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CANONICAL EQUATIONS FOR NONSINGULAR QUADRICS
AND HERMITIAN VARIETIES OF WITT INDEX AT LEAST n−1

2

OF PG(n,K), n ODD

BART DE BRUYN

(Communicated by Levent KULA)

Abstract. Let V be a vector space of even dimension n + 1 ≥ 4 over a
field K, and let F be a nonsingular quadric or Hermitian variety of Witt
index at least n−1

2
of PG(V ). F is described by a certain equation, which

depends on the chosen reference system. We give a survey of the methods
which allow to determine a canonical equation for F without performing the
actual coordinate transformations, and give complete proofs for these methods.
We give necessary and sufficient conditions for two nonsingular quadrics or
Hermitian varieties of Witt index at least n−1

2
to be projectively equivalent

(respectively, to be equivalent under an automorphism of PG(V )). Many of
the things we will discuss here are only implicit in the literature.

1. Introduction

Throughout this manuscript, n ≥ 3 denotes a given strictly positive odd integer,
K denotes a given field and V denotes a given (n+1)-dimensional vector space over
K.

1.1. The case of quadrics. Let Xij , i, j ∈ {0, . . . , n}, be (n + 1)2 indeter-
minates. The (n + 1)2-tuple (X00, X01, . . . , X0n, X10, X11, . . . , X1n, . . . , Xn0, Xn1,

. . . , Xnn) will also be denoted by (Xij | 0 ≤ i, j ≤ n) and the (n+1)(n+2)
2 -tuple

(X00, X01, . . . , X0n, X11, X12, . . . , X1n, . . . , Xn−1,n−1, Xn−1,n, Xn,n) will
also be denoted by (Xij | 0 ≤ i ≤ j ≤ n). The Xij ’s will serve as indeterminates
for the polynomial rings Z[Xij | 0 ≤ i, j ≤ n] and Z[Xij | 0 ≤ i ≤ j ≤ n]. Define
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the following polynomials of Z[Xij | 0 ≤ i ≤ j ≤ n]:

h[(Xij | 0 ≤ i ≤ j ≤ n)] :=

∣∣∣∣∣∣∣∣∣∣∣

2 ·X00 X01 X02 · · · X0n

X01 2 ·X11 X12 · · · X1n

X02 X12 2 ·X22 · · · X2n

...
...

...
. . .

...
X0n X1n X2n · · · 2 ·Xnn

∣∣∣∣∣∣∣∣∣∣∣

,

g[(Xij | 0 ≤ i ≤ j ≤ n)] :=

∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 · · · X0n

−X01 0 X12 · · · X1n

−X02 −X12 0 · · · X2n

...
...

...
. . .

...
−X0n −X1n −X2n · · · 0

∣∣∣∣∣∣∣∣∣∣∣

,

f1[(Xij | 0 ≤ i ≤ j ≤ n)] := g[(Xij | 0 ≤ i ≤ j ≤ n)] +

(−1)
n−1

2 · h[(Xij | 0 ≤ i ≤ j ≤ n)].

Since the matrix Mg whose determinant defines g is a skew-symmetric matrix, there
exists a polynomial Pf [(Xij | 0 ≤ i ≤ j ≤ n)] ∈ Z[Xij | 0 ≤ i ≤ j ≤ n] such that

g[(Xij | 0 ≤ i ≤ j ≤ n)] =
(
Pf [(Xij | 0 ≤ i ≤ j ≤ n)]

)2

, see e.g. Jacobson [4,
Theorem 6.4] or Lang [5, XV §9]. The polynomial Pf [(Xij | 0 ≤ i ≤ j ≤ n)] is
called the Pfaffian of Mg. For an explicit description of this Pfaffian in terms of
the indeterminates Xij , see e.g. Marcus [6, p. 280].

We will prove the following proposition in Section 2:

Proposition 1.1. All the coefficients of the polynomial f1 ∈ Z[Xij | 0 ≤ i ≤ j ≤ n]
are multiples of 4.

Now, define the following polynomial of Z[Xij | 0 ≤ i ≤ j ≤ n]:

f [(Xij | 0 ≤ i ≤ j ≤ n)] :=
f1[(Xij | 0 ≤ i ≤ j ≤ n)]

4
.

Let φK : Z → K denote the unique group homomorphism from (Z, +) to (K,+)
which maps the element 1 ∈ Z to the identity element for the multiplication of K.
For every polynomial p ∈ Z[Xij | 0 ≤ i ≤ j ≤ n], let pK denote the unique element
of K[Xij | 0 ≤ i ≤ j ≤ n] obtained from p by replacing each coefficient of p by its
image under the map φK.

Now, let B = (ē0, ē1, . . . , ēn) be an ordered basis of V . For all i, j ∈ {0, . . . , n}
satisfying i ≤ j, choose an element aij ∈ K and consider the quadric Q of PG(V )
whose equation with respect to B is given by

(1.1) F (X0, . . . , Xn) :=
∑

0≤i≤j≤n

aijXiXj = 0.

A point p ∈ Q is called a singular point of Q if pr ⊆ Q for every point r ∈ Q \ {p}.
The quadric Q is called singular if it has a singular point; otherwise, it is called
nonsingular. If Q is nonsingular, then its Witt index is at most n+1

2 . If the quadric
Q is singular, then the linear system ∂F

∂X0
= ∂F

∂X1
= · · · = ∂F

∂Xn
= 0 has a nonzero
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solution for (X0, . . . , Xn), i.e., the matrix

(1.2) A :=




2 · a00 a01 a02 · · · a0n

a01 2 · a11 a12 · · · a1n

a02 a12 2 · a22 · · · a2n

...
...

...
. . .

...
a0n a1n a2n · · · 2 · ann




.

is singular. If char(K) 6= 2, then also the converse is true: if A is singular, then Q
is singular. A similar conclusion cannot be drawn in the case char(K) = 2.

The quadric Q of PG(V ) is called a hyperbolic quadric if it is a nonsingular
quadric of Witt index n+1

2 . If Q is a nonsingular quadric of Witt index n−1
2 , then

Q is called an elliptic quadric when its equation (1) defines a nonsingular quadric
of Witt index n+1

2 over a suitable quadratic Galois extension of K; otherwise it is
called a pseudo-elliptic quadric. We will see in Section 3.3 that this definition is
independent from the chosen ordered basis B and the quadratic equation which
determines Q with respect to such a basis B.

Suppose the quadric Q is nonsingular and that in some way we know that the Witt
index of Q is at least n−1

2 . The following questions can then be raised.

(Q1) Is there some nice criterion (stated in terms of the coefficients aij) which
allows us to decide whether Q is a hyperbolic quadric, an elliptic quadric
or a pseudo-elliptic quadric?

(Q2) Is there a canonical equation to which Q can be reduced by means of linear
coordinate transformations?

(Q3) Is there a direct way to decide which canonical equation this is without
explicitly performing the coordinate transformations?

The following theorem provides complete answers to the questions (Q1), (Q2) and
(Q3).

Theorem 1.1. Let Q be a nonsingular quadric of Witt index at least n−1
2 of PG(V )

whose equation with respect to a given ordered basis of V is given by F (X0, X1, . . . ,
Xn) =

∑
0≤i≤j≤n aijXiXj = 0. Let A be the matrix as defined in equation (1.2)

above.
(1) If char(K) 6= 2, then det(A) 6= 0 and Q is either a hyperbolic or elliptic

quadric. If η := hK(aij | 0 ≤ i ≤ j ≤ n) = det(A), then Q is projectively equivalent
to the quadric with equation X2

0 − (−1)
n+1

2 η ·X2
1 +X2X3 + · · ·+Xn−1Xn = 0. The

quadric Q is a hyperbolic quadric if and only if (−1)
n+1

2 η is a square of K. In this
case, Q is projectively equivalent to the quadric with equation X0X1 +X2X3 + · · ·+
Xn−1Xn = 0.

(2) Suppose char(K) = 2 and det(A) 6= 0. Then Q is either a hyperbolic or
elliptic quadric. Moreover, if η1 := fK(aij | 0 ≤ i ≤ j ≤ n) and η2 = gK(aij | 0 ≤
i ≤ j ≤ n), then η2 6= 0 and Q is projectively equivalent to the quadric with equation
X2

0 + X0X1 + η1
η2

X2
1 + X2X3 + · · · + Xn−1Xn = 0. The quadric Q is a hyperbolic

quadric if and only if there exists a λ ∈ K such that η1
η2

= λ2 +λ. In this case, Q is
projectively equivalent to the quadric with equation X0X1+X2X3+ · · ·+Xn−1Xn =
0.
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(3) Suppose char(K) = 2 and det(A) = 0. Then Q is a pseudo-elliptic quadric.
Moreover, rank(A) = n−1 and Q is projectively equivalent to the quadric with equa-
tion X2

0 +ηX2
1 +X2X3 + · · ·+Xn−1Xn = 0 where η := F (u0, . . . , un) ·F (v0, . . . , vn)

with [u0 · · ·un]T and [v0 · · · vn]T two linearly independent (n × 1)-matrices over K
belonging to the kernel of the matrix A. The element η is a non-square of K.

The following theorem, in combination with Theorem 1.1, gives necessary and
sufficient conditions for two nonsingular quadrics of Witt index at least n−1

2 to
be projectively equivalent (respectively, to be equivalent under an automorphism
of PG(V )). Notice that by Theorem 1.1(1)+(2), any two hyperbolic quadrics of
PG(V ) are projectively equivalent.

Theorem 1.2. (1) Suppose char(K) 6= 2 and µ1, µ2 ∈ K \ {0}. Then the quadrics
Q1 and Q2 with respective equations X2

0 + µ1X
2
1 + X2X3 + · · ·+ Xn−1Xn = 0 and

X2
0 + µ2X

2
1 + X2X3 + · · · + Xn−1Xn = 0 (with respect to some given reference

system) are projectively equivalent if and only if there exists a λ ∈ K\{0} such that
µ2 = µ1 · λ2. The quadrics Q1 and Q2 are equivalent under an automorphism of
PG(V ) if and only if there exists an automorphism θ of K and a λ ∈ K \ {0} such
that µ2 = µθ

1 · λ2.
(2) Suppose char(K) = 2 and µ1, µ2 ∈ K. Then the quadrics Q1 and Q2 with

respective equations X2
0+X0X1+µ1X

2
1+X2X3+· · ·+Xn−1Xn = 0 and X2

0+X0X1+
µ2X

2
1 + X2X3 + · · · + Xn−1Xn = 0 are projectively equivalent if and only if there

exists a λ ∈ K such that µ2 = λ2 + λ + µ1. The quadrics Q1 and Q2 are equivalent
under an automorphism of PG(V ) if and only if there exists an automorphism θ of
K and a λ ∈ K such that µ2 = λ2 + λ + µθ

1.
(3) Suppose char(K) = 2 and µ1, µ2 non-squares of K. Then the quadrics Q1

and Q2 with respective equations X2
0 + µ1X

2
1 + X2X3 + · · · + Xn−1Xn = 0 and

X2
0 + µ2X

2
1 + X2X3 + · · · + Xn−1Xn = 0 are projectively equivalent if and only if

there exist λ1, λ2 ∈ K with λ2 6= 0 such that µ2 = λ2
1 + λ2

2 · µ1. The quadrics Q1

and Q2 are equivalent under an automorphism of PG(V ) if and only if there exists
an automorphism θ of K and λ1, λ2 ∈ K with λ2 6= 0 such that µ2 = λ2

1 + λ2
2 · µθ

1.

One of the motivations for writing this survey paper was the need to deal with
questions (Q1), (Q2) and (Q3) in some specific cases where the characteristic of
the field is equal to 2 (for the purpose to study isometric embeddings between some
classes of near polygons).

Theorem 1.1(1) was proved in the finite case by Hirschfeld [2, Section 3] and
Hirschfeld & Thas [3, Section 22.2]. Theorem 1.1(2) is inspired by the German
paper of Witt [9] which discusses an invariant of a quadratic form discovered by
Arf [1]. (For a discussion of this invariant, see also Scharlau [7, §9.4].) For the finite
case, Theorem 1.1(2) is also mentioned without proof in Hirschfeld [2, Section 3]
and Hirschfeld & Thas [3, Theorem 22.2.1]. (Notice here that, using the notations

and conventions of [3], the number α := |B|−(−1)
n+1

2 |A|
4|B| is not necessarily fixed

under a projectivity, but the set {α + t + t2 | t ∈ K} certainly is).

1.2. The case of Hermitian varieties. Let ψ be an involutary automorphism
of K and let Kψ ⊂ K denote the fix field of ψ. Then [K : Kψ] = 2 and K/Kψ is
a Galois extension. Let B = (ē0, ē1, . . . , ēn) be an ordered basis of V , and let aij ,
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i, j ∈ {0, . . . , n}, be elements of K such that aψ
ij = aji. So, Aψ = AT , where A

is the (n + 1) × (n + 1)-matrix (aij)0≤i,j≤n. Let H be the ψ-Hermitian variety of
PG(V ) whose equation with respect to B is given by

∑

0≤i,j≤n

aijXiX
ψ
j = 0,

i.e.
[X0 · · ·Xn] ·A · [Y0 · · ·Yn]T = 0,

where we take the convention to identify each (1× 1)-matrix with its unique entry.
A point p ∈ H is called a singular point of H if pr ⊆ H for every point r ∈

H \ {p}. The ψ-Hermitian variety H is called singular if it contains a singular
point; otherwise it is called nonsingular. H is singular if and only if det(A) = 0. If
H is nonsingular, then its Witt index is at most n+1

2 .
We will now state results for Hermitian varieties which are similar to the ones

for quadrics mentioned in Theorems 1.1 and 1.2.

Theorem 1.3. If H is a nonsingular ψ-Hermitian variety of Witt index at least
n−1

2 , then H is projectively equivalent to the ψ-Hermitian variety with equation
Xψ+1

0 − (−1)
n+1

2 det(A) ·Xψ+1
1 + X2X

ψ
3 + X3X

ψ
2 + · · ·+ Xn−1X

ψ
n + XnXψ

n−1 = 0.
H has Witt index n+1

2 if and only if there exists a λ ∈ K \ {0} such that λψ+1 =
(−1)

n+1
2 · det(A). In this case, H is projectively equivalent to the ψ-Hermitian

variety with equation X0X
ψ
1 +X1X

ψ
0 +X2X

ψ
3 +X3X

ψ
2 +· · ·+Xn−1X

ψ
n +XnXψ

n−1 = 0.

Notice that since AT = Aψ, we have det(A) ∈ Kψ \ {0} if H is nonsingular.

Theorem 1.4. Let ψ1 and ψ2 be two involutary automorphisms of K and let µi ∈
Kψi \ {0}, i ∈ {1, 2}. Let H1 and H2 be two Hermitian varieties of PG(V ) whose
equations with respect to a given ordered basis of V are given by respectively Xψ1+1

0 +
µ1 ·Xψ1+1

1 + X2X
ψ1
3 + X3X

ψ1
2 + · · ·+ Xn−1X

ψ1
n + XnXψ1

n−1 = 0 and Xψ2+1
0 + µ2 ·

Xψ2+1
1 + X2X

ψ2
3 + X3X

ψ2
2 + · · ·+ Xn−1X

ψ2
n + XnXψ2

n−1 = 0. Then H1 and H2 are
projectively equivalent if and only if ψ1 = ψ2 and there exists a λ ∈ K \ {0} such
that µ2 = λψ1+1 · µ1. The Hermitian varieties H1 and H2 are equivalent under an
automorphism of PG(V ) if and only if there exists an automorphism θ of K and a
λ ∈ K \ {0} such that ψ2 = θ−1ψ1θ and µ2 = λψ2+1µθ

1.

2. Proof of Proposition 1.1

In this section, we will prove Proposition 1.1.
Let M = (mij)0≤i,j≤n be one of the two matrices whose determinant defines

either h[(Xij | 0 ≤ i ≤ j ≤ n)] or g[(Xij | 0 ≤ i ≤ j ≤ n)]. For every permutation σ
of {0, . . . , n}, sgn(σ) ·m0,σ(0) ·m1,σ(1) · · ·mn,σ(n) is of the form εXi0j0Xi1j1 · · ·Xinjn

where ε ∈ Z and i0, j0, . . . , in, jn is a sequence of 2n+2 natural numbers satisfying:
(i) ik ≤ jk for every k ∈ {0, . . . , n}; (ii) each number of the set {0, . . . , n} occurs
precisely two times in the sequence. So, in order to prove Proposition 1.1, it suffices
to prove the following lemma.

Lemma 2.1. Let i0, j0, . . . , in, jn be a sequence of 2n+2 natural numbers satisfying
(i) ik ≤ jk for every k ∈ {0, . . . , n}, (ii) each number of the set {0, . . . , n} occurs
precisely two times in the sequence. Then the coefficient of Xi0j0Xi1j1 · · ·Xinjn in
f1[(Xij | 0 ≤ i ≤ j ≤ n)] is a multiple of 4.
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We divide the proof of Lemma 2.1 into three parts according to the number of
k ∈ {0, . . . , n} satisfying ik = jk.

(I) Let i0, j0, . . . , in, jn be a sequence of 2n + 2 natural numbers satisfying the
following properties: (i) ik ≤ jk for every k ∈ {0, . . . , n}; (ii) there are at least
two k ∈ {0, . . . , n} for which ik = jk; (iii) each number of the set {0, . . . , n} occurs
precisely two times in the sequence.

Lemma 2.2. (1) The coefficient of Xi0j0Xi1j1 · · ·Xinjn
in h[(Xij | 0 ≤ i ≤ j ≤ n)]

is a multiple of 4.
(2) The coefficient of Xi0j0Xi1j1 · · ·Xinjn

in g[(Xij | 0 ≤ i ≤ j ≤ n)] is equal to
0.

Proof. Let k, l ∈ {0, . . . , n} such that k 6= l, ik = jk and il = jl.
(1) If we expand the determinant which defines h into (n + 1)! terms, then we

see that the monomial Xi0j0Xi1j1 · · ·Xinjn
can only occur in terms which involve

the product (2 ·Xikik
) · (2 ·Xilil

). So, the coefficient of this monomial must indeed
be a multiple of 4.

(2) This follows from the fact that the indeterminates Xikik
and Xilil

do not
occur in the matrix whose determinant defines g. ¤

Corollary 2.1. The coefficient of Xi0j0Xi1j1 · · ·Xinjn in f1[(Xij | 0 ≤ i ≤ j ≤ n)]
is a multiple of 4.

(II) Let i0, j0, . . . , in, jn be a sequence of 2n + 2 natural numbers satisfying the
following properties: (i) ik ≤ jk for every k ∈ {0, . . . , n}; (ii) there exists precisely
one k ∈ {0, . . . , n} for which ik = jk; (iii) each number of the set {0, . . . , n} occurs
precisely two times in the sequence.

Lemma 2.3. (1) The coefficient of Xi0j0Xi1j1 · · ·Xinjn in h[(Xij | 0 ≤ i ≤ j ≤ n)]
is a multiple of 4.

(2) The coefficient of Xi0j0Xi1j1 · · ·Xinjn in g[(Xij | 0 ≤ i ≤ j ≤ n)] is equal to
0.

Proof. Let k∗ denote the unique element of {0, . . . , n} for which ik∗ = jk∗ .
(1) Let Mh denote the symmetric matrix whose determinant defines h and let

M = (mij)1≤i≤j≤n denote the symmetric matrix obtained from Mh by deleting the
(k∗ + 1)-th row and the (k∗ + 1)-th column. The coefficient of Xi0j0Xi1j1 · · ·Xinjn

in h[(Xij | 0 ≤ i ≤ j ≤ n)] is equal to two times the coefficient of Xi0j0 · · · X̂ik∗ jk∗
· · ·Xinjn in det(M), i.e. equal to 2 · Σσsgn(σ) where the summation ranges over
all permutations σ of {1, . . . , n} such that m1,σ(1) ·m2,σ(2) · · · · ·mn,σ(n) = Xi0j0 · · ·
X̂ik∗ jk∗ · · ·Xinjn (∗). Now, if σ is a permutation of {1, . . . , n} satisfying (∗), then
σ 6= σ−1 (since n is odd and il 6= jl for every l ∈ {0, . . . , n} \ {k∗}) and also σ−1

satisfies (∗) (since M is symmetric). So, the number of permutations σ of {1, . . . , n}
satisfying (∗) is a multiple of 2. It follows that the coefficient 2 · Σσsgn(σ) of
Xi0j0Xi1j1 · · ·Xinjn in h is a multiple of 4.

(2) This follows from the fact that the indeterminate Xik∗ ik∗ does not occur in
the matrix whose determinant defines g. ¤

Corollary 2.2. The coefficient of Xi0j0Xi1j1 · · ·Xinjn in f1[(Xij | 0 ≤ i ≤ j ≤ n)]
is a multiple of 4.
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(III) Let i0, j0, . . . , in, jn be a sequence of 2n + 2 natural numbers satisfying the
following properties: (i) ik < jk for every k ∈ {0, . . . , n}; (ii) each number of the
set {0, . . . , n} occurs precisely two times in the sequence.

For every permutation σ of {0, . . . , n} without fixpoints, let Nσ denote the num-
ber of k ∈ {0, . . . , n} for which σ(k) < k. Let ψ denote the ring homomorphism
from Z[Xij | 0 ≤ i, j ≤ n] to Z[Xij | 0 ≤ i ≤ j ≤ n] which maps Xij to Xij if i ≤ j
and Xij to Xji if j < i. Consider the following polynomials in Z[Xij | 0 ≤ i, j ≤ n]:

h̃[(Xij | 0 ≤ i, j ≤ n)] :=

∣∣∣∣∣∣∣∣∣∣∣

2 ·X00 X01 X02 · · · X0n

X10 2 ·X11 X12 · · · X1n

X20 X21 2 ·X22 · · · X2n

...
...

...
. . .

...
Xn0 Xn1 Xn2 · · · 2 ·Xnn

∣∣∣∣∣∣∣∣∣∣∣

,

g̃[(Xij | 0 ≤ i, j ≤ n)] :=

∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 · · · X0n

−X10 0 X12 · · · X1n

−X20 −X21 0 · · · X2n

...
...

...
. . .

...
−Xn0 −Xn1 −X2n · · · 0

∣∣∣∣∣∣∣∣∣∣∣

.

Since h = ψ(h̃) and g = ψ(g̃), we have:

Lemma 2.4. (1) The coefficient of Xi0j0Xi1j1 · · ·Xinjn in h[(Xij | 0 ≤ i ≤ j ≤
n)] is equal to

∑
sgn(σ), where the summation ranges over all permutations σ of

{0, . . . , n} satisfying ψ(X0,σ(0) · · ·Xn,σ(n)) = Xi0j0Xi1j1 · · ·Xinjn .
(2) The coefficient of Xi0j0Xi1j1 · · ·Xinjn in g[(Xij | 0 ≤ i ≤ j ≤ n)] is equal

to
∑

sgn(σ) · (−1)Nσ , where the summation ranges over all permutations σ of
{0, . . . , n} satisfying ψ(X0,σ(0) · · ·Xn,σ(n)) = Xi0j0Xi1j1 · · ·Xinjn .

Let Γ be the undirected graph with vertex set {0, . . . , n} where for each k ∈
{0, . . . , n} an edge is drawn between the vertices ik and jk. Notice that any two
distinct vertices of Γ are connected by either 0, 1 or 2 edges. The graph Γ has
valency 2 and hence is a disjoint union of cycles. We define the following numbers:
• n1 = the number of cycles of length 2;
• n2 = the number of cycles whose length is even and at least 4;
• n3 = the number of cycles of odd length.

The following lemma immediately follows from the fact that the total number n+1
of vertices of Γ is even.

Lemma 2.5. (1) n3 is even.
(2) If n2 = n3 = 0, then n1 = n+1

2 .

Definitions. (1) Let Γ′ be a directed graph with vertex set {0, . . . , n}. We say that
Γ′ is compatible with Γ if the following conditions are satisfied: (i) the inner and
outer degrees of all vertices of Γ′ are equal to 1; (ii) the undirected graph obtained
from Γ′ by replacing each directed edge by an undirected edge is equal to Γ. We
denote by D(Γ) the set of all directed graphs on the vertex set {0, . . . , n} which are
compatible with Γ.

(2) Let σ be a permutation of {0, . . . , n} without fixpoints. Then Γ′σ denotes the
directed graph with vertex set {0, . . . , n} where for each k ∈ {0, . . . , n} there is an
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edge from k to σ(k). The graph Γσ is obtained from Γ′σ by replacing each directed
edge by an undirected edge. The graph Γ′σ has no loops and the inner and outer
degrees of all its vertices are equal to 1. Conversely, if Γ′ is a directed graph on
the vertex set {0, . . . , n} without loops such that the inner and outer degrees of all
its vertices are equal to 1, then Γ′ = Γ′σ for a unique permutation σ of {0, . . . , n}.
In particular, this latter remark holds for any directed graph on the vertex set
{0, . . . , n} which is compatible with Γ. We denote by Σ the set of all permutations
σ of {0, . . . , n} without fixpoints for which Γ′σ ∈ D(Γ). Clearly, |Σ| = |D(Γ)| and
σ−1 ∈ Σ if σ ∈ Σ.

(3) Let C1, C2, . . . , Cn2 denote the n2 cycles of Γ whose length is even and at
least 4. Let Cn2+1, . . . , Cn2+n3 denote the n3 cycles of Γ whose length is odd. Each
of these cycles can be turned in precisely two ways into a directed cycle (i.e. into
a connected directed graph in which the indegrees and outdegrees of all vertices
are equal to 1). We label one of these directed cycles by the symbol “+” and the
other by the symbol “-”. There exists a bijective correspondence µ between the set
{+,−}n2+n3 and the set D(Γ). If c̄ = (c1, c2, . . . , cn2+n3) ∈ {+,−}n2+n3 , then µ(c̄)
is the unique element of D(Γ) such that for each i ∈ {1, . . . , n2 + n3}, the directed
cycle of µ(c̄) induced on Ci corresponds with the label “ci”.

Lemma 2.6. (1) |Σ| = |D(Γ)| = 2n2+n3 .
(2) For each σ ∈ Σ, sgn(σ) = (−1)n1+n2 .
(3) Let σ be a permutation of {0, . . . , n} without fixpoints. Then σ ∈ Σ if and

only if ψ maps the elements X0,σ(0)X1,σ(1) · · ·Xn,σ(n) of Z[Xij | 0 ≤ i, j ≤ n] to the
element Xi0j0Xi1j1 · · ·Xinjn of Z[Xij | 0 ≤ i ≤ j ≤ n].

Proof. (1) This follows from the fact that the map µ defines a bijection between
the set {+,−}n2+n3 and the set D(Γ).

(2) If σ ∈ Σ, then since Γ′σ is compatible with Γ, Γ′σ consists of n1 cycles of
length 2, n2 cycles whose length is even and at least 4 and n3 cycles of odd length.
Hence, sgn(σ) = (−1)n1+n2 .

(3) We have σ ∈ Σ if and only if Γσ = Γ, i.e. if and only if the multisets
{{0, σ(0)}, {1, σ(1)}, . . . , {n, σ(n)}} and {{i0, j0}, {i1, j1}, . . . , {in, jn}} are equal.
Since ik < jk for every k ∈ {0, . . . , n}, this precisely happens when ψ maps
X0,σ(0)X1,σ(1) · · ·Xn,σ(n) to Xi0j0Xi1j1 · · ·Xinjn . ¤

Combining Lemma 2.6 with Lemma 2.4(1), we find

Corollary 2.3. The coefficient of Xi0j0Xi1j1 · · ·Xinjn in h[(Xij | 0 ≤ i ≤ j ≤ n)]
is equal to (−1)n1+n2 · 2n2+n3 .

Now, for every σ ∈ Σ and every i ∈ {1, . . . , n2 + n3}, let N
(i)
σ denote the number

of k ∈ {0, . . . , n} for which: (i) σ(k) < k, (ii) {k, σ(k)} is an edge of the cycle Ci.
The following is obvious.

Lemma 2.7. (1) For every σ ∈ Σ, Nσ = n1 + N
(1)
σ + N

(2)
σ + · · ·+ N

(n2+n3)
σ .

(2) If σ1, σ2 ∈ Σ and i ∈ {1, . . . , n2 +n3} such that µ−1(Γ′σ1
) and µ−1(Γ′σ2

) have
the same i-th components, then N

(i)
σ1 = N

(i)
σ2 .

(3) If σ1, σ2 ∈ Σ and i ∈ {1, . . . , n2 +n3} such that µ−1(Γ′σ1
) and µ−1(Γ′σ2

) have
distinct i-th components, then N

(i)
σ1 +N

(i)
σ2 is the number of vertices of the cycle Ci.
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By Lemma 2.7(2)+(3), we have

Corollary 2.4. (1) If σ1, σ2 ∈ Σ and i ∈ {1, . . . , n2}, then (−1)N(i)
σ1 = (−1)N(i)

σ2 .
(2) If σ1, σ2 ∈ Σ and i ∈ {n2 + 1, . . . , n2 + n3} such that µ−1(Γ′σ1

) and µ−1(Γ′σ2
)

have the same i-th components, then (−1)N(i)
σ1 = (−1)N(i)

σ2 .
(3) If σ1, σ2 ∈ Σ and i ∈ {n2 + 1, . . . , n2 + n3} such that µ−1(Γ′σ1

) and µ−1(Γ′σ2
)

have distinct i-th components, then (−1)N(i)
σ1 = −(−1)N(i)

σ2 .

Now, let σ∗ be a fixed element of Σ and put M1 := N
(1)
σ∗ + N

(2)
σ∗ + · · ·+ N

(n2)
σ∗ and

M2 := N
(n2+1)
σ∗ + N

(n2+2)
σ∗ + · · ·+ N

(n2+n3)
σ∗ .

Lemma 2.8. The coefficient of Xi0j0Xi1j1 · · ·Xinjn
in g[(Xij | 0 ≤ i ≤ j ≤ n)] is

equal to (−1)n2+M1+M2 · 2n2 · 0n3 , where 0n3 = 1 if n3 = 0.

Proof. By Lemma 2.4(2), Lemma 2.6(2)+(3), Lemma 2.7(1) and Corollary 2.4,
the coefficient of Xi0j0Xi1j1 · · ·Xinjn

in g[(Xij | 0 ≤ i ≤ j ≤ n)] is equal to
∑

σ∈Σ

(−1)Nσ · sgn(σ)

= (−1)n1+n2 ·
∑

σ∈Σ

(−1)Nσ

= (−1)n1+n2 · (−1)n1+M1+M2 · (1 + 1) · · · (1 + 1)︸ ︷︷ ︸
n2 times

· (1 + (−1)) · · · (1 + (−1))︸ ︷︷ ︸
n3 times

= (−1)n2+M1+M2 · 2n2 · 0n3 .

¤

Lemma 2.9. The coefficient N of Xi0j0 · · ·Xinjn in f1[(Xij | 0 ≤ i ≤ j ≤ n)] is a
multiple of 4.

Proof. By Corollary 2.3 and Lemma 2.8, we have N = (−1)n1+n2+
n−1

2 · 2n2+n3 +
(−1)n2+M1+M2 · 2n2 · 0n3 .

Suppose n3 6= 0. Then n3 ≥ 2 by Lemma 2.5(1). Hence N = 4 · (−1)n1+n2+
n−1

2 ·
2n2+n3−2 is a multiple of 4.

Suppose n3 = 0 and n2 ≥ 1. Then M2 = 0 and the number N = 4 · 2n2−1·
(−1)n1+n2+ n−1

2 +(−1)n2+M1

2 is a multiple of 4.
Suppose n2 = n3 = 0. Then n1 = n+1

2 (recall Lemma 2.5(2)) and M1 = M2 = 0.
Hence, N = (−1)

n+1
2 + n−1

2 + 1 = 0. ¤

3. Proofs of Theorems 1.1 and 1.2

3.1. Coordinate transformations. Let B = (ē0, ē1, . . . , ēn) be an ordered basis
of V . For all i, j ∈ {0, . . . , n} satisfying i ≤ j, choose an element aij ∈ K and
consider the quadric Q of PG(V ) whose equation with respect to B is given by∑

0≤i≤j≤n aijXiXj = 0.
Now, consider the coordinate transformation with associate nonsingular matrix

M = (mij)0≤i,j≤n: Xi =
∑n

k=0 mikYk, i ∈ {0, . . . , n}. The equation of Q in the
new coordinates is equal to

∑
0≤k≤l≤n a′klYkYl = 0, where a′kk =

∑
0≤i≤j≤n aij ·
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(mikmjk) and a′kl =
∑

0≤i≤j≤n aij · (mikmjl + milmjk) for all k, l ∈ {0, . . . , n} sat-
isfying k ≤ l. In the sequel, we will say that the quadratic polynomial

∑
0≤i≤j≤n a′ij

XiXj is related to
∑

0≤i≤j≤n aijXiXj via a linear coordinate transformation.
The two latter equations above imply that A′ = MT ·A ·M , where A′ and A are

the matrices obtained from the coefficients a′ij and aij as described in equation (1.2)
of Section 1.1. It follows that hK[(a′ij | 0 ≤ i ≤ j ≤ n)] = [det(M)]2 · hK[(aij | 0 ≤
i ≤ j ≤ n)]. So, we have established the following.

Lemma 3.1. If the quadratic polynomials
∑

aijXiXj and
∑

a′ijXiXj are related
via a linear coordinate transformation, then

(1) there exists a λ ∈ K\{0} such that hK[(a′ij | 0 ≤ i ≤ j ≤ n)] = λ2·hK[(aij | 0 ≤
i ≤ j ≤ n)];

(2) the matrices A and A′ have the same rank.

3.2. The quadratic equations describing certain quadrics.

Lemma 3.2. Let B = (ē0, ē1, . . . , ēn) be an ordered basis of V and suppose Q is
a quadric of PG(V ) whose equation with respect to B is given by X2

0 + αX0X1 +
βX2

1 +X2X3 + · · ·+Xn−1Xn = 0. If the equation
∑

0≤i≤j≤n aijXiXj = 0 describes
Q with respect to the same ordered basis B, then

∑
0≤i≤j≤n aijXiXj = λ · (X2

0 +
αX0X1 + βX2

1 + X2X3 + · · ·+ Xn−1Xn) for some λ ∈ K \ {0}.
Proof. • For all i ∈ {2, . . . , n}, we have aii = 0 since 〈ēi〉 ∈ Q.
• For all i, j ∈ {2, . . . , n} satisfying i < j and (i, j) 6∈ {(2, 3), (4, 5), . . . , (n−1, n)},

we have aij = 0 since 〈ēi + ēj〉 ∈ Q.
• For every i ∈ {2, . . . , n} and every λ ∈ K, we have a00 + a0iλ 6= 0 since

〈ē0 + λēi〉 6∈ Q. Hence, a00 6= 0 and a0i = 0 for all i ∈ {2, . . . , n}.
• Suppose β 6= 0. For every i ∈ {2, . . . , n} and every λ ∈ K, we have a11 +a1iλ 6=

0 since 〈ē1 + λēi〉 6∈ Q. Hence, a11 6= 0 and a1i = 0 for all i ∈ {2, . . . , n}.
• Suppose β = 0. Then a11 = 0 since 〈ē1〉 ∈ Q. For every i ∈ {2, . . . , n}, we

have a1i = 0 since 〈ē1 + ēi〉 ∈ Q.
• For every i ∈ {1, . . . , n−1

2 }, we have a00 = a2i,2i+1 since 〈ē0 + ē2i− ē2i+1〉 ∈ Q.
• For every i ∈ {1, . . . , n−1

2 }, we have a11 = β ·a2i,2i+1 since 〈ē1 + ē2i−βē2i+1〉 ∈
Q.
• For every i ∈ {1, . . . , n−1

2 }, we have a00 + a01 + a11 − (1 + α + β)a2i,2i+1 = 0
since 〈ē0 + ē1 + ē2i − (1 + α + β)ē2i+1〉 ∈ Q. Hence, a01 = α · a2i,2i+1 for all
i ∈ {1, . . . , n−1

2 }.
By the above discussion, we have that

∑
0≤i≤j≤n aijXiXj = a00(X2

0 + αX0X1 +
βX2

1 + X2X3 + · · ·+ Xn−1Xn) where a00 6= 0. ¤

Remark. The conclusion of the above lemma would not necessarily be true if n
would be allowed to be equal to 1.

3.3. Canonical quadratic equations for hyperbolic and (pseudo-)elliptic
quadrics.

Lemma 3.3. Let Q be a nonsingular quadric of Witt index at least n−1
2 of PG(V ).

(1) If char(K) 6= 2, then there exists an α ∈ K \ {0} and a reference system
with respect to which Q is described by the equation X2

0 − αX2
1 + X2X3 + · · · +

Xn−1Xn = 0. The quadric Q has Witt index n+1
2 if and only if α is a square of
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K. In this case there exists a reference system with respect to which Q has equation
X0X1 + X2X3 + · · ·+ Xn−1Xn = 0.

(2) If char(K) = 2, then there exists a reference system with respect to which Q
has equation X2

0 + αX2
1 + X2X3 + · · ·+ Xn−1Xn = 0 with α a non-square of K or

equation X2
0 +X0X1 +αX2

1 +X2X3 + · · ·+Xn−1Xn = 0 with α ∈ K. In the former
case, Q always has Witt index n−1

2 . In the latter case, Q has Witt index n+1
2 if and

only if there exists a λ ∈ K such that λ2+λ = α. In this case there exists a reference
system with respect to which Q has equation X0X1 + X2X3 + · · ·+ Xn−1Xn = 0.

Proof. Suppose Q is described by the quadratic form q of V . Let b denote the
symmetric bilinear form of V associated with q, i.e. b(x̄, ȳ) = q(x̄+ ȳ)− q(x̄)− q(ȳ)
for all x̄, ȳ ∈ V . Let m′ be the Witt index of Q and put m := n−1

2 . The following
properties of Q hold more generally for any non-degenerate polar space of rank m′,
see Tits [8, Chapter 7]:

(P1) There exist two disjoint (m′ − 1)-dimensional subspaces of Q.
(P2) Let W1 and W2 be two disjoint (m′ − 1)-dimensional subspaces of Q, and

consider the map ΠW1,W2 which associates with every subspace U1 of W1

the subspace U2 of W2 consisting of all points of W2 which are collinear on
Q with every point of U1. Then ΠW1,W2 defines an isomorphism between
the projective space W1 and the dual of the projective space W2.

Now, let π1 and π2 be two m′-dimensional subspaces of V satisfying (i) π1∩π2 = {ō}
and (ii) q(x̄) = 0 for all x̄ ∈ π1 ∪ π2. Let ē1, . . . , ēm′ be a basis of π1. For every
i ∈ {1, . . . , m′}, there exists by Property (P2) a unique vector f̄i of π2 satisfying
b(ēi, f̄i) = 1 and b(ēj , f̄i) = 0 for all j ∈ {1, . . . , m′} \ {i}. By (P2), it also follows
that {f̄1, · · · , f̄m′} is a basis of π2.

If m′ = m + 1 = n+1
2 , then {ē1, . . . , ēm′ , f̄1, . . . , f̄m′} is a basis of V and q(X0ē1 +

X1f̄1 + X2ē2 + X3f̄2 + · · ·+ Xn−1ēm′ + Xnf̄m′) = X0X1 + X2X3 + · · ·+ Xn−1Xn.

Consider now the most general case m′ ∈ {m, m + 1}. Let W denote the sub-
space of V consisting of all vectors which are b-orthogonal with all vectors of
U := 〈ē1, . . . , ēm, f̄1, . . . , f̄m〉. Since U has co-dimension 2 in V , W has dimen-
sion at least 2.

Suppose x̄ is a vector of W ∩ U . Then there exist k1, . . . , km, l1, . . . , lm ∈ K
such that x̄ = k1ē1 + · · · + kmēm + l1f̄1 + · · · + lmf̄m. We have li = b(x̄, ēi) = 0
and ki = b(x̄, f̄i) = 0 for all i ∈ {1, . . . , m}. Hence, x̄ = ō. So, W ∩ U = {ō}.
Since dim(U) = n − 1 and dim(W ) ≥ 2, we have dim(W ) = 2 and V = U ⊕W .
We have q(X2ē1 + X3f̄1 + · · · + Xn−1ēm + Xnf̄m) = X2X3 + · · · + Xn−1Xn and
q(x̄1 + x̄2) = q(x̄1) + q(x̄2) for any vectors x̄1 ∈ W and x̄2 ∈ U . If char(K) 6= 2,
then it is easily verified that there exists a basis {ē′m+1, f̄

′
m+1} of W such that

f(X0, X1) := q(X0ē
′
m+1 + X1f̄

′
m+1) = β(X2

0 − αX2
1 ) for some α, β ∈ K \ {0}. If

char(K) = 2, then it is easily verified that there exists a basis {ē′m+1, f̄
′
m+1} of W

such that f(X0, X1) := q(X0ē
′
m+1 + X1f̄

′
m+1) is equal to β(X2

0 + αX2
1 ) for some

β ∈ K \ {0} and some non-square α of K or equal to β(X2
0 + X0X1 + αX2

1 ) for
some α, β ∈ K with β 6= 0. (Notice that in all the above cases f(X0, X1) = 0
determines a nonsingular quadric of PG(W ) since Q itself is nonsingular.) With
respect to the reference system (ē′m+1, f̄

′
m+1, ē1, β ·f̄1, . . . , ēm, β ·f̄m), Q has equation

f(X0,X1)
β + X2X3 + · · ·+ Xn−1Xn = 0. Now, 〈ē1, . . . , ēm〉 is a subspace of Q. So, Q

has Witt index n+1
2 if and only if there exists an n−1

2 -dimensional subspace of Q
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containing 〈ē1, . . . , ēm〉. This precisely happens when the equation f(X0, X1) = 0
has a nonzero solution for (X0, X1). The conclusions of the lemma follow. ¤

By Lemmas 3.2 and 3.3, we have

Corollary 3.1. Let Q be a nonsingular quadric of Witt index m ∈ {n−1
2 , n+1

2 } of
PG(V ) and let B be an ordered basis of V . Then the quadratic polynomial in the
quadratic equation which describes Q with respect to B is uniquely determined up
to a nonzero factor of K.

From Corollary 3.1, it should now be clear that the definition of the notion “elliptic
quadric” and “pseudo-elliptic quadric” as given in Section 1.1 is independent from
the quadratic equation which represents Q. These notions are invariant under linear
coordinate transformations and also the fact that one could multiply the quadratic
polynomial in a given quadratic equation with a nonzero constant does not have
any influence.

Lemma 3.4. (1) Suppose char(K) 6= 2, α ∈ K \ {0} and that B is an ordered basis
of V . Let Q be the nonsingular quadric of PG(V ) whose equation with respect to
B is given by X2

0 − αX2
1 + X2X3 + · · ·+ Xn−1Xn = 0. If α is a square of K, then

Q is a hyperbolic quadric; otherwise, Q is an elliptic quadric.
(2) Suppose char(K) = 2, α ∈ K and that B is an ordered basis of V . Let Q

be the nonsingular quadric of PG(V ) whose equation with respect to B is given by
X2

0 + X0X1 + αX2
1 + X2X3 + · · ·+ Xn−1Xn = 0. If there exists a λ ∈ K such that

α = λ2 + λ, then Q is a hyperbolic quadric; otherwise Q is an elliptic quadric.
(3) Suppose char(K) = 2, α a non-square of K and that B = (ē0, . . . , ēn) an

ordered basis of V . Then the nonsingular quadric of PG(V ) whose equation with
respect to B is given by X2

0 +αX2
1 +X2X3 + · · ·+Xn−1Xn = 0 is a pseudo-elliptic

quadric.

Proof. (1) If α is a square of K, then Q is a hyperbolic quadric since Q has Witt
index n+1

2 . Suppose now that α is a non-square of K. Let
√

α denote one of the
two square roots of α in a given algebraic closure of K. Then K(

√
α) is a quadratic

Galois extension of K over which the equation X2
0−αX2

1 +X2X3+· · ·+Xn−1Xn = 0
defines a nonsingular quadric of Witt index n+1

2 . So, Q is an elliptic quadric.
(2) If there exists a λ ∈ K such that α = λ2 + λ, then Q is a hyperbolic quadric

since Q has Witt index n+1
2 . Suppose now that there exists no λ ∈ K for which

α = λ2 + λ. Let α̃ be one of the two roots of the polynomial X2 + X + α ∈ K[X]
in a given algebraic closure of K. (Then the other root is 1 + α̃ 6= α̃.) Then K(α̃)
is a quadratic Galois extension of K over which the equation X2

0 + X0X1 + αX2
1 +

X2X3 + · · ·+ Xn−1Xn = 0 defines a nonsingular quadric of Witt index n+1
2 . So, Q

is an elliptic quadric.
(3) We prove that Q is a pseudo-elliptic quadric. Suppose to the contrary that

Q is an elliptic quadric. Then there exists a quadratic Galois extension K′ of K
over which X2

0 + αX2
1 + X2X3 + · · · + Xn−1Xn = 0 defines a nonsingular quadric

Q′ of Witt index n+1
2 . Let K′ denote an algebraic closure of K′ and let

√
α denote

the unique square root of α in K′. The subspace 〈ē2, ē4, . . . , ēn−1〉 of Q′ must
be contained in a subspace of maximal dimension n−1

2 . This subspace necessarily
coincides with 〈√α · ē0 + ē1, ē2, ē4, . . . , ēn−1〉. This implies that K′ = K(

√
α). But
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this is in contradiction with the fact that K(
√

α) is not a Galois extension of K.
So, Q must be a pseudo-elliptic quadric. ¤

Lemma 3.5. Let Q be a nonsingular quadric of Witt index m ∈ {n−1
2 , n+1

2 } of
PG(V ) and suppose

∑
0≤i≤j≤n aijXiXj = 0 is the equation of Q with respect to

a given ordered basis B of V . Let A be the matrix as defined in equation (1.2)
of Section 1.1. Then Q is a pseudo-elliptic quadric if and only if det(A) = 0.
Moreover, if Q is a pseudo-elliptic quadric, then the rank of A is equal to n− 1.

Proof. By Lemma 3.1 and Corollary 3.1, we may without loss of generality suppose
that B is an ordered basis of V with respect to which Q has an “easy” equation.

If Q is hyperbolic, then we may suppose that
∑

aijXiXj = X0X1+· · ·+Xn−1Xn.
In this case, det(A) = (−1)

n+1
2 6= 0.

If Q is elliptic, then we may suppose that
∑

aijXiXj = X2
0−αX2

1 +X2X3+· · ·+
Xn−1Xn if char(K) 6= 2 and

∑
aijXiXj = X2

0 +X0X1+βX2
1 +X2X3+· · ·+Xn−1Xn

if char(K) = 2. Here, α is a non-square of K if char(K) 6= 2 and X2 +X +β ∈ K[X]
is irreducible if char(K) = 2. If char(K) 6= 2, we have det(A) = (−1)

n+1
2 · 4α 6= 0.

If char(K) = 2, we have det(A) = 1 6= 0.
If Q is pseudo-elliptic, then we may suppose that

∑
aijXiXj = X2

0 + αX2
1 +

X2X3+ · · ·+Xn−1Xn, where α is a non-square of K. Clearly, A is a singular matrix
of rank n− 1. ¤

3.4. Proofs of Theorem 1.1(1) and Theorem 1.2(1). Throughout this sub-
section, we suppose that char(K) 6= 2.

Let Q be a nonsingular quadric of Witt index at least n−1
2 of PG(V ) whose

equation with respect to a given ordered basis of V is given by
∑

aijXiXj = 0.
By Lemma 3.3, we know that there exist quadratic polynomials

∑
bijXiXj and∑

cijXiXj such that the following holds:
• ∑

bijXiXj is related to
∑

aijXiXj via a linear coordinate transformation;

• ∑
cijXiXj = λ3 ·

( ∑
bijXiXj

)
= X2

0 − αX2
1 + X2X3 + · · ·+ Xn−1Xn for

some λ3, α ∈ K \ {0}.
Now, put λ2 := λ

n+1
2

3 . By Lemma 3.1, we have hK[(bij | 0 ≤ i ≤ j ≤ n)] =
λ2

1 · hK[(aij | 0 ≤ i ≤ j ≤ n)] for some λ1 ∈ K \ {0}. So, we have (−1)
n+1

2 4α =
hK[(cij | 0 ≤ i ≤ j ≤ n)] = λ2

2 ·hK[(bij | 0 ≤ i ≤ j ≤ n)] = λ2
1λ

2
2 ·hK[(aij | 0 ≤ i ≤ j ≤

n)]. Putting η := hK[(aij | 0 ≤ i ≤ j ≤ n)] = det(A), we find α = (−1)
n+1

2 (λ1λ2
2 )2η.

Hence, η 6= 0 and Q has equation X2
0 − (−1)

n+1
2 η · (λ1λ2

2 X1)2 + X2X3 + · · · +
Xn−1Xn = 0 with respect to a suitable reference system. This completes the proof
of Theorem 1.1(1).

Now, suppose µ1, µ2 ∈ K\{0} and consider the quadrics Q1 and Q2 with respec-
tive equations X2

0 + µ1X
2
1 + X2X3 + · · ·+ Xn−1Xn = 0 and X2

0 + µ2X
2
1 + X2X3 +

· · ·+ Xn−1Xn = 0 with respect to a given ordered basis B = (ē0, ē1, . . . , ēn) of V .
If µ2 = µ1 · λ2 for some λ ∈ K \ {0}, then Q1 and Q2 are projectively equivalent

since X2
0 +µ2X

2
1 +X2X3+ · · ·+Xn−1Xn = X2

0 +µ1(λX1)2+X2X3+ · · ·+Xn−1Xn.
Conversely, suppose that Q1 and Q2 are projectively equivalent. Then by Corol-

lary 3.1, there exists a quadratic polynomial
∑

0≤i≤j≤n aijXiXj such that the fol-
lowing holds:
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(i) X2
0 +µ1X

2
1 +X2X3 + · · ·+Xn−1Xn and

∑
0≤i≤j≤n aijXiXj are related via

a linear coordinate transformation. By Lemma 3.1, hK[(aij | 0 ≤ i ≤ j ≤
n)] = λ2

1 · µ1 · 4(−1)
n−1

2 for some λ1 ∈ K \ {0}.
(ii)

∑
0≤i≤j≤n aijXiXj = λ3 · (X2

0 + µ2X
2
1 + X2X3 + · · ·+ Xn−1Xn) for some

λ3 ∈ K \ {0}. Then hK[(aij | 0 ≤ i ≤ j ≤ n)] =
(
λ

n+1
2

3

)2

· µ2 · 4(−1)
n−1

2 .

By (i) and (ii), it follows that µ2 = λ2 · µ1 for some λ ∈ K \ {0}.
For every automorphism θ of K, let Qθ

1 denote the quadric whose equation with
respect to B is given by X2

0 + µθ
1 ·X2

1 + X2X3 + · · · + Xn−1Xn = 0. Notice that
a point 〈∑n

i=0 Xiēi〉 of PG(V ) belongs to Q1 if and only if 〈∑n
i=0 Xθ

i ēi〉 belongs to
Qθ

1. The quadrics Q1 and Q2 are equivalent under an automorphism of PG(V ) if
and only if Q2 and Qθ

1 are projectively equivalent for some automorphism θ of K,
i.e. if and only if there exists an automorphism θ of K and a λ ∈ K \ {0} such that
µ2 = µθ

1 · λ2. This completes the proof of Theorem 1.2(1).

3.5. A decomposition of the polynomials fK[(Xij | 0 ≤ i ≤ j ≤ n)] and
gK[(Xij | 0 ≤ i ≤ j ≤ n)]. Let IZ, respectively IK, denote the ideal of Z[Xij | 0 ≤
i ≤ j ≤ n], respectively K[Xij | 0 ≤ i ≤ j ≤ n], generated by the set {Xij | (i, j) 6∈
{(0, 0), (0, 1), (1, 1), (2, 3), (4, 5), . . . , (n− 1, n)}}.

Every polynomial p ∈ Z[Xij | 0 ≤ i ≤ j ≤ n] can be written in a unique way as
p′ + p′′ where p′ ∈ Z[X00, X01, X11, X23, X45, . . . , Xn−1,n] and p′′ ∈ IZ. We have

h′[(Xij | 0 ≤ i ≤ j ≤ n)] = (−1)
n−1

2 · (4 ·X00X11 −X2
01)X

2
23 · · ·X2

n−1,n,

g′[(Xij | 0 ≤ i ≤ j ≤ n)] = X2
01X

2
23 · · ·X2

n−1,n.

Hence,

f ′1[(Xij | 0 ≤ i ≤ j ≤ n)] = 4X00X11X
2
23 · · ·X2

n−1,n

and

f ′[(Xij | 0 ≤ i ≤ j ≤ n)] = X00X11X
2
23 · · ·X2

n−1,n.

This allows us to conclude the following:

Lemma 3.6. We have fK[(Xij | 0 ≤ i ≤ j ≤ n)] = X00X11X
2
23 · · ·X2

n−1,n +
f ′′K[(Xij | 0 ≤ i ≤ j ≤ n)] and gK[(Xij | 0 ≤ i ≤ j ≤ n)] = X2

01X
2
23 · · ·X2

n−1,n +
g′′K[(Xij | 0 ≤ i ≤ j ≤ n)], where X00X11X

2
23 · · ·X2

n−1,n and X2
01X

2
23 · · ·X2

n−1,n are
regarded as polynomials of K[Xij | 0 ≤ i ≤ j ≤ n] and f ′′K[(Xij | 0 ≤ i ≤ j ≤
n)], g′′K[(Xij | 0 ≤ i ≤ j ≤ n)] ∈ IK.

Corollary 3.2. If
∑

0≤i≤j≤n aijXiXj = X2
0 +X0X1+αX2

1 +X2X3+· · ·+Xn−1Xn

for some α ∈ K, then fK[(aij | 0 ≤ i ≤ j ≤ n)] = α and gK[(aij | 0 ≤ i ≤ j ≤ n)] =
1.

3.6. The polynomials RM
K [(Xij | 0 ≤ i ≤ j ≤ n)]. Let M = (mij)0≤i≤j≤n be

an (n + 1)× (n + 1)-matrix with entries in Z such that det(M) ∈ {1,−1}. For all
k, l ∈ {0, . . . , n} with k ≤ l, put

Ykk :=
∑

0≤i≤j≤n

(mikmjk)Xij ,

Ykl :=
∑

0≤i≤j≤n

(mikmjl + milmjk)Xij .
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From the discussion given in Section 3.1, we immediately have that

h[(Yij | 0 ≤ i ≤ j ≤ n)] = h[(Xij | 0 ≤ i ≤ j ≤ n)].

Now, let RM
1 [(Xij | 0 ≤ i ≤ j ≤ n)] ∈ Z[Xij | 0 ≤ i ≤ j ≤ n] such that

Pf [(Yij | 0 ≤ i ≤ j ≤ n)] = Pf [(Xij | 0 ≤ i ≤ j ≤ n)]

+RM
1 [(Xij | 0 ≤ i ≤ j ≤ n)].

Lemma 3.7. There exists a polynomial RM [(Xij | 0 ≤ i ≤ j ≤ n)] ∈ Z[Xij | 0 ≤
i ≤ j ≤ n] such that RM

1 [(Xij | 0 ≤ i ≤ j ≤ n)] = 2 · RM [(Xij | 0 ≤ i ≤ j ≤ n)].
Moreover, f [(Yij | 0 ≤ i ≤ j ≤ n)] = f [(Xij | 0 ≤ i ≤ j ≤ n)] + Pf [(Xij | 0 ≤ i ≤
j ≤ n)] ·RM [(Xij | 0 ≤ i ≤ j ≤ n)] +

(
RM [(Xij | 0 ≤ i ≤ j ≤ n)]

)2

.

Proof. By Proposition 1.1, all coefficients of the polynomial
(
Pf [(Yij | 0 ≤ i ≤

j ≤ n)]
)2

+ (−1)
n−1

2 · h[(Yij | 0 ≤ i ≤ j ≤ n)] =
(
Pf [(Xij | 0 ≤ i ≤ j ≤

n)]
)2

+(−1)
n−1

2 ·h[(Xij | 0 ≤ i ≤ j ≤ n)]+2·Pf [(Xij | 0 ≤ i ≤ j ≤ n)]·RM
1 [(Xij | 0 ≤

i ≤ j ≤ n)] +
(
RM

1 [(Xij | 0 ≤ i ≤ j ≤ n)]
)2

are multiples op 4. Applying

Proposition 1.1 once more, we see that all coefficients of
(
RM

1 [(Xij | 0 ≤ i ≤
j ≤ n)]

)2

must be multiples of 2. This is only possible when all coefficients of

RM
1 [(Xij | 0 ≤ i ≤ j ≤ n)] are multiples of 2. The claims of the lemma now readily

follow. ¤
Corollary 3.3. Put Zkk :=

∑
0≤i≤j≤n φK(mikmjk)Xij and Zkl :=

∑
0≤i≤j≤n

φK(mikmjl +milmjk)Xij for all k, l ∈ {0, . . . , n} satisfying k ≤ l. Then fK[(Zij | 0
≤ i ≤ j ≤ n)] = fK[(Xij | 0 ≤ i ≤ j ≤ n)] + PfK[(Xij | 0 ≤ i ≤ j ≤
n)]·RM

K [(Xij | 0 ≤ i ≤ j ≤ n)]+
(
RM
K [(Xij | 0 ≤ i ≤ j ≤ n)]

)2

and gK[(Zij | 0 ≤ i ≤
j ≤ n)] = gK[(Xij | 0 ≤ i ≤ j ≤ n)] + 4 ·PfK[(Xij | 0 ≤ i ≤ j ≤ n)] ·RM

K [(Xij | 0 ≤
i ≤ j ≤ n)] + 4 ·

(
RM
K [(Xij | 0 ≤ i ≤ j ≤ n)]

)2

.

3.7. Proofs of Theorem 1.1(2) and Theorem 1.2(2). Throughout this sub-
section, K is a field of characteristic 2.

Notice that if Q is a hyperbolic or elliptic quadric whose equation with respect
to a given ordered basis is given by

∑
0≤i≤j≤n aijXiXj = 0, then gK[(aij | 0 ≤ i ≤

j ≤ n)] = hK[(aij | 0 ≤ i ≤ j ≤ n)] = det(A) 6= 0, where A is the matrix as defined
in equation (1.2) of Section 1.1.

Proposition 3.1. Suppose char(K) = 2 and that Q is a hyperbolic or elliptic
quadric of PG(V ). Let

∑
0≤i≤j≤n aijXiXj = 0 and

∑
0≤i≤j≤n a′ijXiXj = 0 be

equations of Q with respect to two ordered bases of V . Put η1 = fK[(aij | 0 ≤
i ≤ j ≤ n)], η2 = gK[(aij | 0 ≤ i ≤ j ≤ n)], η′1 = fK[(a′ij | 0 ≤ i ≤ j ≤ n)] and

η′2 = gK[(a′ij | 0 ≤ i ≤ j ≤ n)]. Then there exists a λ ∈ K such that η′1
η′2

= η1
η2

+λ2+λ.

Proof. (1) Suppose that
∑

aijXiXj and
∑

a′ijXiXj are related via one of the
following coordinate transformations:

(i) X0 = Yi, Xi = Y0, Xj = Yj (j ∈ {1, . . . , n} \ {i}) for a certain i ∈ {1, . . . , n};
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(ii) X0 = Y0 + Y1, Xj = Yj for all j ∈ {1, . . . , n}.
Let M = (mij)0≤i≤j≤n be an (n + 1) × (n + 1)-matrix over Z with all entries
equal to 0 or 1 such that Xi =

∑n
k=0 φK(mik)Yk for every i ∈ {0, . . . , n}. Then

det(M) ∈ {1,−1} and

a′kk =
∑

0≤i≤j≤n

φK(mikmjk) · aij ,

a′kl =
∑

0≤i≤j≤n

φK(mikmjl + milmjk) · aij

for all k, l ∈ {0, . . . , n} satisfying k ≤ l. By Corollary 3.3, we have

η′1 = η1 + PfK[(aij | 0 ≤ i ≤ j ≤ n)] ·RM
K [(aij | 0 ≤ i ≤ j ≤ n)]

+
(
RM
K [(aij | 0 ≤ i ≤ j ≤ n)]

)2

,

η′2 = η2 =
(
PfK[(aij | 0 ≤ i ≤ j ≤ n)]

)2

.

Hence,
η′1
η′2

=
η1

η2
+ λ2 + λ,

where

λ =
RM
K [(aij | 0 ≤ i ≤ j ≤ n)]

PfK[(aij | 0 ≤ i ≤ j ≤ n)]
.

(2) Suppose that
∑

aijXiXj and
∑

a′ijXiXj are related via the following co-
ordinate transformation (µ 6= 0): X0 = µY0, Xj = Yj for all j ∈ {1, . . . , n}.
Then a′00 = µ2a00, a′0i = µ · a0i for every i ∈ {1, . . . , n} and a′ij = aij for all

i, j ∈ {1, . . . , n} with i ≤ j. We have η′1 = µ2η1 and η′2 = µ2η2. Hence, η′1
η′2

= η1
η2

.

(3) Notice that any linear coordinate transformation is a composition of coordi-
nate transformations as mentioned in (1) and (2). So, if

∑
aijXiXj and

∑
a′ijXiXj

are related via a linear coordinate transformation, then by (1), (2) and the fact that
the set {λ+λ2 | λ ∈ K} is closed under addition, it follows that there exists a λ ∈ K
such that η′1

η′2
= η1

η2
+ λ2 + λ.

(4) Suppose
∑

a′ijXiXj = µ ·
( ∑

aijXiXj

)
for some µ ∈ K \ {0}. Then η′1 =

µn+1 · η1 and η′2 = µn+1 · η2. Hence, η′1
η′2

= η1
η2

.

The proposition now follows from (3), (4) and Corollary 3.1. ¤

Suppose Q is a hyperbolic or elliptic quadric of PG(V ) whose equation with
respect to a given reference system is equal to

∑
0≤i≤j≤n aijXiXj = 0. By Lemma

3.3, there exists an α ∈ K and a reference system with respect to which Q has
equation

∑
0≤i≤j≤n a′ijXiXj = X2

0 + X0X1 + αX2
1 + X2X3 + · · · + Xn−1Xn = 0.

Put η1 = fK[(aij | 0 ≤ i ≤ j ≤ n)], η2 = gK[(aij | 0 ≤ i ≤ j ≤ n)], η′1 = fK[(a′ij | 0 ≤
i ≤ j ≤ n)] and η′2 = gK[(a′ij | 0 ≤ i ≤ j ≤ n)]. By Corollary 3.2, we have η′1 = α

and η′2 = 1. So, by Proposition 3.1, we have α = η1
η2

+λ2 +λ for some λ ∈ K. Since∑
0≤i≤j≤n a′ijXiXj = (X0+λX1)2+(X0+λX1)X1+ η1

η2
X2

1 +X2X3+ · · ·+Xn−1Xn,
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there exists a reference system with respect to which Q has equation X2
0 +X0X1 +

η1
η2

X2
1 + X2X3 + · · ·+ Xn−1Xn = 0. This completes the proof of Theorem 1.1(2).

Now, let µ1, µ2 ∈ K and consider the quadrics Q1 and Q2 with respective equa-
tions X2

0 + X0X1 + µ1X
2
1 + X2X3 + · · ·+ Xn−1Xn = 0 and X2

0 + X0X1 + µ2X
2
1 +

X2X3 + · · ·+Xn−1Xn = 0 with respect to a given ordered basis B = (ē0, ē1, . . . , ēn)
of V . If µ2 = µ1 + λ2 + λ for some λ ∈ K, then Q1 and Q2 are projectively equiva-
lent since X2

0 + X0X1 + µ2X
2
1 + X2X3 + · · ·+ Xn−1Xn = (X0 + λX1)2 + X1(X0 +

λX1) + µ1X
2
1 + X2X3 + · · ·+ Xn−1Xn. Conversely, if Q1 and Q2 are projectively

equivalent, then by Corollary 3.2 and Proposition 3.1, µ2 = µ1+λ2+λ for a certain
λ ∈ K.

Now, for every automorphism θ of K, let Qθ
1 denote the quadric with equation

X2
0 + X0X1 + µθ

1X
2
1 + X2X3 + · · · + Xn−1Xn = 0 with respect to B. Notice that

a point 〈∑n
i=0 Xiēi〉 of PG(V ) belongs to Q1 if and only if 〈∑n

i=0 Xθ
i ēi〉 belongs

to Qθ
1. The quadrics Q1 and Q2 are equivalent under an automorphism of PG(V )

if and only if Q2 and Qθ
1 are projectively equivalent for some automorphism θ of

K, i.e. if and only if there exists an automorphism θ of K and a λ ∈ K such that
µ2 = µθ

1 + λ2 + λ. This completes the proof of Theorem 1.2(2).

3.8. Proofs of Theorem 1.1(3) and Theorem 1.2(3). Throughout this para-
graph, we suppose that char(K) = 2.

Let Q be a pseudo-elliptic quadric of PG(V ) whose equation with respect to a
given ordered basis (ē0, ē1, . . . , ēn) of V is given by

∑
0≤i≤j≤n aijXiXj = 0. Put

q(
∑n

i=0 Xiēi) =
∑

0≤i≤j≤n aijXiXj . Then q is a quadratic form of V . If b is
the symmetric bilinear form of V associated to q, then b(

∑n
i=0 Xiēi,

∑n
i=0 Yiēi) =

[X0 · · ·Xn] · A · [Y0 · · ·Yn]T , where A is the matrix as defined in equation (1.2) of
Section 1.1. The radical R of b consists of all vectors

∑n
i=0 Xiēi of V such that

[X0 · · ·Xn]T belongs to the kernel of A.
Now, by Lemma 3.3, we can choose an ordered basis (ē′0, ē

′
1, . . . , ē

′
n) of V such

that q(
∑n

i=0 Xiē
′
i) =

∑
0≤i≤j≤n a′ijXiXj = λ · (X2

0 +αX2
1 +X2X3 + · · ·+Xn−1Xn)

for some λ ∈ K\{0} and some non-square α of K. One calculates that R = 〈ē′0, ē′1〉.
Now, let δ0ē

′
0 + δ1ē

′
1 and δ2ē

′
0 + δ3ē

′
1 be two linearly independent vectors of R. So,

δ0δ3 + δ1δ2 6= 0. We have η := q(δ0ē
′
0 + δ1ē

′
1) · q(δ2ē

′
0 + δ3ē

′
1) = λ2 · (δ2

0 +αδ2
1) · (δ2

2 +
αδ2

3) = [λ(δ0δ2 + αδ1δ3)]2 + [λ(δ0δ3 + δ1δ2)]2 · α = γ2
1 + γ2

2 · α, where γ1 = λ(δ0δ2 +
αδ1δ3) and γ2 = λ(δ0δ3 + δ1δ2) 6= 0. Since X2

0 + ηX2
1 + X2X3 + · · · + Xn−1Xn =

(X0 + γ1X1)2 + α(γ2X1)2 + X2X3 + · · · + Xn−1Xn, the quadric Q is projectively
equivalent to the quadric with equation X2

0 + ηX2
1 + X2X3 + · · · + Xn−1Xn = 0.

This proves Theorem 1.1(3).

Let µ1 and µ2 be two non-squares of K. Let Q1 and Q2 be the quadrics with
respective equations X2

0 + µ1X
2
1 + X2X3 + · · · + Xn−1Xn = 0 and X2

0 + µ2X
2
1 +

X2X3+· · ·+Xn−1Xn = 0 with respect to a given ordered basis B = (ē0, ē1, . . . , ēn).
If µ2 = λ2

1 + λ2
2 · µ1 for some λ1, λ2 ∈ K with λ2 6= 0, then Q1 and Q2 are

projectively equivalent since (X0 +λ1X1)2 +µ1(λ2X1)2 +X2X3 + · · ·+Xn−1Xn =
X2

0 + µ2X
2
1 + X2X3 + · · ·+ Xn−1Xn.

Conversely, suppose that Q1 and Q2 are projectively equivalent. Then by Corol-
lary 3.1 there exists a quadratic form q of V , a λ ∈ K \ {0} and two ordered bases
(ē0, ē1, . . . , ēn) and (ē′0, ē

′
1, . . . , ē

′
n) of V such that q(

∑n
i=0 Xiēi) = X2

0 + µ1X
2
1 +
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X2X3 + · · ·+Xn−1Xn and q(
∑n

i=0 Xiē
′
i) = λ(X2

0 +µ2X
2
1 +X2X3 + · · ·+Xn−1Xn).

The radical of the bilinear form associated to q is equal to 〈ē0, ē1〉 = 〈ē′0, ē′1〉.
Put ē′0 = δ0ē0 + δ1ē1 and ē′1 = δ2ē0 + δ3ē1. Here, δ0δ3 + δ1δ2 6= 0. We have
µ1 = q(ē0) · q(ē1) and λ2µ2 = q(ē′0) · q(ē′1) = q(δ0ē0 + δ1ē1) · q(δ2ē0 + δ3ē1) =
(δ2

0 + µ1δ
2
1) · (δ2

2 + µ1δ
2
3) = (δ0δ2 + µ1δ1δ3)2 + (δ0δ3 + δ1δ2)2µ1. Hence, µ2 =(

δ0δ2+µ1δ1δ3
λ

)2

+
(

δ0δ3+δ1δ2
λ

)2

µ1, where δ0δ3+δ1δ2
λ 6= 0.

For every automorphism θ of K, let Qθ
1 denote the quadric whose equation with

respect to B is given by X2
0 + µθ

1X
2
1 + X2X3 + · · · + Xn−1Xn = 0. Notice that a

point 〈∑n
i=0 Xiēi〉 of PG(V ) belongs to Q1 if and only if 〈∑n

i=0 Xθ
i ēi〉 belongs to

Qθ
1. The quadrics Q1 and Q2 are equivalent under an automorphism of PG(V ) if

and only if Q2 and Qθ
1 are projectively equivalent for some automorphism θ of K,

i.e. if and only if there exists an automorphism θ of K and λ1, λ2 ∈ K with λ2 6= 0
such that µ2 = λ2

1 + λ2
2 · µ1. This completes the proof of Theorem 1.2(3).

4. Proofs of Theorems 1.3 and 1.4

4.1. Coordinate transformations. Let B = (ē0, ē1, . . . , ēn) be an ordered basis
of V , let ψ be an involutary automorphism of K and let aij , i, j ∈ {0, . . . , n}, be
elements of K satisfying aji = aψ

ij . Let H be the ψ-Hermitian variety of PG(V )
whose equation with respect to B is given by

[X0 · · ·Xn] ·A · [Xψ
0 · · ·Xψ

n ]T =
∑

0≤i,j≤n

aijXiX
ψ
j = 0.

Now, consider the coordinate transformation with associated nonsingular matrix
M = (mij)0≤i,j≤n: [X0 · · ·Xn]T = M · [Y0 · · ·Yn]T . The equation of H in the new
coordinates is equal to [Y0 · · ·Yn] · A′ · [Y ψ

0 · · ·Y ψ
n ]T =

∑
0≤i,j≤n a′ijXiX

ψ
j , where

A′ = (a′ij)0≤i,j≤n = MT AMψ. In the sequel, we will say that
∑

0≤i,j≤n a′ijXiX
ψ
j

and
∑

0≤i,j≤n aijXiX
ψ
j are related via a linear coordinate transformation.

Since A′ = MT AMψ we have that det(A′) = det(MT ) · det(A) · det(Mψ) =
[det(M)]ψ+1 · det(A). So, we have established the following.

Lemma 4.1. Let ψ1 and ψ2 be two involutary automorphisms of K. If
∑

aijXiX
ψ1
j

and
∑

a′ijXiX
ψ2
j are related via a linear coordinate transformation, then ψ1 = ψ2

and there exists a λ ∈ K \ {0} such that det(A′) = det(A) · λψ1+1.

4.2. The equations representing certain Hermitian varieties.

Lemma 4.2. Let B = (ē0, ē1, . . . , ēn) be an ordered basis of V , let ψ1 and ψ2

be two involutary automorphisms of K, let α ∈ K \ {0} such that αψ1 = α and
let aij, i, j ∈ {0, . . . , n}, be elements of K satisfying aji = aψ2

ij . Suppose H is
the ψ1-Hermitian variety of PG(V ) whose equation with respect to B is given by
Xψ1+1

0 + αXψ1+1
1 + X2X

ψ1
3 + X3X

ψ1
2 + · · · + Xn−1X

ψ1
n + XnXψ1

n−1 = 0. If the
equation

∑
0≤i,j≤n aijXiX

ψ2
j describes H with respect to the same ordered basis B,

then ψ1 = ψ2 and
∑

0≤i,j≤n aijXiX
ψ2
j = λ · (Xψ1+1

0 +αXψ1+1
1 +X2X

ψ1
3 +X3X

ψ1
2 +

· · ·+ Xn−1X
ψ1
n + XnXψ1

n−1) for some λ ∈ K \ {0} satisfying λψ1 = λ.

Proof. Notice first that K/Kψi (i ∈ {1, 2}) is a Galois extension and ψi is the
unique nontrivial element of Gal(K/Kψi). So, if Kψ1 = Kψ2 , then ψ1 = ψ2.
• For all i ∈ {2, . . . , n}, we have aii = 0 since 〈ēi〉 ∈ H.
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• Let i, j ∈ {2, . . . , n} such that i 6= j and {i, j} 6∈ {{2, 3}, {4, 5}, . . . , {n−1, n}}.
For every λ ∈ K, we have λaij + λψ2aji = λaij + (λaij)ψ2 = 0 since 〈λēi + ēj〉 ∈ H.
This implies that aij = 0.
• We prove that ψ1 = ψ2 and a2i,2i+1 = a2i+1,2i 6= 0 for every i ∈ {1, . . . , n−1

2 }.
Let k ∈ K \ {0} such that k + kψ1 = 0 (e.g., k = l − lψ1 where l ∈ K \ Kψ1).
Then since 〈kē2i + ē2i+1〉 ∈ H, we have ka2i,2i+1 + kψ2a2i+1,2i = 0. Now, a point
〈kλē2i + ē2i+1〉, λ ∈ K, belongs to H if and only if kλ + (kλ)ψ1 = k(λ− λψ1) = 0,
i.e. if and only if λ ∈ Kψ1 . On the other hand, 〈kλē2i + ē2i+1〉 ∈ H if and only
if kλa2i,2i+1 + (kλ)ψ2a2i+1,2i = ka2i,2i+1(λ − λψ2) = 0. Hence, a2i,2i+1 6= 0 and
Kψ1 = Kψ2 . This implies that ψ1 = ψ2. Since 0 = ka2i,2i+1 + kψ2a2i+1,2i =
ka2i,2i+1 + kψ1a2i+1,2i = k(a2i,2i+1 − a2i+1,2i), we also have a2i,2i+1 = a2i+1,2i.
• We prove that a00 6= 0 and a0i = ai0 = 0 for every i ∈ {2, . . . , n}. Since

〈ē0 + λψ1 ēi〉 6∈ H for every λ ∈ K, we have a00 + λa0i + λψ1ai0 = a00 + λa0i +
(λa0i)ψ1 6= 0 for every λ ∈ K. This implies that a00 6= 0 and a0i = 0. (Otherwise,
we can take λ = −a00

a0i
· a

a−aψ1
where a is an arbitrary element of K \Kψ1 .) Hence,

also ai0 = aψ1
0i = 0.

• We prove that a11 6= 0 and a1i = ai1 = 0 for every i ∈ {2, . . . , n}. Since 〈ē1 +
λψ1 ēi〉 6∈ H for every λ ∈ K, we have a11 +λa1i +λψ1ai1 = a11 +λa1i +(λa1i)ψ1 6= 0
for every λ ∈ K. As in the previous case, this implies that a11 6= 0 and a1i = 0.
Hence, also ai1 = aψ1

1i = 0.
• We prove that a00 = a2i,2i+1 for every i ∈ {1, . . . , n−1

2 }. Let k ∈ K \ Kψ1 .
Since 〈ē0 − k

k−kψ1
ē2i + ē2i+1〉 ∈ H, we have a00 − k

k−kψ1
a2i,2i+1 + kψ1

k−kψ1
a2i+1,2i =

a00 − a2i,2i+1 = 0.
• We prove that a11 = α · a2i,2i+1 for every i ∈ {1, . . . , n−1

2 }. Let k ∈ K \ Kψ1 .
Since 〈ē1 − kα

k−kψ1
ē2i + ē2i+1〉 ∈ H, we have a11 − kα

k−kψ1
a2i,2i+1 + kψ1α

k−kψ1
a2i+1,2i =

a11 − α · a2i,2i+1 = 0.
• We prove that a01 = 0. Let k ∈ K \ Kψ1 . Since 〈λē0 + ē1 − k(λψ1+1+α)

k−kψ1
ē2i +

ē2i+1〉 ∈ H for every λ ∈ K, we have a00λ
ψ1+1 + λa01 + λψa10 + a11 − (λψ1+1 +

α)a2i,2i+1 = λa01 + (λa01)ψ1 = 0 for every λ ∈ K. This implies that a01 = 0.

By the above, we know that
∑

0≤i,j≤n aijXiX
ψ2
j = a00(X

ψ1+1
0 +αXψ1+1

1 +X2X
ψ1
3 +

X3X
ψ1
2 + · · ·+ Xn−1X

ψ1
n + XnXψ1

n−1). Here, a00 ∈ K \ {0} satisfies aψ1
00 = a00. ¤

4.3. Canonical equations for nonsingular Hermitian varieties of Witt in-
dex at least n−1

2 .

Lemma 4.3. Let ψ be an involutary automorphism of K. If H is a nonsingular ψ-
Hermitian variety of Witt index at least n−1

2 of PG(V ), then there exists an α ∈ K\
{0} satisfying αψ = α and an ordered basis (ē0, ē1, . . . , ēn) of V with respect to which
H has equation Xψ+1

0 −αXψ+1
1 + X2X

ψ
3 + X3X

ψ
2 + · · ·+ Xn−1X

ψ
n + XnXψ

n−1 = 0.
H has Witt index n+1

2 if and only if there exists a λ ∈ K satisfying λψ+1 = α. In
this case, there exists an ordered basis of V with respect to which H has equation
X0X

ψ
1 + X1X

ψ
0 + · · ·+ Xn−1X

ψ
n + XnXψ

n−1 = 0.

Proof. The proof is similar to the proof of Lemma 3.3. Let h : V × V → K be a
sesquilinear form satisfying:
• h(λ1x̄1 + λ2x̄2, ȳ) = λ1 · h(x̄1, ȳ) + λ2 · h(x̄2, ȳ) for all λ1, λ2 ∈ K and all

x̄1, x̄2, ȳ ∈ V .
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• h(x̄, λ1ȳ1 + λ2ȳ2) = λψ
1 · h(x̄, ȳ1) + λψ

2 · h(x̄, ȳ2) for all λ1, λ2 ∈ K and all
x̄, ȳ1, ȳ2 ∈ V .
• h(ȳ, x̄) = h(x̄, ȳ)ψ for all x̄, ȳ ∈ V .
• H consists of all points 〈x̄〉 of PG(V ) for which H(x̄) := h(x̄, x̄) = 0.

Since H is nonsingular, h is nondegenerate, i.e. there exists no x̄ ∈ V \{ō} such that
h(x̄, ȳ) = 0 for all ȳ ∈ V . Suppose the Witt index m′ of H is at least m := n−1

2 .
Now, let π1 and π2 be two m′-dimensional subspaces of V satisfying (i) π1∩π2 =

{ō} and (ii) H(x̄) = 0 for all x̄ ∈ π1∪π2. Let {ē1, . . . , ēm′} be a basis of π1. Similarly
as in the proof of Lemma 3.3, there exists a basis {f̄1, . . . , f̄m′} of π2 such that
h(ēi, f̄i) = 1 and h(ēj , f̄i) = 0 for all i ∈ {1, . . . , m′} and all j ∈ {1, . . . ,m′} \ {i}.

If m′ = m+1 = n+1
2 , then {ē1, . . . , ēm′ , f̄1, . . . , f̄m′} is a basis of V and H(X0ē1+

X1f̄1+X2ē2+X3f̄2+ · · ·+Xn−1ēm′+Xnf̄m′) = X0X
ψ
1 +X1X

ψ
0 +X2X

ψ
3 +X3X

ψ
2 +

· · ·+ Xn−1X
ψ
n + XnXψ

n−1.
Consider now the most general case m′ ∈ {m,m+1}. Let W denote the subspace

of V consisting of all vectors which are h-orthogonal with all vectors of U :=
〈ē1, . . . , ēm, f̄1, . . . , f̄m〉. Since U has co-dimension 2 in V , W has dimension 2.
We have H(X2ē1 + X3f̄1 + · · · + Xn−1ēm + Xnf̄m) = X2X

ψ
3 + X3X

ψ
2 + · · · +

Xn−1X
ψ
n + XnXψ

n−1 and H(x̄1 + x̄2) = H(x̄1) + H(x̄2) for all vectors x̄1 ∈ W

and x̄2 ∈ U . It is easily verified that there exists a basis {ē′m+1, f̄
′
m+1} of W

such that H(X0ē
′
m+1 + X1f̄

′
m+1) = β(Xψ+1

0 − αXψ+1
1 ) for some α, β ∈ Kψ \ {0}.

With respect to the reference system (ē′m+1, f̄
′
m+1, ē1, β · f̄1, . . . , ēm, β · f̄m), H has

equation Xψ+1
0 − αXψ+1

1 + X2X
ψ
3 + X3X

ψ
2 + · · ·+ Xn−1X

ψ
n + XnXψ

n−1 = 0. Now,
〈ē1, . . . , ēm〉 is a subspace of H. So, H has Witt index n+1

2 if and only if there exists
an n−1

2 -dimensional subspace of H containing 〈ē1, . . . , ēm〉. This precisely happens
when the equation Xψ+1

0 − αXψ+1
1 = 0 has a nonzero solution for (X0, X1). The

claims of the lemma follow. ¤

By Lemmas 4.2 and 4.3, we have

Corollary 4.1. Let H be a nonsingular ψ-Hermitian variety of Witt index m ∈
{n−1

2 , n+1
2 } of PG(V ) and let B be an ordered basis of V . Then the left hand side

of an equation
∑

0≤i,j≤n aijXiX
ψ
j = 0 (aji = aψ

ij) which describes H with respect
to B is uniquely determined up to a nonzero factor of Kψ.

4.4. Proofs of Theorems 1.3 and 1.4. Let ψ be an involutary automorphism
of K and let H be the nonsingular ψ-Hermitian variety of Witt index at least n−1

2
of PG(V ) whose equation with respect to a given reference system is given by∑

0≤i,j≤n aijXiX
ψ
j = 0. Here, aji = aψ

ij for all i, j ∈ {0, . . . , n}. By Lemma 4.3, we
know that there exist bij and cij (0 ≤ i, j ≤ n) such that

(i) bji = bψ
ij and cji = cψ

ij for all i, j ∈ {0, . . . , n};
(ii)

∑
0≤i,j≤n bijXiX

ψ
j is related to

∑
0≤i,j≤n aijXiX

ψ
j via a linear coordinate

transformation;
(iii)

∑
0≤i,j≤n cijXiX

ψ
j = λ3

( ∑
0≤i,j≤n bijXiX

ψ
j

)
= Xψ+1

0 −αXψ+1
1 +X2X

ψ
3 +

X3X
ψ
2 + · · ·+ Xn−1X

ψ
n + XnXψ

n−1 for some λ3, α ∈ Kψ \ {0}.
Now, put λ2 = λ

n+1
2

3 . Then λψ+1
2 = λn+1

3 since λ2 ∈ Kψ. Consider the matrices
A = (aij)0≤i,j≤n, B = (bij)0≤i,j≤n and C = (cij)0≤i,j≤n. By Lemma 4.1, there
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exists a λ1 ∈ K \ {0} such that det(B) = λψ+1
1 det(A). So, we have (−1)

n+1
2 α =

det(C) = λn+1
3 det(B) = (λ1λ2)ψ+1 det(A). Hence, α = (λ1λ2)ψ+1(−1)

n+1
2 det(A)

and H has equation Xψ+1
0 − (−1)

n+1
2 det(A) · (λ1λ2X1)ψ+1 + X2X

ψ
3 + X3X

ψ
2 +

· · · + Xn−1X
ψ
n + XnXψ

n−1 = 0 with respect to a suitable reference system. This
completes the proof of Theorem 1.3.

Now, let ψ1 and ψ2 be two involutary automorphisms of K and let µi ∈ Kψi
\

{0}, i ∈ {1, 2}. Let H1 and H2 be two Hermitian varieties whose equations with
respect to a given ordered basis B = (ē0, ē1, . . . , ēn) of V are given by respectively
Xψ1+1

0 + µ1 · Xψ1+1
1 + X2X

ψ1
3 + X3X

ψ1
2 + · · · + Xn−1X

ψ1
n + XnXψ1

n−1 = 0 and
Xψ2+1

0 +µ2 ·Xψ2+1
1 +X2X

ψ2
3 +X3X

ψ2
2 + · · ·+Xn−1X

ψ2
n +XnXψ2

n−1 = 0. If ψ1 = ψ2

and there exists a λ ∈ K \ {0} such that µ2 = λψ1+1µ1, then H1 and H2 are
projectively equivalent since Xψ2+1

0 +µ2·Xψ2+1
1 +X2X

ψ2
3 +X3X

ψ2
2 +· · ·+Xn−1X

ψ2
n +

XnXψ2
n−1 = Xψ1+1

0 +µ1 ·(λX1)ψ1+1 +X2X
ψ1
3 +X3X

ψ1
2 + · · ·+Xn−1X

ψ1
n +XnXψ1

n−1.
Conversely, suppose that H1 and H2 are projectively equivalent. Then by

Lemmas 4.1 and 4.2, ψ1 = ψ2. Also by these lemmas, there exist elements aij ,
i, j ∈ {0, . . . , n}, of K such that:

(i) aji = aψ1
ij for all i, j ∈ {0, . . . , n};

(ii)
∑

0≤i,j≤n aijXiX
ψ1
j is related to Xψ1+1

0 + µ1 ·Xψ1+1
1 + X2X

ψ1
3 + X3X

ψ1
2 +

· · ·+ Xn−1X
ψ1
n + XnXψ1

n−1 via a linear coordinate transformation;
(iii)

∑
0≤i,j≤n aijXiX

ψ1
j = α · (Xψ1+1

0 + µ2 ·Xψ1+1
1 + X2X

ψ1
3 + X3X

ψ1
2 + · · ·+

Xn−1X
ψ1
n + XnXψ1

n−1) for some α ∈ Kψ1 \ {0}.
Put A = (aij)0≤i,j≤n. Then det(A) = αn+1µ2(−1)

n−1
2 . Now, by (ii) and Lemma

4.1, there exist a λ ∈ K \ {0} such that det(A) = λψ1+1µ1(−1)
n−1

2 . Since αn+1 =

(α
n+1

2 )ψ1+1, it follows that µ2 =
(

λ

α
n+1

2

)ψ1+1

· µ1.

For every automorphism θ of K, let Hθ
1 denote the θ−1ψ1θ-Hermitian vari-

ety of the projective space PG(V ) whose equation with respect to B is given
by Xθ−1ψ1θ+1

0 + µθ
1X

θ−1ψ1θ+1
1 + X2X

θ−1ψ1θ
3 + X3X

θ−1ψ1θ
2 + · · · + Xn−1X

θ−1ψ1θ
n +

XnXθ−1ψ1θ
n−1 . Notice that a point 〈∑n

i=0 Xiēi〉 of PG(V ) belongs to H1 if and only
if 〈∑n

i=0 Xθ
i ēi〉 belongs to Hθ

1. Now, H1 and H2 are equivalent under an auto-
morphism of PG(V ) if and only if H2 and Hθ

1 are projectively equivalent for some
automorphism θ of K, i.e. if and only if there exists an automorphism θ of K and
a λ ∈ K \ {0} such that ψ2 = θ−1ψ1θ and µ2 = λψ2+1µθ

1. This finishes the proof of
Theorem 1.4.
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