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Abstract. In this paper we classify certain ruled surfaces in E3. We study
the tangent developable and conical surfaces from the point of view of the con-
stant angle property. Moreover, the natural extension to normal and binormal
constant angle surfaces is given.

1. Introduction

Developable ruled surfaces represent a special category of ruled surfaces and
are defined as ruled surfaces with vanishing Gaussian curvature or, more generally,
those ruled surfaces which have constant Gauss map along each ruling (see for de-
tails [7]). Since nineteenth century, the developable surfaces captured the attention
of mathematicians and the main properties of these surfaces are mentioned in al-
most all monographs and books on classical differential geometry. Regarding the
property of the Gauss map, in [1] it is presented an extended study on varieties with
degenerate Gauss maps, meaning that the Gaussian curvature vanishes everywhere,
which includes also the case of developable surfaces.

Due to their flatness, isometries with planes are allowed and, for this reason,
recently it became interesting to discover more ways to use these surfaces in different
practical applications. For example, in [11] it is proposed a way of constructing
and displaying graphically the kinematic surfaces, a class of surfaces generated by
mutual moving ruled surfaces that touch each other along their common ruling.
A more suggestive application is described in [5], where some examples of using
developable surfaces in contemporary architecture are discussed.

Motivated by their flatness property, in this paper we classify the developables
and some other special surfaces constructed on curves from the point of view of the
constancy angle property, i.e. the normal to the surface makes a constant angle with
a fixed direction. Initially, the study of constant angle surfaces was proposed for
the product space S2×R in [2]. After that, surfaces endowed with this property in
other ambient spaces, namely H2×R, E3 were investigated (see for details [3, 4, 8]).
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Moreover, in [8] it is also given a comparison between the results obtained so far
in the above mentioned ambient spaces. We mention that in S2×R one gets positive
Gaussian curvature K, in H2 × R negative Gaussian curvature is obtained, while
K vanishes identically when the ambient is the Euclidean 3−space. Explicitly, the
constant angle property of the Gauss map with a fixed direction in E3 is equivalent
to the fact that the Gauss map lies on a circle in the 2−sphere S2. As it has no
interior points in S2, the Gaussian curvature of the surface vanishes identically. It
follows that flatness is a consequence of the constancy angle property. At this point,
noticing this common aspect between developable ruled surfaces and constant angle
surfaces in E3, in the present paper we would like to see precisely which types of
developable ruled surfaces satisfy the constancy angle property. Other results on a
related topic involving curves on constant angle surfaces can be found also in [10].

It is well known the following classification of surfaces in E3 involving their de-
generated Gauss map: planes, cylinders, cones and tangent surfaces – ruled surfaces
generated by the tangent lines in every point of a curve in space. If we drop the
flatness property, the construction of tangent developable surfaces can be used in
order to obtain some other surfaces constructed on curves replacing the tangent line
to the curve with the normal line or the binormal line respectively, rising therefore
the so called normal surfaces or binormal surfaces.

In next section we mention some basic facts in the general theory of curves and
surfaces useful for the rest of the paper. In Section 3 the main result says that
the only tangent developable constant angle surfaces are generated by generalized
helices. Very recent results implying generalized helices, also called slope lines, can
be found in [9] (see also its references).

Section 4 consists in the extension of the study on the constancy angle property
for the normal and binormal surfaces. The main result is that the normal constant
angle surfaces are pieces of planes and the binormal constant angle surfaces are
pieces of cylinders. In Section 5 we make some observations regarding the conical
constant angle surfaces, motivated by their affiliation to the classification of flat
surfaces in E3.

2. Preliminaries

Traditionally, the differential geometry of curves starts with a smooth map of
s, let us call it α : I ⊂ R → E3, that parameterizes a spatial curve denoted again
with α. We say that the curve is parameterized by arc length if |α′(s)| = 1, where
α′ is the derivative of α with respect to s. Throughout this paper s is the arc
length parameter. Let us denote t(s) = α′(s) the (unit) tangent to the curve. By
definition, the curvature of α is κ(s) = |α′′(s)|. If κ 6= 0, then the (unit) normal of
α can be obtained from α′′(s) = κ(s)n(s). Moreover, b(s) = t(s) × n(s) is called
the (unit) binormal to α. With these considerations t,n,b define an orthonormal
basis. Recall the Frenet-Serret formulae:

(2.1)
t′(s) = κ(s)n(s)
n′(s) = −κ(s)t(s) + τ(s)b(s)
b′(s) = −τ(s)n(s)

where τ(s) is the torsion of α at s.
A natural extension from curves to the theory of surfaces constructed on curves

can be made as follows. Given a curve α parameterized by arc length in Euclidean
3−space, we can think of constructing ruled surfaces involving α and the tangent,
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normal or binormal lines to the curve. As a consequence, we have three well known
types of surfaces of this kind, namely

• tangent developable surface: r(s, v) = α(s) + vt(s)
• normal surface: r(s, v) = α(s) + vn(s)
• binormal surface: r(s, v) = α(s) + vb(s)

(see for details [6]). The curve α is the generating curve and the rulings are respec-
tively the tangent, the normal and the binormal lines to the curve.

The characterization of constant angle surfaces in E3 was given in [8], where the
constant angle is denoted by θ and, without loss of generality, the fixed direction is
taken to be the real axis, denoted by k. The main result of [8] is

Theorem A. ([8]) A surface M in E3 is a constant angle surface if and only if it
is locally isometric to one of the following surfaces:

(i) a surface given by

(2.2) r : M → E3, (u1, u2) 7→ (u1 cos θ(cos u2, sinu2) + γ(u2), u1 sin θ)

with

(2.3) γ(u2) = cos θ


−

u2∫

0

η(t) sin t dt,

u2∫

0

η(t) cos t dt




for η a smooth function on an interval I ⊂ R,
(ii) an open part of the plane x sin θ − z cos θ = 0,
(iii) an open part of the cylinder β × R, where β is a smooth curve in R2.

In the next sections we deal with surfaces constructed on curves and we study
their constancy angle property. We also show how one can retrieve this type of
surfaces constructed on curves from the general theorem of characterization above
mentioned.

3. Tangent developable surfaces

We start this section with some important properties of developable ruled sur-
faces. In [7] it is proved that the parametrization of every flat ruled surface gener-
ically written (u, v) 7→ r(u, v), in other words, an open and dense subset of every
flat ruled surface can be subdivided into subintervals such that the parametrization
corresponding to these subintervals can be included in one of the following types:
plane, cylinder, cone, tangent developable surface.

Thinking now of the class of constant angle surfaces in E3, which are flat as we
have mentioned in Preliminaries, we show how one can retrieve the case of tangent
developable surfaces, that is not mentioned explicitly in Theorem A from [8], among
the constant angle surfaces in E3.

First we state and prove the following result concerning which types of tangent
developable surfaces satisfy the constancy angle property:

Theorem 3.1. The tangent developable constant angle surfaces are generated by
cylindrical helices.

Proof. Let us consider a tangent developable surface M , oriented, immersed in E3,
given by

(3.1) r(s, v) = α(s) + vt(s)
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where α : I ⊂ R → E3 is a spatial curve parameterized by arc length consisting
of the edge of regression of M and t is the unit tangent to α. The surface M is
smooth everywhere, except in the points of the curve α.

Let us determine the normal to the surface. To do this, we compute the partial
derivatives of r with respect to s and v

rs(s, v) = α′ + vα′′ and rv(s, v) = α′.

Using now (2.1), the normal to the surface is given by

N = ± rs × rv

|rs × rv| = ∓ b.

Choosing an orientation of the surface we take the normal to the surface equal to
the binormal of the generating curve α. In the case of constant angle surfaces it
follows that the binormal b of the curve α makes a constant angle θ with the fixed
direction k, namely

(3.2) (̂b, k) = (̂N, k) = θ, θ ∈ [0, π).

It follows that α is a cylindrical helix.
¤

In order to write the parametrization of the cylindrical helix α we proceed this
way. In general, for a curve α with |α′(s)| = 1 and satisfying (3.2) one can write

(3.3) α(s) =
(

ψ(s),
b

c
s

)

where the curve ψ : I ⊂ R → R2 satisfies |ψ′(s)| =
a

c
, such that a2 + b2 = c2,

a, b, c ∈ (0,∞). It results that the derivative of ψ with respect to s can be written
ψ′(s) =

(a

c
sinλ(s),

a

c
cos λ(s)

)
for a certain function λ. Integrating, the expression

of ψ is obtained, and substituting it in (3.3) one gets:

(3.4) α(s) =
(

a

c

∫
sin λ(s)ds,

a

c

∫
cos λ(s)ds,

b

c
s

)
,

where a, b, c satisfy the above condition and λ : I ⊂ R → R is a smooth function.
The curve α parameterized by (3.4) is said to be a cylindrical helix.

We would like to see the direct connection between the tangent developable
surfaces satisfying the constant angle property and Theorem A. We have

Theorem 3.2. The tangent developable constant angle surfaces are obtained for
η(t) = −λ−1(π

2 − t) in Theorem A.

Proof. We start the proof with the classical case of a circular helix, namely for
λ(s) = −s, obtaining the parametrization:

(3.5) α(s) =
(

a

c
cos s,

a

c
sin s,

b

c
s

)
.

Substituting α′(s) =
(
−a

c
sin s,

a

c
cos s,

b

c

)
and expression (3.5) in parametriza-

tion (3.1) we get that the tangent developable of the cylindrical helix α has the
form
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(3.6) r(s, v) =
(

a

c
(cos s− v sin s),

a

c
(sin s + v cos s),

b

c
(s + v)

)
.

We prove that this parametrization is a particular case of (i) in Theorem A. We
determine the general function η starting with parametrization (3.6) and rewriting
it in the form (2.2).

Let us look at the third component of the parameterizations (2.2) and (3.6).
Recall that the fixed direction k can be decomposed into its normal and tangent
parts and, developing the same technique as in [8], we get that

k = sin θα′ + cos θN.

Computing 〈rs, k〉 in two ways, first 〈rs, k〉 = 〈α′, sin θα′〉 = sin θ and secondly

〈rs, k〉 =
b

c
, where 〈 , 〉 denotes the Euclidean scalar product, one gets

b

c
= sin θ.

We obtain also
a

c
= cos θ.

After the change of parameter u1 := s + v in (3.6), we get the equivalent
parametrization

r(s, u1) =
(

cos θ(cos s− u1 sin s + s sin s),(3.7)

cos θ(sin s + u1 cos s− s cos s), u1 sin θ
)
.

A second reparametrization, namely u2 := s + π
2 , yields

(3.8) r(u1, u2) = (u1 cos θ(cos u2, sin u2) + γ(u2), u1 sin θ)

where

(3.9) γ(u2) = cos θ
(
sin u2 −

(
u2 − π

2

)
cos u2,− cos u2 −

(
u2 − π

2

)
sin u2

)
.

Now, by comparison with Theorem A, (3.8) is identical with (2.2) and we only
have to determine the smooth function η in order to write (3.9) in the same manner
as (2.3).

We claim that η(t) = π
2 − t.

In order to prove the claim we compute

−
u2∫

0

η(t) sin t dt =
(π

2
− u2

)
cosu2 + sin u2 − π

2

and
u2∫

0

η(t) cos t dt =
(π

2
− u2

)
sin u2 − cosu2 + 1.

We complete the proof in this case concluding that the expression (3.9) is equivalent
with (2.3) for η(t) = π

2 − t and taking into account the integration limits, i.e. a
translation in the xy−plane.

Let us return to the general case of a cylindrical helix.
Follow-on the same idea like in the previous case, already knowing that

a

c
= cos θ,

b

c
= sin θ and taking the derivative of α with respect to s,
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α′(s) =
(

a

c
sin λ(s),

a

c
cosλ(s),

b

c

)
, we get the parametrization for the tangent

developable corresponding to the generalized helix given by (3.4) in the form

r(s, v) =
(

cos θ

(∫
sin λ(s)ds + v sin λ(s)

)
,(3.10)

cos θ

(∫
cosλ(s)ds + v cos λ(s)

)
, (s + v) sin θ

)
.

Making now the change of parameters u1 := s+v and u2 := π
2 −λ(s) in (3.10), one

gets the equivalent parametrization

(3.11) r(u1, u2) = (u1 cos θ(cos u2, sin u2) + γ(u2), u1 sin θ)

where

γ(u2) = cos θ

(∫ (
λ−1

(π

2
− u2

))′
cosu2 du2 − λ−1

(π

2
− u2

)
sin

(π

2
− u2

)
,

∫ (
λ−1

(π

2
− u2

))′
sin u2 du2 − λ−1

(π

2
− u2

)
cos

(π

2
− u2

))
.(3.12)

Our attention is focused on the function η which should be determined. By straight-
forward computations,

−
u2∫

0

η(t) sin t dt =
∫ u2

0

η(t)
(
sin

(π

2
− t

))′
dt

= η(u2) sin
(π

2
− u2

)− η(0)−
u2∫

0

η(t)′ cos t dt.

and
u2∫

0

η(t) cos t dt = −
∫ u2

0

η(t)
(
cos

(π

2
− t

))′
dt

= −η(u2) cos
(π

2
− u2

)
+

u2∫

0

η(t)′ sin t dt.

Taking into account the integration limits we conclude the proof of the theorem
with the fact that also in this general case for η(t) = −λ−1

(
π
2 − t

)
the expressions

(3.12) and (2.3) are equivalent.
¤

4. Normal and Binormal Surfaces

In this section we deal with the other two types of surfaces constructed on a spa-
tial curve α, normal and binormal surfaces. As we have seen in Preliminaries, these
surfaces are constructed by using the same technique as the tangent developable
ones, replacing in (3.1) the tangent line t with the normal line n, respectively the
binormal line b.

In the first part of this section we study under which conditions the normal
and the binormal surfaces can be retrieved form Theorem A under the property of
constant angle surfaces.
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Concerning this aspect, we state and prove the following result

Theorem 4.1.

(1) The normal constant angle surfaces are pieces of planes.
(2) The binormal constant angle surfaces are pieces of cylindrical surfaces.

Proof. Let us consider first the parametrization of a normal surface

(4.1) r(s, v) = α(s) + vn(s).

Computing the normal to the above surface, one gets

(4.2) N =
(1− κv)b− τvt√

∆
, where ∆ = (1− κv)2 + τ2v2.

We are interested in those normal surfaces for which the normal N makes a constant
angle θ with the fixed direction k, namely (N̂, k) = θ, equivalently, 〈N, k〉 = cos θ.
Substituting (4.2) in this expression we get a vanishing polynomial expression of
second order in v. So, all the coefficients must be identically zero, that is, the
following relations are satisfied:

〈b, k〉2 − cos2 θ = 0(4.3)

κ 〈b, k〉2 + τ 〈b, k〉 〈t, k〉 − κ cos2 θ = 0(4.4)

(κ 〈b, k〉+ τ 〈t, k〉)2 − (κ2 + τ2) cos2 θ = 0.(4.5)

From (4.3) one obtains

(4.6) 〈b, k〉 = ± cos θ.

Substituting (4.3) in (4.4) we get

τ 〈b, k〉 〈t, k〉 = 0.

We distinguish the following cases:
a) τ = 0.

Both (4.4) and (4.5) reduce to (4.3) which is automatically fulfilled be-
cause α being a planar curve its binormal coincides with the normal of the
plane. Thinking now the normal surface as a ruled surface for which the
rulings are the normal lines to the generating plane curve α, we get that
the normal constant angle surface is a portion of plane.

b) τ 6= 0.

b.1) 〈b, k〉 = 0. From (4.3) follows cos θ = 0 and substituting it in (4.5) we
get 〈t, k〉 = 0. Moreover, taking the derivative with respect to s we get
also 〈n, k〉 = 0. We have a contradiction: k is orthogonal to all t,n,b
which already define an orthonormal basis!

b.2) 〈t, k〉 = 0. Analogously, we get a contradiction similar to the previous
subcase. Again this situation cannot occur.

So, in the case of normal constant angle surfaces we retrieve here the case (ii) from
Theorem A.

In the same manner, consider the parametrization of a binormal surface

(4.7) r(s, v) = α(s) + vb(s).
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The normal to the surface is

N =
−n− τvt√

∆
, where ∆ = 1 + τ2v2.

With the same technique as before, one gets that the only case which can occur
is for τ = 0 with the additional condition 〈t, k〉 = 0. Yet, the binormal to the
planar curve α is parallel to the fixed direction and θ = π

2 . Thus, the binormal
constant angle surfaces are cylindrical surfaces generated by the planar curve α. In
this manner we reach item (iii) of Theorem A.

¤

We conclude this section pointing out that studying these types of surfaces con-
structed on curves under the constancy angle property, all three cases in Theorem
A are retrieved. First item (i) has as a particular case the tangent developable
constant angle surfaces, the second item (ii) includes the case of normal surfaces
and the last one, (iii) corresponds, in particular, for binormal surfaces satisfying
the constancy angle property.

5. Conical constant angle surfaces

In this last section let us return to the classification of flat surfaces in E3. In
previous sections we recovered the planes, the cylinders and the tangent developable
surfaces among the constant angle surfaces. Considering now the case of conical
surfaces thought from de point of view of constant angle surfaces, we state and
prove

Proposition 5.1. The only conical constant angle surfaces are circular cones.

Proof. A conical surface with the vertex in the origin is given by

(5.1) r(s, v) = vα(s)

where we consider now s, v standard parameters. This means that any cone gener-
ated by a generic curve α can be reparameterized using standard parameters such
that α lies on the unit 2−sphere, |α(s)| = 1. In these conditions, the normal to the
surface is given by N = α × α′. The constant angle property (3.2) is equivalent
with 〈α× α′, k〉 = θ. Taking the derivative with respect to s, we get

(5.2) 〈α× α′′, k〉 = 0.

Now, α′′ can be decomposed in the orthonormal basis {α, α′, α× α′} as

α′′ = 〈α′′, α〉α + 〈α′′, α′〉α′ + 〈α′′, α× α′〉α× α′.

From |α(s)| = 1 and |α′(s)| = 1 we get 〈α′′, α′〉 = 0 and 〈α′′, α〉 = −1. Substi-
tuting these expressions in the decomposition of α we get

(5.3) α′′ = −α + κg(α× α′)

where κg denotes the geodesic curvature of α.
Substituting (5.3) in (5.2) one obtains that a conical surface is constant angle

surface if it fulfills
κg 〈α′ × k〉 = 0.

At this point we can conclude that α is a planar curve. Moreover, knowing that
α is on the unit 2-sphere, it follows that α is a circle. So, (5.1) parameterizes a
circular cone. ¤
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In order to retrieve circular cones from Theorem A, it suffices to consider a
general parametrization for a circular cone and after a change of frame such that
the cone’s axis is parallel with the z−axis, we get the corresponding parametrization
replacing (2.3) for η(t) = 0 in (2.2).
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