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Abstract. In this paper, we study constant angle surfaces and curves in
Euclidean 3–space. One of the results in this paper gives a classification of
special developable surfaces and some conical surfaces from the point of view
the constant angle property. Also we give some characterization for a curve
lying on a surface for which the unit normal makes a constant angle with a
fixed direction.

1. Introduction

A constant angle surface in Euclidean three-dimensional space E3 is a surface
whose tangent planes make a constant angle with a fixed vector field of the ambient
space. These surfaces generalize the concept of helix, that is, curves whose tangent
lines make a constant angle with a fixed vector of E3. This kind of surfaces are
models to describe some phenomena in physics of interfaces in liquids crystals and of
layered fluids [1]. Constant angle surfaces were studied in product spaces S2×R in
or H2×R in where S2 and H2 represent the unit 2-sphere in R2 and R2

1, respectively
[2, 3]. The angle was considered between the unit normal of the surface M and
the tangent direction to R. Munteanu and Nistor obtained a classification of all
surfaces in Euclidean 3-space for which the unit normal makes a constant angle
with a fixed vector direction being the tangent direction to R [8]. Moreover in [9]
it is also classified certain special ruled surfaces in R3 under the general theorem of
characterization of constant angle surfaces.

In this paper we give a classification of special developable surfaces and some
conical surfaces from the point of view the constant angle property. Also we give
some characterization for a curve lying on a surface for which the unit normal makes
a constant angle with a fixed direction.

But before this, we mention some basic facts in the general theory of curves and
surfaces useful for the rest of the paper.
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2. Preliminary

The differential geometry of curves starts with smooth map of s, let’s call it
α : I ⊂ R −→ E3, that parameterized a spatial curve denoted again with α. We
say that the curve is parameterized by arc lenght if ‖α′(s)‖ = 1, where α′ is the
derivative of w.r.t. s. Let us denote t(s) = α′(s) the (unit) tangent to the curve. By
definition, the curvature of α is κ(s) = ‖α′′(s)‖ . If κ 6= 0, then the (unit) normal
of α can be obtained from α′′(s) = κ(s)n(s). Morever, b(s) = t(s) × n(s) is called
the (unit) binormal to α.

With these considerations t, n, b define an orthonormal basis. Recall the Frenet-
Serret formulae

t′(s) = κ(s)n(s),(2.1)
n′(s) = −κ(s)t(s) + τ(s)b(s),
b′(s) = −τ(s)n(s),

where τ(s) is the torsion of α at s. For any unit speed curve α : I ⊂ R −→ E3 defined
a vector field w = 1√

τ2+κ2 (τt + κb) along α under the condition that κ(s) 6= 0 and
called it the modified Darboux vector field of α.

We now recall some basic concepts on classical differential geometry of space
curves and the definitions of general helix, slant helix and a curve of constant
precession in Euclidean 3-space. A curve, α : I ⊂ R −→ E3 with unit speed, is
a general helix if there is some constant vector u, so that 〈t, u〉=cos θ is constant
along the curve. It has been know that the curve is a general helix if and only if
τ
κ (s) is constant. If both of κ(s) 6= 0 and τ(s) are constant, we call as a circular
helix.

A curve α with, is called a slant helix if the principal normal line of α make a
constant angle with a fixed direction.

A unit speed curve of constant precession is defined by the property that its
(Frenet) Darboux vector revolves about a fixed line in space with angle and constant
speed. A curve of constant precession is characterized by having

κ(s) = c sin (µs) ,(2.2)
τ(s) = c cos (µs) ,

where c > 0, µ and are constant [10].
A natural extension from curves to the theory of surfaces constructed on curves

can be made as follows. Given a curve parameterized by arc length in Euclidean
3-space, we can think of constructing ruled surfaces involving and the tangent,
normal, binormal or Darboux lines to the curve. As a consequence, we have well
known types of surfaces of this kind, namely
• tangent developable surface: r(s, v) = α(s) + vt(s)
• normal surface: r(s, v) = α(s) + vn(s)
• binormal surface: r(s, v) = α(s) + vb(s)
• rectifying developable surface: r(s, v) = α(s) + vw(s)
• Darboux developable surface: r(s, v) = b(s) + vt(s)
• tangential Darboux developable surface: r(s, v) = w(s) + vn(s)
(see for details [4, 5]).
The characterization of constant angle surface in E3 was given in [8], where the

constant angle is denoted by θ and without loss of generality, the fixed direction is
taken to be third real axis, denoted by k. The main result is the following:
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TheoremA [8]: A surface M in E3 is a constant angle surface if and only if it is
locally isometric to one of the following surfaces:

(i) a surface given by

(2.3) r : M −→ R3, r(u1, u2) = (u1 cos θ (cos u2, sin u2) + γ(u2), u1 sin θ)

with

(2.4) γ(u2) = cos θ

(
−

∫ u2

0

η(τ) sin τdτ,

∫ u2

0

η(τ) cos τdτ

)

for η a smooth function on an interval I ⊂ R.
(ii) an open part of the plane x sin θ − z cos θ = 0,
(iii) an open part of the cylinder β × R, where β is a smooth curve in E2.

3. Developable Constant Angle Surfaces

In this section we consider three developable surfaces associated to a space curve.
Developable surfaces are ruled surfaces. A ruled surface in E3 is (locally) the
map r : I × R −→ R3 defined by r(s, v) = α(s) + vδ(s), where α : I −→ E3,
δ : I −→ E3 \ {0} are smooth mappings and I is an open interval. α is called the
base curve and δ is called the director curve.

Let α be a unit speed space curve with κ(s) 6= 0. A ruled surface r(s, v) =
α(s) + vw(s) is called the rectifying developable of α. Izumiya defined a ruled
surface r(s, v) = b(s) + vt(s) which is called the Darboux developable of α. The
Darboux developable of the unit tangent vector n(s) of α which is given by r(s, v) =
w(s) + vn(s) is called the tangential Darboux developable of α [5].

The characterization of tangent, normal and binormal developable constant angle
surfaces in E3 was given in [9] respectively:

(1) The tangent developable constant angle surfaces are generated by cylindrical
helices.

(2) The normal constant angle surfaces are pieces of planes.
(3) The binormal constant angle surfaces are pieces of cylindrical surfaces.
Now, we state and prove the following result considering which types of rectifying

developable surfaces satisfy the constanty angle property:

Theorem 3.1. The rectifying developable constant angle surfaces are generated by
slant helices.

Proof. Let us consider a rectifying devolopable surface M oriented, immersed in E3

given by

(3.1) r(s, v) = α(s) + vw(s),

where α : I ⊂ R −→ E3 is a spatial curve parameterized by arc length consisting
of the edge of regression of M and w = τt + κb is the Darboux vector to α. The
surface M is smooth everywhere, except in points of the curve. Let us determine
the normal to the surface. To do this, we compute the partial derivatives of r with
respect to s and v.

(3.2) rs(s, v) = (1 + vτ ′) t + κ′vb and rv(s, v) = τt + κb.

Using now (3.2), the normal to the surface is given by

(3.3) N = ± rs × rv

‖rs × rv‖ = ±n.
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Choosing an orientation of the surface we take the normal to the surface equal
to the normal of the generating curve α. In the case of constant angle surfaces
it follows that the normal n of the curve makes a constant angle with the fixed
direction k, namely

(3.4) (̂n, k) = (̂N, k) = θ.

It follows that α is a slant helix. ¤
Theorem 3.2. The Darboux developable constant angle surfaces are generated by
binormal curves of cylindrical helices.

Proof. Let us consider Darboux devolopable surface M oriented, immersed in E3

given by which is called the

(3.5) r(s, v) = b(s) + vt(s),

where α : I ⊂ R −→ E3 is a spatial curve parameterized by arc length consisting
of the edge of regression of M , t and b are the unit tangent and binormal to α
recpectively. The surface M is smooth everywhere, except in points of the curve.
Let us determine the normal to the surface. To do this, we compute the partial
derivatives of r with respect to s and v.

(3.6) rs(s, v) = (−τ + κv)n and rv(s, v) = t.

Using now (2.3), the normal to the surface is given by

(3.7) N = ± rs × rv

‖rs × rv‖ = ±b.

Choosing an orientation of the surface we take the normal to the surface equal
to the binormal of the generating curve α. In the case of constant angle surfaces
it follows that the binormal b of the curve makes a constant angle with the fixed
direction k, namely

(3.8) (̂b, k) = (̂N, k) = θ.

It follows that α is a cylindrical helix. ¤
The curve is said to be a cylindrical helix if it can be parameterized by

(3.9) α(s) =
(

a

c

∫
sin λ(s)ds,

a

c

∫
cos λ(s)ds,

b

c
s

)
,

where a, b, c are real constant satisfy the condition a2 + b2 = c2 and λ : I ⊂ R→ R
is a smooth function.

We would like to see the direct connection between the Darboux devolopable sur-
face satisfying the constant angle property and Theorem A. We want to determine
the η function in TheoremA. Without loss of generality, we will take the classical
case of a circular helix, namely for λ(s) = −s, obtaining the parametrization:

(3.10) α(s) =
(

a

c
cos s,

a

c
sin s,

b

c
s

)
.

Obtaining Frenet vector field of α we get that the Darboux devolopable of the
cylindrical helix has the form

(3.11) r(s, v) =
((

b

c
− v

a

c

)
sin s,

(
−b

c
+ v

a

c

)
cos s,

a

c
+ v

b

c

)
.
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We prove that this parametrization is a particular case of item (i) in TheoremA.
We determine the function η starting with parametrization (3.11) and rewriting
it in the form (2.3). Recall that the fixed direction k can be decomposed into its
normal and tangent parts and developing the same technique as in [8], we get that

(3.12) k = sin θα′ + cos θN.

Computing < rv, k > in two ways, first < rv, k >=< α′, sin θα′ >= sin θ and
secondly < rv, k >= b

c , where <,> denotes the Euclidean scalar product, one gets
b
c = sin θ. We obtain also a

c = cos θ. If we look at the third component of the
parameterizations (2.3) and (3.11) we should change of parameter u1 := v + cot θ
in (3.11), we get the equivalent parametrization

(3.13) r(s, u1) =
((

1
sin θ

− u1 cos θ

)
sin s,

(
− 1

sin θ
+ u1 cos θ

)
cos s, u1 sin θ

)
.

A second reparametrization, namely u2 := s + π
2 , yields

(3.14) r(s, u1) = (u1 cos θ (cos u2, sin u2) + γ(u2), u1 sin θ) ,

where γ(u2) =
(− 1

sin θ cos u2,− 1
sin θ sin u2

)
.

4. Conical Constant Angle Surfaces

A cone is a ruled surface that can be parameterized by r(s, v) = vα(s), where
α is a regular curve. The vertex of the cone is the origin and the surface is reg-
ular wherever t (α(s)× α′(s)) 6= 0. The characterization of conical constant angle
surface in E3 was given in [9] ”the only conical constant angle surfaces are circular
cones”.

Now we consider the case of some conical surfaces regarded from de point of
view of constant angle surfaces.

Theorem 4.1. A tangent conical constant angle surfaces are generated by tangent
curves of cylindrical helices.

Proof. A tangent conical surface with the vertex in the origin is given by

(4.1) r(s, v) = vt(s),

where we consider now s, v standard parameters and t is the unit tangent to α.
Computing the normal to the above surface, one gets

(4.2) N = ± rs × rv

‖rs × rv‖ = ±b.

Choosing an orientation of the surface we take the normal to the surface equal
to the binormal of the generating curve α. In the case of constant angle surfaces
it follows that the binormal b of the curve makes a constant angle with the fixed
direction k, namely

(4.3) (̂b, k) = (̂N, k) = θ.

It follows that α is a cylindrical helix. ¤
Definition 4.1. Let α be a curve in E3 with τ

κ 6= 0 everywhere. A curve α(s)
is said to be a Darboux helix if there is some constant unit vector k such that
< w, k > is constant along the curve α where w(s) is a unit Darboux vector of α
at s. The direction of the vector k is axis of the Darboux helix.[12]
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We can identify Darboux helices by condition torsion and curvature.

Lemma 4.1. α is a Darboux helix if and only if

(4.4)

(
τ2 + κ2

) 3
2

κ2

1(
τ
κ

)′

is constant.[12]

Theorem 4.2. A normal conical constant angle surfaces are generated by normal
curves of Darboux helices.

Proof. A normal conical surface with the vertex in the origin is given by

(4.5) r(s, v) = vn(s),

where we consider now s, v standard parameters and n is the unit normal to α.
Computing the normal to the above surface, one gets

(4.6) N = ± rs × rv

‖rs × rv‖ = ± 1√
κ2 + τ2

(τt + κb)

Choosing an orientation of the surface we take the normal to the surface equal to
the Darboux vector of the generating curve α. In the case of constant angle surfaces
it follows that Darboux vector w of the curve makes a constant angle with the fixed
direction k, namely

(4.7) (̂w, k) = (̂N, k) = θ.

It follows that α is a Darboux helix. ¤

Theorem 4.3. Let α be a curve constant precession. If the conical surfaces con-
struct involving the normal lines to the curve α, then the surface is a constant angle
surface with the axis of k = w + µn.

Proof. A normal conical surface with the vertex in the origin is given by

(4.8) r(s, v) = vn(s),

where we consider now s, v standard parameters and n is the unit normal to α.
Computing the normal to the above surface, one gets

N = ± rs × rv

‖rs × rv‖ = ± 1√
κ2 + τ2

(τt + κb)

Choosing an orientation of the surface we take the normal to the surface equal
to the Darboux vector of the generating curve α. In the case of curves constant
precession it follows that the unit normal N of the surface makes a constant angle
with the fixed direction k, namely

(4.9) (̂w, k) = (̂N, k) = θ.

Since α is a curve constant precession, the axis of constant angle surface is k =
w + µn [10]. ¤
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5. Constant Angle Surfaces and Curves

In the last section we give some characterization for a curve lying on a surface
for which the unit normal makes a constant angle with a fixed direction.

The geodesic curvature plays a much more important role in the differential
geometry of surfaces than the geodesic torsion does, so we start by focusing on it.

Let α : I ⊂ R −→ M be a unit speed curve on a surface. Take a frame along
the curve {T, Y = T ×N, N} , where N is the unit normal M . The Darboux
equations for this frame are

T ′ = kgY + knN,(5.1)
Y ′ = −kgT + τgN,

N ′ = −knT − τgY.

Here kn is the normal curvature of T on M, kg is the geodesic curvature of α and τg

is called geodesic torsion of α. Recall that a curve α is a line of curvature of M if T
is always an eigenvector of the shape operator of M. Using the Darboux equations
we can easily show that τg = 0 if and only if α is a line of curvature. With the
above notations, denote by γ := (̂N, b), where γ, the angle function is between the
unit normal and binormal to α. From Eq(5.1) one obtains

τg = τ − γ′,(5.2)
kn = κ sin γ,

kg = κ cos γ.

Theorem 5.1. Let α : I ⊂ R −→ M be a curve on a constant angle surface
M with unit normal N and the fixed direction k. Take a frame along the curve
{T, Y = T ×N, N} .

(1) If a curve α on M is a geodesic then α is a slant helix with the axis k in E3.
(2) If a curve α on M is a asymptotic curve then α is a general helix with the

axis k in E3.
(3) If α is a line of curvature, then the fixed direction k is in plane spanned by

the vectors Y, N.

Proof. (1) Since α is a geodesic on M, the normal of the surface coincides with the
principal normal of the curve. In the case of constant angle surfaces it follows that
the principal normal of the curve makes a constant angle with the fixed direction
k, namely

(5.3) (̂n, k) = (̂N, k) = θ.

It follows that α is a slant helix.
(2) Since α is a asymptotic curve on M, we have

(5.4) kn = 0.

From Eq(5.2) one obtains γ = 0 where γ, the angle function is between the unit
normal and binormal to α. This actually means that the normal of the surface
coincides with the binormal of the curve. In the case of constant angle surfaces it
follows that the principal normal of the curve makes a constant angle with the fixed
direction k, namely

(5.5) (̂b, k) = (̂N, k) = θ.
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It follows that α is a general helix.
(3) Since α is a line of curvature, it follows that

(5.6) N ′ = S(T ) = cT,

for some constant c, where S is shape operator of M. In the case of constant angle
surfaces

〈N, k〉 = constant.
By taking the derivative of this equation, we get

〈N ′, k〉 = 0.

Thus, one can write k = λY + µN. This completes the proof. ¤

Theorem 5.2. Let α : I ⊂ R −→ M be a line of curvature on a constant angle
surface M with unit normal N and the fixed direction k. Take a frame along the
curve {T, Y = T ×N, N} . Then the ruled surface

(5.7) r (s, v) = α (s) + vN (α(s))

is a constant angle surface.

Proof. Let us determine the normal to the surface. To do this, we compute the
partial derivatives of r with respect to s and v.

(5.8) rs(s, v) = (1 + vc) T and rv(s, v) = N

for some constant c. Using now (5.8), the normal to the ruled surface is given by

(5.9) Ñ = ± rs × rv

‖rs × rv‖ = ±Y.

Choosing an orientation of the ruled surface we take the normal to the surface
equal to Y of the generating curve α. From the Theorem 6(3) we can write

k = cos θN + sin θY.

Thus
(̂Ñ , k) =

π

2
− θ.

This completes the proof. ¤
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