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1 Introduction
Recently, fractional differential equations have revealed to be great worth in the modeling
of many phenomena in several fields of sciences, economics and engineering. For this
purpose, we find many applications in electrochemistry, viscoelasticity, control theory,
electrical networks, signal process. see [10-13]. Significant developments in fractional
differential equations can be found in the monographs [11,12,13,15]. Different methods
are introduced in the investigation of fractional differential equations, such as the theory
of fixed points, see [1-11,15-17].

In [7], the authors proved the existence of at least one or three positive solutions of the
following problem, by applying the Guo-Krasnosel’skii and Avery-Peterson fixed-point
theorems and under growing conditions on the nonlinear term f :{

Dq
0+u(t) = a (t) f (u(t)) , 0 ≤ t ≤ 1, 2 < q ≤ 3

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,

here Dq
0+ denotes the fractional derivative of Riemann-Liouville type, f is a given real

function and the function a is continuous on [0, 1] .

In [14], Matar studied the positivity of solution for the following boundary value prob-
lem:
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Dq
0+u(t) = f (t, u(t)) , 0 < t < 1, 1 < q ≤ 2

u (0) = 0, u′(0) = θ > 0,

here the function f is continuous on [0, 1] × R. By introducing the so-called upper and
lower control functions and applying a fixed-point theorem on a cone, the author was able
to establish the existence and uniqueness of the positive solution.

The purpose of this work is to establish sufficient conditions for the existence and
uniqueness of the positive solution of the following fractional boundary value problem
(P ) {

cDq
0+u(t) = f (t, u(t)) , 0 ≤ t ≤ T, 2 < q < 3
u (0) = u′(0) = 0, u′′ (0) = α > 0,

where the function f is continuous and nonnegative on [0, T ]×R. We denote by cDq
0+ the

fractional derivative of Caputo type.
This work is organized as follows. We expose the tools that will be used later in the

next section. The third section is devoted to the study of the existence of at least one
positive solution of the problem (P) by the help of Schauder’s theorem fixed on the cone,
then we prove the uniqueness of positive solutions of the problem (P) by using Banach’s
contraction principle. We end this section with an example that elucidates the results
obtained.

2 Preliminaries
In this section, we present some definitions and lemmas from fractional calculus theory,
which will be needed later.

Definition 2.1. For a continuous function g on [a, b], we define the Riemann-Liouville
fractional integral of order α by

Iαa+g(t) =
1

Γ (α)

∫ t

a

(t− s)α−1g(s)ds, α > 0

Definition 2.2. The Caputo fractional derivative of order α of a function f is defined by

cDα
a+g(t) =

1

Γ (n− α)

∫ t

a

gn(s)

(t− s)α−n+1
ds

where n = [α] + 1, ([α] is the entire part of α).

Lemma 2.3. The solution of the homogenous differential equation cDα
a+g(t) = 0 is given

by g(t) = c1 + c2t+ c3t
2 + ...+ cnt

n−1, with ci ∈ R, i = 0, ..., n,if g ∈ C ([0, 1]) .

Lemma 2.4. We have Ip0+I
q
0+f(t) = Ip+q0+ f(t) = Iq0+I

p
0+f(t) and cDq

a+I
q
0+f(t) = f(t), for

all t ∈ [a, b], p, q ≥ 0 and f ∈ L1[a, b].

Now, we transform the problem (P) to an equivalent integral equation.
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Lemma 2.5. u is a solution of the problem (P) if and only if u is a solution of the integral
equation

u(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds.

Proof. The proof is standard, then we omit it.

Define E = C [0, T ] equipped with the norm ‖u‖ = maxt∈[0,T ] |u (t)| . Define the
subspace K of E as the set of nonnegative functions. Let a and b be two nonnegative real
such that b > a. Define the upper control function and the lower control function of a
function u ∈ [a, b] , respectively by

U (t, u) = sup
λ∈[a,u]

f (t, λ) , L (t, u) = inf
λ∈[u,b]

f (t, λ)

Obviously, U (t, u) and L (t, u) are nondecreasing according to u, monotonous and satisfy
L (t, u) ≤ f (t, u) ≤ U (t, u) .

We make the following hypotheses:
(H1) There exist u∗, u∗ two elements in K, verifying a ≤ u∗ (t) ≤ u∗ (t) ≤ b and{

u∗ (t) ≥ 1
Γ(q)

∫ t
0
(t− s)q−1U (s, u∗ (s)) ds+ α

2
t2

u∗(t) ≤ 1
Γ(q)

∫ t
0
(t− s)q−1L (s, u∗ (s)) ds+ α

2
t2.

(H2) For any x, y belonging to E and t ∈ [0, T ] , we can find a number 0 < η < 1 such
that

|f (t, y)− f (t, x)| ≤ η ‖y − x‖ .

The function u∗ is called lower solution for problem (P) and u∗ is called upper solutions.
Define the integral operator A on E as

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds. (1)

Definition 2.6. We say that u is a positive solution of problem (P ) if u(t) > 0, for all
t ∈ [0, T ] and the boundary conditions in (P ) are satisfied.

Theorem 2.7. Under the hypothesis (H1) the fractional boundary value problem (P ) has
at least one positive solution u belonging to E and satisfying u∗ (t) ≤ u (t) ≤ u∗ (t).

Proof. Let
C = {u ∈ K, u∗ (t) ≤ u (t) ≤ u∗ (t) , 0 ≤ t ≤ T} ,

remark that if u ∈ C, then ‖u‖ ≤ b. Hence, C is bounded, convex and closed subset of E.
Claim 1. A is uniformly bounded on C.
The operator A is continuous on C since f is continuous. Set

M = max {f (t, u(t)) , t ∈ [0, T ] , ‖u‖ ≤ b} .
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Let u ∈ C, then ‖u‖ ≤ b and we have

|Au(t)| ≤ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds,

≤ α

2
T 2 +

MT q

Γ (q + 1)
.

Thus
‖Au‖ ≤ α

2
T 2 +

MT q

Γ (q + 1)
.

Hence A is uniformly bounded.
Claim 2. Au is equicontinuous. In fact, for 0 ≤ t1 < t2 ≤ T , it yields

|Au (t2)− Au (t1)| ≤ α

2

(
t22 − t21

)
+∣∣∣∣ 1

Γ (q)

∫ t1

0

(t1 − s)q−1f(s, u(s)ds− 1

Γ (q)

∫ t2

0

(t2 − s)q−1f(s, u(s)ds

∣∣∣∣
≤ αT (t2 − t1) +

1

Γ (q)

∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
f(s, u(s)ds

+
1

Γ (q)

∫ t2

t1

(t2 − s)q−1f(s, u(s)ds

≤ αT (t2 − t1) +
MT (t2 − t1)

Γ (q − 1)
+

(t2 − t1)q

Γ (q + 1)
→ 0, as t1 → t2.

Thanks to Arzela-Ascoli Theorem we deduce the compacity of A.
Let u ∈ C, then by the definition of the control functions and the hypothesis (H1), it

yields

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds

≤ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1U (t, u∗ (t)) ds

≤ u∗ (t) ,

and

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds

≥ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1L (s, u∗ (s)) ds

≥ u∗ (t) .

Hence, u∗ (t) ≤ Au(t) ≤ u∗ (t) , 0 ∈ t ≤ T, from which we deduce A (C) ⊆ C.
Finally, we conclude by Schauder fixed point theorem, that A has at least one fixed point
and consequently, the problem (P ) has at least one positive solution u in E between the
lower and upper solutions.
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The uniqueness of the positive solution of (P ) is given in the following theorem.

Theorem 2.8. The problem (P ) has a unique positive solution u ∈ E, if the hypotheses
(H1) and (H2) and the inequality

ηT q

Γ (q + 1)
< 1, (2)

are satisfied.

Proof. Since the hypothesis (H1) is satisfied then, we conclude by Theorem 3.2 that the
problem (P ) has at least one positive solution in E. We claim that the operator A is a
contraction on E. In fact, for any u, v ∈ E, we have

|Au(t)− Av(t)| ≤ 1

Γ (q)

∫ t

0

(t− s)q−1 |f (s, u (s))− f (s, v (s))| ds

≤ ηT q

Γ (q + 1)
‖u− v‖ ,

finally, taking (2) into account, then A is a contraction and thus the problem (P ) has a
unique positive solution u ∈ C.

Example 2.9. Let us choose in the problem (P), q = 8
3
, T = 1, f (t, u) = 1 + t

2(u+1)
,

0 ≤ t ≤ 1, u ≥ 0, [a, b] = [0, 1] and α = 1. Since f is decreasing according to u, then

U (t, u) = 1 +
t

2
, L (t, u) = 1 +

t

4
,

If we set

u∗ (t) =
t
8
3

Γ
(

11
3

) +
t
11
3

Γ
(

14
3

) +
1

2
t2

≥ 1

Γ
(

8
3

) ∫ t

0

(t− s)
5
3U (s, u∗ (s)) ds+

1

2
t2

=
t
8
3

Γ
(

11
3

) +
t
11
3

2Γ
(

14
3

) +
1

2
t2

and

u∗(t) =
t
8
3

Γ
(

11
3

) +
t
11
3

8Γ
(

14
3

) +
1

2
t2

≤ 1

Γ
(

8
3

) ∫ t

0

(t− s)
5
3L (s, u∗ (s)) ds+

1

2
t2

=
t
8
3

Γ
(

11
3

) +
t
11
3

4Γ
(

14
3

) +
1

2
t2.

0 ≤ u∗ (t) ≤ u∗ (t) ≤ 1.
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Figure 1: u∗ in red, u∗ in black.

hence assumption (H1) holds, then the problem (P ) has at least one positive solution.
Moreover, there exists η = 1

4
, such that hypothesis (H2) is satisfied and

ηT q

Γ (q + 1)
=

1

4Γ
(

11
3

) = 6.231 0× 10−2 < 1.

We conclude by Theorem 3.3, the uniqueness of positive solution u satisfying u∗ (t) ≤
u (t) ≤ u∗ (t), 0 ≤ t ≤ 1.
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