi_{2}}=X_{0}^{\psi_{1}+1}+\mu_{1} \cdot\left(\lambda X_{1}\right)^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}$.

Conversely, suppose that \mathcal{H}_{1} and \mathcal{H}_{2} are projectively equivalent. Then by Lemmas 4.1 and $4.2, \psi_{1}=\psi_{2}$. Also by these lemmas, there exist elements $a_{i j}$, $i, j \in\{0, \ldots, n\}$, of \mathbb{K} such that:
(i) $a_{j i}=a_{i j}^{\psi_{1}}$ for all $i, j \in\{0, \ldots, n\}$;
(ii) $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi_{1}}$ is related to $X_{0}^{\psi_{1}+1}+\mu_{1} \cdot X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+$ $\cdots+X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}$ via a linear coordinate transformation;
(iii) $\sum_{0 \leq i, j \leq n} a_{i j} X_{i} X_{j}^{\psi_{1}}=\alpha \cdot\left(X_{0}^{\psi_{1}+1}+\mu_{2} \cdot X_{1}^{\psi_{1}+1}+X_{2} X_{3}^{\psi_{1}}+X_{3} X_{2}^{\psi_{1}}+\cdots+\right.$ $\left.X_{n-1} X_{n}^{\psi_{1}}+X_{n} X_{n-1}^{\psi_{1}}\right)$ for some $\alpha \in \mathbb{K}_{\psi_{1}} \backslash\{0\}$.
Put $A=\left(a_{i j}\right)_{0 \leq i, j \leq n}$. Then $\operatorname{det}(A)=\alpha^{n+1} \mu_{2}(-1)^{\frac{n-1}{2}}$. Now, by (ii) and Lemma 4.1, there exist a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\operatorname{det}(A)=\lambda^{\psi_{1}+1} \mu_{1}(-1)^{\frac{n-1}{2}}$. Since $\alpha^{n+1}=$ $\left(\alpha^{\frac{n+1}{2}}\right)^{\psi_{1}+1}$, it follows that $\mu_{2}=\left(\frac{\lambda}{\alpha^{\frac{n+1}{2}}}\right)^{\psi_{1}+1} \cdot \mu_{1}$.

For every automorphism θ of \mathbb{K}, let \mathcal{H}_{1}^{θ} denote the $\theta^{-1} \psi_{1} \theta$-Hermitian variety of the projective space $\operatorname{PG}(V)$ whose equation with respect to B is given by $X_{0}^{\theta^{-1}} \psi_{1} \theta+1+\mu_{1}^{\theta} X_{1}^{\theta^{-1}} \psi_{1} \theta+1+X_{2} X_{3}^{\theta^{-1}} \psi_{1} \theta+X_{3} X_{2}^{\theta^{-1}} \psi_{1} \theta+\cdots+X_{n-1} X_{n}^{\theta^{-1}} \psi_{1} \theta+$ $X_{n} X_{n-1}^{\theta^{-1}} \psi_{1} \theta$. Notice that a point $\left\langle\sum_{i=0}^{n} X_{i} \bar{e}_{i}\right\rangle$ of $\operatorname{PG}(V)$ belongs to \mathcal{H}_{1} if and only if $\left\langle\sum_{i=0}^{n} X_{i}^{\theta} \bar{e}_{i}\right\rangle$ belongs to \mathcal{H}_{1}^{θ}. Now, \mathcal{H}_{1} and \mathcal{H}_{2} are equivalent under an automorphism of $\operatorname{PG}(V)$ if and only if \mathcal{H}_{2} and \mathcal{H}_{1}^{θ} are projectively equivalent for some automorphism θ of \mathbb{K}, i.e. if and only if there exists an automorphism θ of \mathbb{K} and a $\lambda \in \mathbb{K} \backslash\{0\}$ such that $\psi_{2}=\theta^{-1} \psi_{1} \theta$ and $\mu_{2}=\lambda^{\psi_{2}+1} \mu_{1}^{\theta}$. This finishes the proof of Theorem 1.4.

References

[1] Arf, C., Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I, J. Reine Angew. Math., 183 (1941), 148-167.
[2] Hirschfeld, J. W. P., Quadrics over finite fields, Sympos. Math., 28 (1986), 53-87.
[3] Hirschfeld, J. W. P. and Thas, J. A., General Galois geometries, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.
[4] Jacobson, N., Basic algebra I, W. H. Freeman and Company, New York, 1985.
[5] Lang, S., Algebra, Graduate Texts in Mathematics 211, Springer Verlag, New York, 2002.
[6] Marcus, M., Finite dimensional multilinear algebra. Part 1, Pure and Applied Mathematics 23, Marcel Dekker, New York, 1973.
[7] Scharlau, W., Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften 270, Springer-Verlag, Berlin, 1985.
[8] Tits, J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics 386, Springer, Berlin, 1974.
[9] Witt, E., Über eine Invariante quadratischer Formen mod 2, J. Reine Angew. Math., 193 (1954), 119-120.

Department of Mathematics, Ghent University
E-mail address: bdb@cage.ugent.be

[^0]: 2000 Mathematics Subject Classification. 51A50, 51E20.
 Key words and phrases. hyperbolic quadric, (pseudo-)elliptic quadric, Hermitian variety, canonical equation.

 At the time of the writing of this paper, the author was a postdoctoral fellow of the Research Foundation - Flanders (Belgium).

