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Abstract — In this paper, we investigate the solution of the problem of finding the
global minimizer for the unconstrained objective function, for that, a new algorithm
developed, this algorithm based on two steps. First, we transform the problem into a
one-dimensional according to the number of directions. Second, we construct a new
filled function at each direction in order to minimize the one-dimensional problem
and then to find the global minimizer of the multi-dimensional function. We present
the results of numerical experiments using test problems taken from literature studies.
The experiment results indicate the effectiveness and accuracy of the purposed filled
function methods.
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1 Introduction
Global optimizations are important tools for examining complicated function spaces such
as these located in modern high-fidelity engineering models. Those models present in-
creasingly accurate insights within system behaviours but are usually costly to estimate
and difficult to search. While methods exist for determining global optimization problems
there is yet room for improving faster, more reliable, and easier to implement algorithms
[1]. The filled function method that firstly introduced via Ge(1987) [2,3], and then re-
viewed in various searches, is an efficient method for determining the global optimization
approaches. It modifies the objective function as a filled function and then obtains a best
local minimizer frequently by optimizing the filled function formed on the minimizer
found previously [4]. The main purpose of this paper is to introduce and formalize a
new filled function in two parameters. Firstly, we provide formal definitions and assump-
tions. Next, we offer and investigate the theoretical prosperities of the filled function and
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propose the solution algorithm. Finally, we report experimental results by applying the
algorithm on several test problems to confirm the effectiveness of the new method.

2 Basic Concepts
Suppose the unconstrained problem:

minf(x) s.t x ∈ S, S ⊂ Rn (1)

where f : S −→ R is a continuously differentiable function. Now, we introduce the
following definitions.

Definition 2.1. [5] A point x∗ ∈ S is said to be a global minimizer of the function f on
S if:

f(x∗) ≤ f(x) ∀x ∈ S,
and it is called a strict global minimizer point of f on S if:

f(x∗) < f(x) ∀x ∈ S, x 6= x∗.

Definition 2.2. [5] A point x∗k ∈ S is said to be a local minimizer of f on S if there exists
a neighborhood B(x∗k; ε), with ε > 0 such that

f(x∗k) ≤ f(x) ∀x ∈ S ∩B(x∗k; ε)

and it is called a strict local minimizer of f on S if there exists a neighborhood B(x∗k; ε),
with ε > 0 such that

f(x∗k) < f(x) ∀x ∈ S ∩B(x∗k; ε), x 6= x∗k.

Definition 2.3. [5] A basin of f(x) at an isolated minimizer x∗k is a connected domain
B(x∗k) which contains x∗k and in which starting from any point the steepest descent tra-
jectory of f(x) converges to x∗k. but outside which the steepest descent trajectory of f(x)
does not converge to x∗k. A hill of f(x) at x∗k is the basin of −f(x) at its minimizer x∗k, if
x∗k is a maximizer of f(x).

Definition 2.4. [2] Let x∗k is a current minimizer of f . Let B(x∗k) is the basin of f at x∗k
over S. A function F : S → R is said to be a filled function of f at x∗k if it satisfies the
following properties:

– x∗k is a maximizer of F and whole basin B(x∗k) of f at x∗k over S becomes a part of
a hill of F ;

– F has no stationary points in any basin of f higher than B(x∗k);

– If f has a basin B(x∗k+1) at x∗k+1 lower than B(x∗k), then there exists a point x′ ∈
B(x∗k+1) is a minimizer of F .

The evolution of the filled functions supports the subsequent periods. The typical mod-
els of the filled functions as a first creation are the function (2) and (3) [6] which offered
as following

F (x, a, β) = exp(−‖x− x
∗
k‖

β2
)

1

(a+ f(x))
(2)
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D(x, a, β) = −[β2 ln(a+ f(x)) + ‖x− x∗k‖p] (3)

These functions have a common feature, there are two flexible parameters a and β. How-
ever, the task of modifying these parameters is extremely challenging. Due to this restric-
tion, the next creation filled functions were introduced which have only a single parameter.
For instance, the function introduced in (4)[6] is performed by

E(x, r) = −(f(x)− f(x∗k))exp(r‖x− x∗k‖2). (4)

The function given in (4) is much simpler than the those presented in the prior generation.
Furthermore, as the parameter r grows larger and larger, the swiftly growing of the expo-
nential function value could lead to an influx of the computation [7]. To beat this lack,
another filled function suggested as follows:

Q(x, r) =
1

ln(1 + f(x)− f(x∗k))
− r‖x− x∗k‖2, (5)

this filled function still holds the feature of function (5) with one parameter, in addition
to that, it has no exponential terms. It can be considered as the third generation filled
functions(for more samples see [9-11]).
Throughout the rest of this paper, we assume that the following assumptions are satisfied:
Assumption 1. The function f(x) is differential in Rn and the number of minimizers can
be infinite, but the number of the different value of minimizers is finite.
Assumption 2. f(x) : Rn → R is coercive, i.e., f(x)→ +∞ as ‖x‖ → +∞.

3 Transforming the problem into one-dimensional
Directional search method is based on the directions dk, k = 1, ...,m. If we have an
objective function f(x) with n-dimensions, we can use the line lα = x0 + αdk, α ∈ R
to construct a one-dimensional problem L(α). Moreover, we might want to choose α∗k as
the answer of

minαL(α) = f(x0 + αdk), (6)

that means α∗k at the direction dk can be a result of a one-dimensional minimization prob-
lem (for more information see [8]). We obtain a local minimizer α1

k of L(α) then we
construct the filled function on L(α), next, we take an initial point as a starting to find
the second minimizer α2

k of L(α). By repeat the above process we will obtain the global
minimizer α∗k at the direction dk as a solution of one-dimensional problem L(α), and by
using x̂k = x0 + α∗kdk we can minimize f(x) when we use x̂k as a starting point. Con-
sequently, by comparing all minimizer points x̂k, k = 1, ...,m with each other we will
obtain the global minimizer of the problem f .
In the next section, we introduce a new filled function to minimize the one-dimensional
problem L(α).

4 A new filled function
We suppose that the point α1

k is a local minimizer of the function L(α) that can be deter-
mined by any efficient method.
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Reducing the objective function from a multi-dimensional as a one-dimensional function
making the minimization process easier and more efficient. For this purpose, we offer a
new filled function as follows:

Iα(α, α
1
k) = G(L(α)− L(α1

k))U(|α− α1
k|2), (7)

and

G(u) =

 cos(βu), u < 0;

1, othewise,

where u = L(α) − L(α1
k), β > 1, and U(κ) is an escape function. The private form of

U(κ) presented in literature into several forms, for instance,κρ ,exp(κρ) and arctan(κρ),
where ρ is a positive integer. In the proposed paper the function U will be selected as
−ρ|α− α1

k|2,ρ > 0, that is the final form of the filled function will be as following:

Iα(α, α
1
k) = −ρ|α− α1

k|2G(L(α)− L(α1
k)), (8)

where the parameters β and ρ require to be adjusted appropriately.
The proposed filled function is continuously differentiable with two parameters. the new
idea and advantages of the proposed algorithm are: First, this algorithm converts the
objective function from multi-dimensional as a one-dimensional function this allows us to
obtain the global minimizer easier. Second, the trigonometric function cos(βu) allows to
add many stationary points in the lower basin, this idea has many advantages, for example,
it helps to reduce the time and the function evaluations which are very important in cases
like this as we see can clearly in the experimental results. Now, let α1

k be the current local
minimizer of L(α), then we can define:

LS1 = {α|L(α) ≥ L(α1
k), α ∈ R,α 6= α1

k}, and LS2 = {α|L(α) < L(α1
k), α ∈ R}.

The next theorems show that the function Iα(α, α1
k) achive Definition 2.4.

Theorem 4.1. Let α1
k be a local minimizer of Iα(α, α1

k), then α1
k is a strictly local maxi-

mizer of Iα(α, α1
k).

Proof. Since α1
k is a local minimizer of L(α), there exists a neighborhood N(α1

k, ε
∗) of

α1
k, ε∗ > 0 such that L(α) ≥ L(α1

k) for all α ∈ N(α1
k, ε
∗). Then, for all α ∈ N(α1

k, ε
∗) ,

α 6= α1
k, we have:

Iα(α, α
1
k) = −ρ|α− α1

k|2 < 0 = Iα(α
1
k, α

1
k).

Thus, α1
k is a strict local maximizer of Iα(α, α1

k).

Theorem 4.2. Assume that α1
k is a local minimizer of L(α) and α is any point in LS1 then

Iα(α, α
1
k) has no a stationary point on LS1 .

Proof. Since L(α) ≥ L(α1
k) and α 6= α1

k, we have:
Iα(α, α

1
k) = −ρ|α− α1

k|2,∇Iα(α, α1
k) = −2ρ(α− α1

k).
This means that∇Iα(α, α1

k) 6= 0, i.e. α is not a stationary point of Iα(α, α1
k).
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Theorem 4.3. Suppose α1
k is a local minimizer of L(α) but not a global minimizer, and

LS2 = {α|L(α) < L(α1
k), α ∈ R} is not empty, then there exists a point α′ ∈ LS2 is a

local minimizer of Iα(α, α1
k).

Proof. Let LS3 = {α|L(α) ≤ L(α1
k), α ∈ R} and ∂LS2 = {α|L(α) = L(α1

k), α ∈ R},
then LS3 = LS2

⋃
∂LS2 , that means ∂LS2 is the boundary of the sets LS2 and LS3 . Since

L(α) is continuous, then ∂LS2 and LS3 are bounded and closed sets.
Now for any α ∈ ∂LS2 we have

Iα(α, α
1
k) = −ρ|α− α1

k|2,

also, for any α ∈ LS2 we have

Iα(α, α
1
k) = −ρ|α− α1

k|2 cos(β(L(α)− L(α1
k))).

Since Iα(α, α1
k) is continuously differentiable and has the term cos(β(L(α) − L(α1

k))),
β > 1 then there is at least one point exists α′ ∈ LS2 is a minimizer of the function
Iα(α, α

1
k).

Algorithm
According to the investigation and hypotheses in the earlier section, a new algorithm to
obtaining the global minimizer of the function f(x) will be proposed, and the experimen-
tal results will be provided as follows.

Step 1 (Initialization) Determine the parameters β > 1 and ρ > 0, choose a starting point
x0 ∈ S, generate direction dk,k = 1, 2, ...,m, and set ε = 10−2;

Step 2 Create L(α) = f(x0 + αdk) as a one-dimensional function;

Step 3 1. Obtain the local minimizer αik of L(α) starting from α0 and then choose
% = −1.

2. Construct the filled function Iα(α, αik) at αik;
3. Start from α0 = αik + %ε to find a minimizer υ1 of Iα(α, αik);
4. If υ1 in S go to (5) otherwise go to (7);
5. Minimize L(α) start from υ1 to obtain αik+1 and then, go to (6);
6. If the point αik+1 in S let αik = αik+1, and go to (2).
7. If % = 1 terminate the iteration and give α∗k = αik otherwise; let % = 1 go to(3).

Step 4 Calculate x̂k using x̂k = x0 + α∗kdk, and consequently, find x∗k of f(x) by using
x̂k as the initial point.

Step 5 If k < m, let k = k + 1 and produce dk+1 as a new search direction and go to
(Step 2) otherwise; go to (Step 6).

Step 6 Pick out the global minimizer of f(x) using :

x∗ = min{f(x∗1), f(x∗2), ..., f(x∗m)}.
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5 The Experimental Results
In order to achieve the merit of the proposed algorithm in this paper, we selected test
functions taken from literature. The algorithm is examined on all proposed problems
and the results are submitted in Tables 1. and a comparative with the algorithm in [8]
submitted in Tables 2. The following symbols are used in this paper:

x0 The starting point.

feval total number of functions evaluations f(x), L(α) and Iα(α, α1
k).

T the mean of sum running time.

fmean the mean of the best value in the 10 runs.

fbest the best value in 10 runs.

ratio the rate of successfully obtaining true optimal solution among 10 runs.

Problem 1. (Two-dimensional function)

minf(x) = (1− 2x2 + csin(4πx2)− x1)2 + (x2 + 0.5sin(2πx1))
2

s.t 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0,

where c = 0.2, 0.5, 0.05. The global minimum function value f(x∗) = 0 for all c.

Problem 2. (Three-hump back camel function)

minf(x) = 2x21 − 1.05x41 +
1

6
x61 − x1x2 + x22

s.t |xi| ≤ 3, i = 1, 2.

The global minimizer is x∗ = (0, 0)T .

Problem 3. (Six-hump back camel function)

minf(x) = 4x21 − 2.1x41 +
1

3
x61 − x1x2 − 4x22 + 4x42

s.t |xi| ≤ 3, i = 1, 2.

The global minimizer is x∗ = (−0.0898,−0.7127)T or x∗ = (0.0898, 0.7127)T .

Problem 4. (Treccani function)

minf(x) = x41 + 4x31 + 4x21 + x22

s.t |xi| ≤ 3, i = 1, 2.

The global minimizers are x∗ = (0, 0)T and x∗ = (−2, 0)T .
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Table 1: The results obtained by our algorithm

No n T feval x∗ fmean fbest ratio

1. 2(c=0.2) 0.1658 128 (0.4091; 0.2703) 1.0004e-15 4.6810e-16 100

2(c=0.5) 0.2742 56 (1.0000; 0.0000) 8.8150e-13 7.3282e-31 100

2(c=0.05) 0.2464 56 (1.0000; 0.0000) 2.9313e-14 2.4652e-31 100

2. 2 0.2699 28 (0.0000; 0.0000) 3.9199e-15 1.0793e-32 100

3. 2 0.2786 364 (0.0898; 0.7127) -1.0316 -1.0316 100

4. 2 0.2382 280 (0.0000; 0.000) 3.0507e-16 1.5866e-32 100

5. 2 0.2942 224 (0.0000; -1.0000) 3.0000 3.0000 100

6. 2 0.7117 414 (-1.4251; -0.8003) -186.7309 -186.7309 100

7. 2 0.2927 336 (1.0000; 1.0000) 1.1647e-14 1.0980e-15 100

3 0.4143 216 (1.000; 1.000; 1.000) 3.7328e-08 7.0755e-16 100

Table 2: The results obtained by algorithm [8] and our algorithm on the problems 1-7

No n
The algorithm in [8] The proposed algorithm

T feval fbest T feval fbest

1(c=0.2) 2 0.648842 518 1.0707e-30 0.1658 128 4.6810e-16

1(c=0.5) 2 0.721799 522 1.0707e-30 0.2742 56 7.3282e-31

1(c=0.05) 2 0.644013 306 1.4252e-18 0.2464 56 2.4652e-31

2 2 0.762039 360 2.1294e-16 0.2699 28 1.0793e-32

3 2 0.900348 384 -1.0316 0.2786 364 -1.0316

4 2 0.920637 364 2.7399e-17 0.2382 280 1.5866e-32

5 2 0.996568 400 3.0000 0.2942 224 3.0000

6 2 2.003763 480 -186.7309 0.7117 414 -186.7309

7 2 0.856628 244 2.3558e-31 0.2927 336 1.0980e-15

7 3 1.31539 244 1.5705e-31 0.4143 216 7.0755e-16

Problem 5. (Goldstein and Price function)

minf(x) = g(x)h(x)

s.t |xi| ≤ 3, i = 1, 2.
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where

g(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

and

h(x) = 30 + (2x1 − 3x2)
2(18− 32x1 + 12x21 − 48x2 − 36x1x2 + 27x22)

x∗ = (0,−1)T .

Problem 6. (Two-dimensional Shubert function)

minf(x) = (
5∑
i=1

icos[(i+ 1)x1] + i)(
5∑
i=1

icos[(i+ 1)x2] + i)

s.t 0 ≤ xi ≤ 10, i = 1, 2, 3, 4.

This problem has 760 local minimizers in total. The global minimum value isf(x∗) =
−186.7309.

Problem 7. ( n-dimensional function)

minf(x) =
π

n
[10sin2(πx1) + g(x) + (xn − 1)2]

s.t |xi| ≤ 10, i = 1, · · · , 10

where

g(x) =
n−1∑
i=1

[(xi − 1)2(1 + 10sin2(πxi+1))].

The global minimizer of this problem is x∗ = (1, · · · , 1) for all n.

It is seen from Tables 1 and 2 that the introduced algorithm has many advantages, for
instance, the global minimizers of all test problems listed above can be found, this implies
the effectiveness of the introduced algorithm. Moreover, from column ratio in Table 1,
the ratio of the successful runs are 100%, which confirms that the introduced algorithm
is stable. In addition, the difference between fmean and fbest is small this implies that the
introduced algorithm is stable and robust to the initial points and parameter variation.

6 Conclusion
In this paper, a new filled function introduced for global optimization. The main approach
was to transform the objective function into one-dimensional function depending on the
directional search and minimize it in each direction. The computational results confirm
that this algorithm is actually effective and reliable and the comparison with an actual
algorithm confirmed that the introduced method was more efficient and relevant.
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