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Abstract. In this paper, we study the condition under which the normal
space (the linear span of the normal vector) becomes invariant subspace of

the Weingarten matrix at preferred points (called pivotal points) on a surface

represented as a level set of a function. This condition has been obtained in
terms of the critical points of the norm of the gradient of the surface function.

1. Introduction

The Weingarten map at a point p on a 2-dimensional surface S in R3 is a 3× 3
matrix acting as a linear operator Lp : Sp → Sp, where Sp denotes the tangent
space to S at p. We consider a preferred point p on S and view the Weingarten map
extended as a linear map defined on the affine space R3(p), having image in R3(p)
with Sp being its invariant subspace (i.e., Lp : R3(p) → R3(p) and Lp(Sp) ⊆ Sp).
Following the level set representation of S we get a 3× 3 matrix representation of
Lp at a preferred point (a pivotal point) where the normal vector is directed along
one of the coordinate directions. The main purpose of this paper is to study the
condition under which the normal space (spanned by the normal vector) becomes
invariant subspace of Lp. As the normal space is unidimensional, this amounts to
studying the condition under which the normal vector is eigenvector of Lp.

2. Pivot Point And Pivot Vector

Let f−1(c) = {(x1, x2, x3) ∈ U ⊂ R3 : f(x1, x2, x3) = c}, where f : U → R and
c ∈ R. Thus f−1(c) is a level set. If ∇f 6= 0 at each point, then the level set is
called a 2-surface S in R3. The vector field ∇f is normal to S and the unit normal
vector field N = ∇f

|∇f | determines an orientation on S.

The Weingarten map Lp of S at a point p transforms the tangent vector v as the
tangent vector Lpv = −∇vN = −(Nȯα)(t0), where α is a parametrized curve
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α : I → S such that α(t0) = p, ᾱ(to) = v. It is known that Lp is self-adjoint and

(2.1) (Lpv).w = − 1

|(∇f)(p)|

n+1∑
i,j=1

∂2f

∂xi∂xj
(p)viwj

for any two tangent vectors v, w.

The following lemma given in [1] suggests the idea of a pivot point.

Lemma 2.1. Let S = f−1(c) be an n-surface in <n+1, oriented by ∇f/‖∇f‖.
Suppose p ∈ S is such that ∇f/‖∇f‖ = en+1, and ei = (p, 0, . . . , 1, . . . , 0) with the
one in the (i + 1)th spot (i spots after p) for i ∈ {1, . . . , n + 1}. Then the matrix
for Lp with respect to the basis {e1, e2, . . . , en} for Sp is

(2.2) Lij(p) =

(
− 1

|∇f(p)|
∂2f

∂xi∂xj
(p)

)
The lemma can be proven easily by using equation (2.1).

Let us consider a point p ∈ S such that N(p) = ∇f
|∇f | (p) = e3 = (p, 0, 0, 1) and so

e1 = (p, 1, 0, 0), e2 = (p, 0, 1, 0) are two basic tangent vectors at p, and call such a
point a pivot point on the surface S. Actually, the normal N(p) at a pivot point
could be (p, 1, 0, 0) or (p, 0, 1, 0). More generally, we state

Definition 2.1. A point p on the surface S is said to be a pivot point if the normal
vector at p is parallel to one of the co-ordinate axes.

Hence, in view of Equation (2.2), the matrix representation of Lp can be written
out explicitly as the matrix:

(2.3) Lij(p) = − 1

|(∇f)(p)|

 f11 f12 f13
f21 f22 f23
f31 f32 f33


where fij is the Hessian ∂2f

∂xi∂xj
. Henceforth, the matrix Lij(p) will be called the

Weingarten matrix.

Definition 2.2. The normal vector to the surface S at a pivot point p is said to
be a pivot vector if it is an eigenvector of the Weigarten matrix Lij(p) at p.

Let us now seek a condition for N to be a pivot vector, i.e.

(2.4) (LijNj)(p) = λNi(p)

for a constant λ depending on p. Equation (2.4) is rewritten as the system of
equations:

f11f1 + f12f2 + f13f3 = −λ|∇f |f1
f12f1 + f22f2 + f23f3 = −λ|∇f |f2
f13f1 + f23f2 + f33f3 = −λ|∇f |f3

and more compactly as
∇(|∇f |2) = −2λ|∇f |(∇f)
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holding at p. As ∇f(p) 6= 0, the above equation reduces to:

(2.5) ∇(|∇f |) = −λ(∇f)

at p. But this condition means that the point p is a critical point of the function
|∇f | on S, i.e. |∇f | restricted to S is stationary at p. Consequently, we obtain the
following result.

Theorem 2.1. Let S be a 2-surface in R3, defined as f−1(c) for f : U → R and
c ∈ R. Let p be a pivot point in S. Then N(p) is a pivot vector if and only if |∇f |
restricted to S is stationary at p.

Remark: We know that |∇f | at a point of S determines the maximum rate of
change of f at that point. Theorem 2.1 provides additional interpretation of |∇f |
at a pivot point.

Finally, we provide some examples of the case when N is a pivot vector and an
example when it is not a pivot vector at a pivot point.

3. Examples

Example 1. The unit sphere S2 : x21 + x22 + x23 = 1. Here f(x1, x2, x3) = x21 +
x22+x23 and c = 1. The point p = (0, 0, 1) is a pivot point because∇f = 2(x1, x2, x3)

and hence N(p) = (∇f)(p)
|∇f |(p) = (0, 0, 1). We also have

Lij(p) = −1

2

 2 0 0
0 2 0
0 0 2

 ,
As Nj(p) = (0, 0, 1), we find that LijNj(p) = −Ni(p), i.e. N(p) is a pivot vector.
Further, we find that |∇f | = 2 on S2, i.e. |∇f | is trivially stationary at p. Hence,
theorem 2.1 re-confirms that N(p) is a pivot vector.

The case of the cylinder x21 + x22 = 1 is similar to the sphere.

Example 2. The torus T : x23 + (
√
x21 + x22− a)2 = b2(a > b > 0). Take the point

p(0, 0, 2b) on T . Direct calculation shows that ∇f(p) = (0, 0, 2b) and hence N(p) =
(0, 0, 1), i.e. p is a pivot point. As the computation of the Weingarten matrix is a
little tedious, we would like to apply theorem 2.1 directly. Here |∇f | = 2b at any
point of T , therefore, |∇f | restricted to T is constant, hence trivially stationary at
p, and N(p) is a pivot vector.

We remark that though |∇f | is constant on the surfaces of both Examples 1 and
2, nevertheless not all points in Example 2 are pivot points, whereas all points of
Example 1 are pivot points.

Example 3. The paraboloid: x3−x21−x22 = 0. Here, f(x1, x2, x3) = x3−x21−x22.
∇f = (−2x1,−2x2, 1). At the vertex p(0, 0, 0), N(p) = (0, 0, 1), and hence p(0, 0, 0)
is a pivot point. In this case we find that

Lij(p) = 2

 1 0 0
0 1 0
0 0 1

 ,



128 N.UDAY KIRAN, RAMESH SHARMA, AND M.S. SRINATH

and hence Lij(p)Nj(p) = 2(0, 0, 0) = 0Ni(p). So, N(p) is a pivot vector. Here

|∇f | =
√

1 + 4x21 + 4x22 which is stationary at p(0, 0, 0) and hence theorem 2.1 re-
confirms that N(p) is a pivot vector.

Example 4. The hyperboloid of 1 sheet: x21 + x23 − x22 = 1. f(x1, x2, x3) =
x21 + x23 − x22. At p = (0, 0, 1), N(p) = (0, 0, 1) and Lij(p)Nj(p) = (0, 0, 1) = Ni(p).

Thus N(p) is a pivot vector. Straight computation shows |∇f | = 2
√
x21 + x22 + x23 =

2
√

1 + 2x22 and hence is stationary at p(0, 0, 1). Thus, theorem 2.1 re-confirms the
pivotality of N(p). We may note here that any point p on the neck (x2 = 0) is a
pivot point (This can be viewed by suitably rotating the plane x3 = 0 about the
central x3 axis, however, retaining the function f as it is) andN(p), the pivot vector.

Example 5. The surface defined by: x1x3 +x2x3 +x1x2 = − 1
4 over R3− (0, 0, 0).

Here, f(x1, x2, x3) = x1x3 + x2x3 + x1x2. ∇f = (x2 + x3, x3 + x1, x1 + x2). At
the point p = (1/2, 1/2,−1/2), (∇f)(p) = (0, 0, 1). Hence p is a pivot point. A
straightforward calculation shows that Lij(p)Nj(p) = −(1, 1, 0) and so, N(p) is
not a pivot vector. Furthermore,

|∇f |2 = 2(x21 + x22 + x23 + x1x2 + x2x3 + x3x1)

= 2((x1 + x2 + x3)2 +
1

4
)

on the surface. Hence |∇f | restricted to the surface is minimum (hence stationary)
when x1 + x2 + x3 = 0. As the pivot point p = (1/2, 1/2,−1/2) does not satisfy
this condition, |∇f | restricted to the surface is not stationary at p. Hence theorem
2.1 re-confirms that N(p) is not a pivot vector.

Concluding Remark: For surfaces of Examples 1 (including, of course, cylinder
and plane) and 2, |∇f | is constant on the surfaces. This raises the following question
“Does there exist surfaces other than these surfaces for which |∇f | is constant on
them?”
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