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ABSTRACT. The objective of the present paper is to study a new type of struc-
ture named as almost quadratic ¢-structure in an n-dimensional Riemannian
manifold. Some results involving this structure have been established. Also
conditions of being an almost contact and almost para-contact manifold have
been deduced. Finally the existence for this type of structure is shown with
an example.

1. INTRODUCTION

An odd dimensional differentiable manifold with structure tensors (¢, £, n), where
¢ is a (1, 1) type tensor, £ is a vector field and 7 is a 1-form on the manifold,
satisfying

P*(X) + X =n(X)E, (&) =0,
for any vector field X, is said to be an almost contact manifold [2].

I. Sato [1], introduced the concept of a structure similar to the almost contact
structure which is known as almost para-contact structure. A differentiable man-
ifold with structure tensors (¢,&,n) where ¢ is a (1, 1) type tensor, £ is a vector
field and 7 is a 1-form on the manifold, satisfying

¢*(X) =X —n(X)¢, 6(§) =0,

for any vector field X, is said to be an almost para-contact manifold [1]. In this
paper, we also introduce a new type of structure named as almost quadratic ¢ —
structure defined in the following manner:

Let M,, be an n(> 2) dimensional manifold and ¢, £, n be a tensor field of type
(1,1), a unit vector field and a 1-form respectively. If ¢, £, n satisfy the conditions

(1.1) P(€§) =0
and
(1.2) H*(X) + ap(X) +bX = bn(X)E, a® # 4b,
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for any vector field X and constants a,b (# 0), then M, is said to admit an
almost quadratic ¢ — structure, (¢,£,n) and such a manifold M, is called an
almost quadratic ¢ — manifold.

2. PRELIMINARIES

For any vector field X in an almost quadratic ¢-manifold M,,, we have
(2.1) $*(X) + ad(X) + bX = bp(X)€ .
Now, operating ¢ from left and using equation (1) we get
(2.2) #*(X) + ag*(X) + bp(X) =0 .
Again replacing X by ¢(X), in equation (3), we get

(2.3) $*(X) + ad®(X) + bp(X) = by(¢(X))¢ .

Now, comparing equation (4) and (5), we have bn(¢(X))€ = 0, but b # 0 and £ is
not a zero vector, thus we have

(2.4) n(Pp(X))=0 de.nogp=0.

Now, (&) =0 = ¢2(£) = 0. So, putting X = £ in equation (3), we get

P*(€) + ag(€) + b€ = bn(6)¢
ie. b =bn(€)€ but b # 0 and ¢ is also non zero, so

(2.5) nE)=1.

Now, for the transformation ¢, ¢(£) = 0 but £ is not a zero vector, so Rank ¢ <
n — 1. If there exist another vector a such that ¢(a) = 0, then from equation (3),
we get ba = bn(a)€, i.e. a=n(a)€ as b # 0.

So, a and £ becomes linearly dependent. Therefore kernel of the transformation
contains the only vector ¢ and consequently the Rank ¢ = n — 1. Thus, in view of
equation (6) and (7), we have the following theorem:

Theorem 2.1. In an almost quadratic ¢ — manifold we have
a)nog¢=0

b) n(€) =1 and

¢) Rank ¢ =n —1.

We will now show that the almost quadratic ¢-structure is not unique. Let f be
a non singular vector valued linear function on M,,.
Let us define the (1,1) tensor field ¢*, the 1-form 7n* and the unit vector field £*
as

(2.6) fod*=gof
(2.7) n=mnof
(2.8) f&=¢

Now, post multiplying equation (8) by ¢* and using it, we get
fod™?=gofog =00 (fo¢")
=¢’of
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=(—ap—bl, + &) of
— —afod* — fbl, + by Q€ .
Applying equation (10), we get
fo¢*® = fo(—ap* —bl, +bn* @) .

Since f is non singular, we have

(2.9) ¢*2 = —a¢p* —bl, +bn* @& .
Now, fo¢*t* = ¢o f&* = ¢(£) =0, by equation (10) and since f is non singular
(2.10) e =0

Therefore, with the help of equation (11) and (12), we can state the following
theorem:

Theorem 2.2. The almost quadratic ¢ — structure in an almost quadratic ¢ —
manifold is not unique.

3. NECESSARY AND SUFFICIENT CONDITION FOR BEING AN ALMOST
QUADRATIC ¢-MANIFOLD

To find the necessary and sufficient condition for M, to be an almost quadratic
¢-manifold, we need the following results:

Theorem 3.1. The eigen values of the structure tensor ¢ are the roots of the
equation a(a® + aa + b) = 0.

Proof. Let a be the eigen value of ¢ and ¢ be the corresponding eigen vector. Then
¢(¢) = a¢ and $*(¢) = a*C .

Now, using equation (3), we get

(3.1) (& + aa + b)¢ = bn(¢)§ .

So, two cases arise

a) ¢ and ¢ are linearly dependent, i.e. { = ¢£ for some non zero scalar ¢, or
b) ¢ and ¢ are linearly independent.

Case-a) Putting ¢ = ¢£ in equation (13), we get
c(a? + aa + b)E = ben(€)E

ie. a? +aa +b=b, since c # 0,n(¢) = 1 and £ is a non zero vector. Thus we get
a=0,—a.

Now, earlier, in this paper, during the proof of Theorem 2.1, we have seen that £ is

the only vector for which ¢(£§) = 0 and we know that, for every eigen vector there

corresponds only one eigen value but @ = —a contradicts ¢(£) = 0 when a # 0.

Therefore zero is the only eigen value of ¢ when £ and ( are linearly dependent.

Case-b) If ¢ and £ are linearly independent, then we have by equation (13)
a?+aa+b=0.

Therefore, combining Case-a and Case-b we see that, if « is an eigen value of ¢,
then « is a root of a(a? + aa +b) = 0. O
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Corollary 3.1. If the vectors & and ¢ are linearly independent then n(¢) = 0.

Proof. Since b # 0, the proof is obvious from equation (13). O

Theorem 3.2. The necessary and sufficient condition that a manifold M, will be
an almost quadratic ¢-manifold is that at each point of the manifold M, , it contains
a tangent bundle 11, of dimension p, a tangent bundle 11, of dimension q and a real
line I1y such that I, NI, = {®} ,II,NII; = {®},II,NII; = {®} (where {®} is the
null set) and I1, UIl, UII; = a tangent bundle of dimension n, projection L, M, N
on II,, 11, and I1; respectively being given by

)

a) ol = —¢? — (V=R tayg yhere o = 2b — (L=vel=db)
b) BM = —¢? + (@)gﬁ, where 8 = 2b — (@) ,

c)DN=¢>+tap+b=b®E.
Proof. To prove the above theorem, we need the help of the following lemma:

Lemma 3.1. Let \;,1 < i < n be the eigen values of a square matriz A and (; be
the eigen wvectors corresponding to \;, then
Fi(A)G = (A2 = X A)G
= [ (Ak)Ck when j # k
0 when j =k .

Proof. Since (; are the eigen vectors corresponding to A;, for 1 < i < n, we have
A = A\i¢; and

A2 =N\
Now, [i(A)C = (A% = X A) e
= A% — N AG
= (M7 = Ak -
Therefore, for j # k, f;(A)¢kx = fj(Ax)Cr and for j =k, f;(A)Cx =0 0

We now prove the main theorem:

Let P; be the eigen vectors corresponding to the eigen value =¢tvo-—4b W) of ¢, Q;

be the eigen vectors corresponding to =2—4+—= VQ“Q_‘”’ and £ be the eigen vector corre-
sponding to the eigen value 0 respectively.

Now, let us consider the equation

(3.2) P +dQj+e£=0.
where ¢!, d’ and e are scalars, i = 1,2,...,p and j = 1,2,...,¢ and Einstein’s
summation convention is used. Applying ¢ on equation (14), we get
(3.3) dH(P) +dp(Q;) =0
a4 a2 —4b —a—+a?—4b
- Cl[a—k—a]Pi + dJ[L]Qj =0
2 2
_ _ JVaZ —4b . _
= SR+ Q)+ [P = PQ,] = 0
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Now, using equation (14), we get

a a? —4b . ;

§€€+ T[Czpi - dJQj} =0.
operating ¢ and since a? # 4b, we get
(3.4) cO(P) —d¢(Q5) = 0.

Thus, from equation (15) and (16), we get
co(P) =d'¢(Qy) =0.

Now, ci¢(P;) = ¢f(=etve—1b W’)(Pi) =0and b#0, so, ¢!P; =0,

i.e. ¢ =0 for all i.

Similarly d’ = 0 for all j and thus by equation (14), e = 0.

Therefore ¢! = d/ = e =0, i.e. {P;,Q;,£} is a linearly independent set.

Now, let L, M, N be projection maps on 1I,,1I, and II; respectively, then we must
have

LP, =P, LQ; =0 LE=0
MP;, =0 MQ, = Q; ME=0
NP; =0 NQ; =0 NE=¢

So, in view of Lemma 3.2.1, let us choose

2
al = —¢? — (7\/<12—24b+a)¢, a’—a/a?=1p)

where o = 2b — ( 5

BM = —¢? + (Y=t =a)g, where 8 = 2b — (2+ava®-1b Jarodby |

BN =¢>4+ap+b=bnp®¢ and a® # 4b ,
Such that
aLP; = —¢*P; — (Y&=24)6 P,

2
— 7(L V2f12—4b) P — (\/112—24b +a)(—a+\/2M)H

i.e., we get LP; = P;. Similarly, other results can be proved.

Thus, we prove that an almost quadratic ¢-manifold M,,, at each of its point con-
tains a tangent bundle II, of dimension p, a tangent bundle II, of dimension ¢ and
a real line ITy such that II, NI, = {®},1I, NII; = {®},II, NII; = {®} (where
{®} is the null set) and II, UII, UII; = a tangent bundle of dimension n, L, M, N
are the projections on II,,II, and II; respectively.

Conversely, suppose that, there is a tangent bundle 11, ,II; and II; of dimen-
sion p,q and 1(real line) respectively at each point of M, such that II, NII, =
I, NII; = II, NI} = {®}, also I, UII, UII; = a tangent bundle of dimension n.
Let P; and @; be p and ¢ linearly independent vectors in II, and II, respectively
where ¢ =1,2,...,pand j = 1,2,...,¢q and & be a vector in II;. Let, {F;,Q;,{} span
a tangent bundle of dimension n. Then {P;, Q;,&} is a linearly independent set.
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Let us define the inverse set {p/i’, q/j, 77} such that

(3.5) Li=p"®P+q72Q; +n®¢.
We define
a ' 7 \/@2—46 /i 7

¢:—§(P ®Pi+qj®Qj)+T(p ®P—-q’®Q;) .
Therefore

a?—2b ’s ava? —4b_ . Iy

=5 )P ®P+e¢’ Q) - (—5 )P '®P-¢'®Q;) .

Thus, we have
(3.6) ¢*=—ap—b(p @ P +q¢7 ®Q;).

Now, by equation (17), we get
—b(p" @ P+ 47 ®Q;) = by @€ —bl, |
putting this in equation (18), we have
B +ap+bl, =bnE .

Thus, we see that M, admits an almost quadratic ¢ — structure. Hence the
condition is sufficient. O

Corollary 3.2. If a? < 4b, then the dimension of almost quadratic ¢-manifold is
odd.

Proof. The eigen values of ¢ are 0, =2= V2a2_4b and =4t V2a2 —4b  Now, if a® < 4b,

then the eigen values *a*V2‘12*4b and =4t V2"2*4b are complex conjugate to each
other.

Since trace of ¢, i.e. the sum of the eigen values of ¢ is real, the complex conjugate
eigen values of ¢ occur in pairs. Therefore the tangent bundle II; becomes complex
conjugate to II,, i.e. in this case p = q. So, by Theorem 3.2, the dimension of
almost quadratic ¢-manifold becomes 2p + 1. [

4. METRIC ON ALMOST QUADRATIC ¢-MANIFOLD

Let us now try to find a metric on almost quadratic ¢-manifold. We first prove
the following lemma:

Lemma 4.1. Every almost quadratic ¢p-manifold M, admits a Riemannian metric

tensor field h such that h(X, &) = n(X) for every vector field X on M,,.

Proof. Since M,, admits a metric tensor field f (which exists provided M, is para-
compact), we obtain h by setting

(4.1) MX,Y) = f(adX +bX — bn(X)E, adY +bY —bn(Y)E) + n(X)n(Y)
Now, putting Y = £, we get
h(X, &) =n(X) .
O

Theorem 4.1. FEvery almost quadratic ¢p-manifold M,, admits a Riemannian met-
ric tensor field g such that g(X,€) = n(X) and g(¢X, YY) = bg(X,Y)—bn(X)n(Y) .
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Proof. Let us put

1
9(X.Y) = [bh(X,Y) + h(6X, 0Y) + 3 (h(6X,Y) + h(X, ) + bn(X)n(Y)
where h is given by equation (19), then, it can be easily verified that g(X, &) = n(X)
and g(¢X, 9Y) = bg(X,Y) — bn(X)n(Y) . O

5. RELATION OF ALMOST QUADRATIC ¢-MANIFOLD WITH ALMOST CONTACT
AND ALMOST PARA-CONTACT MANIFOLD.

Theorem 5.1. An almost quadratic ¢p-manifold induces an almost contact manifold
iff a=0and b > 0.

Proof. We first prove that if an almost quadratic ¢ — structure is an almost contact
structure[2], then a = 0 and b > 0. We have the almost quadratic ¢ — structure as

¢’ +ap+bl =,
e, B+ +(b—)=bne¢.

Now, let us choose a transformation F' such that

a
—I=F.
¢+ 3
Thus, we get
2
(5.1) F4 (b= ) =bnecg.

Now, we choose the 1-form n* and the vector field £* in such a manner that the
equation (20) takes the form

a2 a2
_712 - * *.
b—) (b 4M®£

So, without loss of generality we may take for real transformation

(5.2) F? +(

nt= 4;11;(12 n and & = 4b47ba2 ¢ , band (4b — a?) are

of same sign.
Again, equation (21) can be represented as

2
1

(b—)

for 4b > a?. Let us now choose 1) = ﬁ F'. Therefore, we get
b=

(5.3) V2H+I=n" @

Now, the structure (22) will be an almost contact structure if

P(E)=0= S F()=0=F()=0.

Since a? # 4b # 0, we get
F(§)=0= (¢+5DE=0.
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Again we have ¢(£) = 0. Thus the structure (22) is an almost contact structure if

a = 0, since £ is not a zero vector.

Also the dimension of an almost contact manifold is odd, for which it is necessary

that a? < 4b (according to Corollary 3.2.1). Again, we have a = 0, therefore b > 0.
Conversely, if ¢ = 0 and b > 0, then by Corollary 3.2.1, the dimension of the

almost quadratic ¢-manifold is odd and the almost quadratic ¢-structure becomes

(5.4) P+l =bn¢ .

Now, let ¢ = %qﬁ, therefore equation (23) becomes

P rI=no¢

Again, we have (§) = %qﬁ(f) = 0, since in an almost quadratic ¢-manifold we

have ¢(£) = 0. Therefore this structure is an almost contact structure when a = 0
and b > 0. O

Theorem 5.2. An almost quadratic ¢-manifold induces an almost para-contact
manifold iff a =0 and b < 0.

Proof. We first prove that if an almost quadratic ¢-structure is an almost para-
contact structure[l], then a« = 0 and b < 0. We have the almost quadratic ¢-
structure as

> +ap+bl =bnE

e, B+ +(b— ) =bne¢.
Now, let us choose a transformation F' such that
a
—I=F.
¢+ 3

Thus, we get
a2
(5.5) F2+(b—Z)I:bn®£.

Now, we choose the 1-form n* and the vector field £* in such a manner that the
equation (24) takes the form

a2 2
(5.6) F?+(b— TI=0b-"7m e,

So, without loss of generality let us take

M=\ ez n oand € =[5t €.
Since n* and £* are real, 4b and (4b — a?) are of same sign.
Again, equation (25) can be represented as
4
F2 _ I ok *
(a2 _ 4b) 77 ®£

for a? > 4b and let us choose 1) = \/ﬁ F'. Therefore, we get

(5.7) Pr=I—n* @&
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Again, ¢ and 1) are real, so a? — 4b > 0, thus (4b — a?) < 0 and consequently b < 0.

Now, the structure (26) will be an almost para-contact structure if
2

a? —4b

PE) =0= FE)=0=F(E)=0

Since a? # 4b # 0, we get
F(§) =0= (6+ 51§ =0

Again we have ¢(§) = 0. Thus the structure (26) is an almost para-contact structure
if a = 0, since £ is not a zero vector.
Conversely, if a = 0 and b < 0, the almost quadratic ¢-structure becomes

(5.8) P+l = .
Now, let ¢ = \/%qux therefore equation (27) becomes
P=I-n®E.

Again, we have ¢(§) = ﬁﬂ«f) = 0, since in an almost quadratic ¢-manifold we

have ¢(§) = 0. Therefore this structure is an almost para-contact structure when
a=0and b<0. O

6. TORSION TENSOR FIELDS AND INTEGRABILITY CONDITION OF ALMOST
QUADRATIC ¢-MANIFOLD

Let M, be an n-dimensional differentiable almost quadratic ¢-manifold and R
be a real line. we construct a product manifold M, x R. If we denote the tangent
space of M,, X R at a point (P,Q), (P € M,,,Q € R) by T, then the tangent space
M., (P) of M,, at P may be naturally identified with a subspace of T. Now, denoting
the unit vector of R by 7, we define a linear map F : T — T by

(61 FO) = Sm==(6(X) + 5X).0(X) = 0.F(©) = 7. F(r) = ¢
when X € M, (P) and a® > 4b and
2 a
62 FX) = 2= (0(X) + 5X).0(X) = 0.F() = () = —¢

when X € M, (P) and a? < 4b .

Then we can easily see that F?(X) = X,F # I, hold good for any vector X
of T, when a? > 4b and F?(X) = —X, hold good for any vector X of T, when
a? < 4b. So, F gives an almost product structure or almost complex structure on
T, when a® > 4b or a? < 4b respectively. As P € M,, and Q € R are arbitrary, we
see that an almost product structure or almost complex structure can be defined
over M,, x R by means of the almost quadratic ¢ — structure, depending on a and
b. Let U x R be a coordinate neighbourhood and set (x?, 2°°) its local coordinates
in U X R.(i,4,k,h run over 1,2,---n and oo is just a symbol which means n + 1).
Then we can easily verify that the almost product structure F' has

(6.3) Elr=X, ¢} +pp, 68", FL=¢" Fe=mn, F=0

oo
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(where A, and p, are constants, given by A\, = \/ﬁ and p, = \/ﬁ) as its
components with respect to the coordinate neighbourhood. If the indices A, B,C
run over 1,2 -+, n, 00 then surely F4FE = 64 holds good.

Again, the almost complex structure F' has

(6.4) Fl'=Xe ¢ +pe 0, Flg=—¢€" F®=n, FZ=0,

\/ﬁ and p. = \/ﬁ) as its components

with respect to the coordinate neighbourhood. Also F ﬁ‘Fg = —5é holds good.
Now, the Nijenhuis tensor N of the almost product structure or almost complex
structure F' on M, x R is given by

NEp(F) = FEOpFf — FEOpFS — (0cFf — 0pFE)Ff

So, if we calculate the components of this tensor by grouping their indices in two
groups (1,2,---n) and oo, on M,, x R, we get for a® > 4b

N_]hi - /\12) (I);lz - (63771 - 8177J)£h )
(6.5)  Ni¥ = Nji = \[dh(Oens — Oimi) — &5 (Okmy — O3mi)] + pp(O5mi — Oim)

NI, =Nl =X £eol, NI =N, = Len;
and when a? < 4b, we similarly have

( Ac and p.. are constants, given by A, =

NI = N2 @ — (9m; — 0jmy)E™,
(6.6)  N;Y = Nji = AT (Oeni — Oimie) — ¥ (Okmy — Ojmi)] + pe(95mi — Oimy)
NI, = NP = -\£Leol, NI =Ny =—Len

Where CIJ?i is the Nijenhuis tensor of ¢ and £ ¢ means the Lie derivative with respect

to the vector field ¢”. In view of equation (32) and (33), we can immediately say

that IV Jhi, NN ;i and N; are components of four tensor fields over M respectively.

So, from this definition we get immediately the following:

Theorem 6.1. The tensor fields N, N; vanish if and only if ¢, n; are invariant
under the local group of local transformation generated by £" respectively.

Lemma 6.1. The Nijenhuis tensor N&g of the almost product and the almost
complex structure satisfies the following equations

(6.7) NEpFE + NEgF2 =0 and NagFE — NApFE =o.
Proof. 1t is easily seen by straight forward calculation. O
Now, we will discuss the situation in two cases, when a? > 4b and when a? < 4b.

Case-1. (a® > 4b ): If we calculate the components of equation (34), by grouping
their indices in two groups (1,2, --n) and oo, we get the following relations:

Ap(NEGE + NIoF) + Nju&" — Nl + 2p, NI =0
Ap(NPOF + NEoR) + Nig" + 2, N =0,
(6.8) NJEF = N NGR — pp N = Nig" =0, Npgh =0,
ApNjedF + ppNji — Nyn + NEme =0, Np&¥ =0,
ApNkdt + 11N + N = 0, Nip® — N =0,
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and with these we also have
)‘p(NI?iQZ’? - Nghkd)f) + Nl'nj + Njhm =0,

(6.9)  Nipg® = Ap Npof —ppNi' =0, Nui® = Ay Nigif = ppNi =0,
Ap(Nikitdh — Njro) + Nimj + Njmi =0 .
From (35) and (36), we get the following
i) Ni' = =M Njiole"

(6.10) i) Ny = =X\ NJ dFmy — 20, Ny,
iii) N; = *)‘kah(bfgh - QNPNihfh
iv) Nji = =Xp(NJ. o5 + NEo5E i) — 2N -
Thus, we have the following:

Theorem 6.2. In an almost quadratic ¢-manifold, when a?® > 4b, if any one of
Nj; and N wvanishes, then N; vanishes. If N]hi vanishes, then all the other tensors

Nj;, N! and N; vanishes.

We, now define the tensors Pz and Q4 over M, x R by

1 1
(6.11) Py =505+ Ff), Q=505 — Fp)

Then we have
PAPE PR PAQS-0. QAPG-0 QMQ5-Qh Pi+Qh-34.

Thus P# and Q4 defines two complementary distributions P and @ globally. Now,
in order that the distributions P and @ be completely integrable it is necessary and
sufficient that N4z = 0,[3]. Thus, by virtue of Theorem 6.2, we get the following:

Theorem 6.3. Let M, be an almost quadratic ¢-manifold. Then the almost product
structure F' over M,, x R defined by (28), when a? > 4b, is completely integrable if
and only if Njhi = 0 holds good over whole M,,.

Case-2.(a? < 4b ): If we calculate the components of equation (34), by grouping
their indices in two groups (1,2,---n) and oo, we get the following relations:

Ac(NﬁQﬁZ + N]hkfb?) — Njeh — N]hm + 2pe N]hi =0,
Ae(NEGY + NfgR) = Ni&" +2pc N =0,
(6.12) NiEF + XN} + pe N = Ni&" =0, Nk =0,
ANt + peNji = Njmi + Nfi =0, Np&b =0,
AeNkOE + peN; + Nfm, =0, Ny + NFne =0,
and with these we also have

Ac(NE % — NEOF) + NI + N =0,

(6.13) NER + A0 NEOT + 1eN =0, Npa€® + Ao Nyt + peN; =0,
Ae(Niidf — Njroy) + Nimj + Njmi =0
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From (39) and (40), we get the following
i) NI = =ANJyole"

(6.14) i) Ny = A NP &S0 + 20N,
i) Ni = —AcNunodf€" — 2 Ning"
iv) Nji = Ae(NJydimn + NEO5E mn) + 2ue N -

Thus, we have the following:
Theorem 6.4. In an almost quadratic ¢-manifold, when a® < 4b, if any one of
Nj; and N} vanishes, then N; vanishes. If N]hi vanishes, then all the other tensors
Ny, Nij and N; vanishes.

Now, the necessary and sufficient condition for the integrability of the almost
complex structure over M, X R is Né‘B = (0. Thus in view of Theorem 6.4 we have
the following theorem:

Theorem 6.5. Let M,, be an almost quadratic p-manifold. Then the almost com-
plex structure F over M, x R defined by (29), when a® < 4b, is completely integrable
if and only if Njhi = 0 holds good over whole M,,.

Thus, by virtue of Theorem 6.3 and Theorem 6.5 we have

Theorem 6.6. Let M, be an almost quadratic ¢p-manifold. Then the almost product
or the almost complex structure F over M, x R is completely integrable if and only
if N;‘i = 0 holds good over whole M,,.

Again, in view of Theorem 6.2 and Theorem 6.4, we have the following theorem

Theorem 6.7. In an almost quadratic g-manifold if any one of Nj; and Nij van-

ishes, then N; vanishes. If N;‘i vanishes, then all the other tensors Nj;, Nij and Nj
vanishes.

We shall call N, jhz the Torsion Tensor of the almost quadratic ¢-structure.
Remark 6.1. The Torsion tensor of the almost quadratic ¢-structure of the two
cases (a® > 4b and a® < 4b) are just of opposite sign, as A2 = —\2.

7. EXAMPLE OF ALMOST QUADRATIC (Z5—STRUCTURE IN 4-DIMENSIONAL
EUCLIDEAN SPACE

Let R4 be any 4-dimensional Euclidean space and let us define

2 1 0 0
9 2 0 0
(7.1) =10 0 5 0
0 0 0 O
13 4 0 0 5 0 0 0
36 13 0 0 05 0 0
2 _ 2 _ =
So, ¢ = 0 0 25 0 and therefore ¢° — 4¢ 00 5 0 .
0 0 0 O 0 00O
0 0 00O
0 0 0 0O
Now, let us choose £ = 0 andn=(0 0 0 1),thusp®{= 00 0 0
1 0 0 0 1
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Therefore
(7.2) $? —4¢p -5l = -5 E .
2 1 0 0 0 0
. 9 2 0 0 0 0
Again, 6(€) =1 o 5 ¢ o |~ o
00 00 1 0

Thus, we conclude that the structure defined by equation (42) is an almost qua-
dratic ¢-structure and R, is an almost quadratic ¢-manifold.
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