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Abstract — The basic idea of this article is to study the solution of the Gardner-
Kawahara equation which is modelled to investigate the waves in magnetized

G’ . .
plasma. To follow standard (F)-expansmn method more common forms of solutions

are obtained, if the parameters were taken at special values, periodic, solitary, and
rational results will obtained.
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1 Introduction

Here in this research, we will gain the solitary wave solution of nonlinear Gardner —
Kawahara equation (1.1) in the shape [1,2]
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It is one more particular case of equation extended KdV equation
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when y; =y, = 0. The extended KdV equation leads to the Kawahara equation, when
a=Yy; =Y, =0.
Eq. (1.1) happens in the notion in plasmas and in notion of shallow water waves with sur-

face tension and notion of magneto-acoustic waves. Eq. (1.1) describing solitary-wave
propagation in media, was first proposed by Kawahara in 1972 [3]. Lately, Wang et al.

4

[4] introduced that the traveling wave results can be explained by a polynomial in (%) :

where G=G(n) satisfies the following second-order ordinary linear differential equation
G"(m) +yG'(m) + 6G(m) = 0, wheren =x —kt, and v, §,and k are constants. Actually,

(%)—standard method has been successfully stratified to acquire exact solution for an
assortment of nonlinear evolution equations, see [5,6,7,8,9,10,11,12,13,14,15]. This re-

4

port is systematized as follows: In part 2, we offer the synopsis of the (%) —expansion

technique. In part 3, we explain the applications of the (%)—standard method. Finally, the
conclusions are present in part 4.

2 The Synopsis of the (%) —Standard Method
In this part, we explain the(%’)—standard method to explore traveling wave results of

nonlinear equations, let us consider a nonlinear evolution equation in two variables xtin
the form:

L (“'J' L|Jtl "|JX1 “|th1 "|Jtt' "|JXX' """""" ) = 0, (21)

where y = Yi(x,t) is an unknown function and £ is a polynomial in { = {i(x,t) , in
which highest order derivatives and nonlinear terms are involved. The major procedures
of this method are presented in this research as follows:

Step 1. Collecting the separate variables x and t into one variablen = x — kt, we as-
sume that

y(xt) =ym), n=x—kt (2.2)

When k is constant. Replacing (2.2) into (2.1), then we will gain the following differ-
ential ordinary equation (ODE):

O (Y, kY, ¢ k", k2P W )=0 (2.3)

Step 2. In case of need, we integrate (2.3) as many times as possible and assume the
solution of (2.3) which can be expressed of the form

N

G'\'
y(n) = Zbi (E) , (2.4)

i=0

where G = G(n) satisfies the second order linear equation (ODE)
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G"(m) +vyG'(m) +8G() =0, (2.5)

Where b;,y and 6 are real constant with by # 0. Next, the prime denotes the derivative
respective to 1 .Using the general solutions of (2.5), we get

(%)

( [v2 _ 2 _
745 rlsinh{ 246n}+r2cosh{ 246n \‘
% Y - — — , wheny? —48 >0
rlcosh{ Y ;4 n}+rzsinh{ Y ;4 n}/
= /—rsm /48—y + rycos v48—y2n\
Y /48 — 2 ! 2 2 2 )
——+ , wheny* —486 <0
2 2 48 —y2 (/46 —y2 1
r,CO0S > + rysin >
Iy Y 2 s —
\<r1+r2n) 2’ when y* =48 =0

Step 3. We determine the positive integer N by considering the homogeneous balance
between nonlinear terms and the highest order derivatives showing in ODE (2.3) and

replacing (2.4) into (2.3), then we use the general solutions of (2.5), and summation all
terms with the similar order of (%) together, next setting each coefficient of this polyno-
mial to zero yields a group of algebraic equations for b;, k,y,and 8.

Step 4. We solve the nonlinear algebraic equations of step3 by maple to find the con-

stants b;, k,y,and 8. Substituting these values into (2.4) and using the general solutions
of (2.5).

3 Applications of the Method

In this part, the (%I)—standard method has been used it to check the results leading to

solitary wave solutions to the Gardner —Kawahara equation. In order to explore the soli-
tary wave result of (1.1), we are applying the transformations

Y(x,t) =v9®) , m=x-—kt
Then, (1.1) for Y (x,t) = Y (n) become

Iy’ + @y’ + Iy’ — P+ " — By = 0 (31)
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Integrating (3.1) with respect to  once and putting the integration constant equal to ze-
ro, we obtain

A a
—kyp +ap + Ell)z - §¢3 +up" = pY"" =0 (3.2)

By balancing between 3and y'""" we get N=2, then Eq. (3.2) has the following solu-
tion:

Gl Gl 2
Y1) = by + by <E> + b, (E) : b, # 0 (3.3)

where by, b;, and b, are unknown constants. Substituting (3.3) along with (2.5) into
(3.2) and summation each terms with the similar power of (%) , the left side of (3.2) is

transmuted into a polynomial in (%) . Putting the coefficients of all powers of (%) to
zero yields a group of nonlinear equations (3.4) for by, by, by, a, A, a, u, B & y as follows:

()}

-1 3
:—30lb2 +120ﬁb2 = 0

921

: —ab,b,” + B(336b,y + 24b;) =0

1
—a (bobzz + 2by%b, + b,(2bob, + blz)) + 5 Ab;” + 6ub,

QR QD2 |

+ B(330b,¥2 + 60b,y + 240b,8) = 0

w

1
:Abib; ~ = a (4b0b1b2 + by (2bob; + blz)) + 1(10b,y + 2by)

|9
N

RS VR N N

|9

SN— SN— \/’P\/\/

-1
:—301(170(2190172 + by?) + 2by°b, + byby*) — kb,
+ B(16b,y* + 15b,¥3 + b,y%6 + 60b,y5 + 136b,62) + ab,
1
+ E,1(2b0b2 + by%) + u(4byy? + 3b,y + 8b,8) = 0

1
Gl
<—> :ab; — kb, — aby®by + Abyb,

+ B(byy* + 30b,y38 + 22b,y2%8 + 120b,y62 + 16b,62)
0

(£) :—bok + u(byys + 2b,6%) + 2 by’ A + boa + f(byy®6 + 14b,y?5% + 8b,y 6 +

166283+232—13603a=0.

Solving the above system of algebraic equations by Maple, we get the following result:
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by = +6V10 gy : b2=i6m\/é , 6=0, k=k
2 3by*ay*V10 g_ 12By*by — 2by°a — 696

’ bo (m\/gyz - bo)

2 —3bo’ay®V10 g— 128y*by — 2by>a — 696

A =
’ by (_m\/gyz - bo)

1 BMngoﬂy“ + \/ﬁ\/gb(ﬁa — 15by%By? — 696\/@\/@[3

=73
b (‘/E\/gl’z - bo)

_1 —3@\/§boﬁy4 — \/ﬁ\/gboga — 15by°By? + 696@\/§ﬁ
k=73
by <—\/E\/§y2 — b0>
4=

_1 zm\/gbo?’ayz — 12by*By* — 3@\/Eb0y2k —byta+ 696@\/;}/2 + 3by°k — 1392b,f

’ b, (m\/gyz - bo)

a=

_1 —2@\/§b03ay2 — 12by*By* + 3@\/§b0y2k — bt — 696@\/;}/2 + 3by°k — 1392b,

’ b, (‘m\/g\/z - bo)

Now, Eqg. (3.3) becomes

_ B_(G B(G\
Y(m) =bo = 6@\/;/ (E) + 6@]% (?) , (3.5)

Using the public solutions of Eq. (2.5) into Eq. (3.5), we have three kinds of traveling
wave solutions. When y2 — 46 > 0, we get the hyperbolic function solution of Eq. (1.1)
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y2-48n —4611
r1S8inh +73 cosh

B / v r?o4s \\
Y1,2(1n) =b0i6m\/:y —L
) r1C0Sh \/ﬂn}ﬂ”zsmh ve- 4617
2

[ {J_}{J_}\\

2

VT | 14 — — . (36)
rlcosh{ ! ;48n}+rzsinh{ ! ;487,}

In particular, if r, #0, , =0, y > 0,5 =0, then Eq. (3.6) becomes

1200 = by £ /%VZ +2 2% - 4d)tanh? (Syn), (3.7

When y? — 46 < 0, we get the trigonometric function solution of Eq. (1.1)

—risin 2 +r2COS
Y34(m) = by £ 6\/10\/2], K_Z n 45—y? B
) a 2 2 {J46—y2 77} { 45—y 77}
r1C0S - +rysin //

{F }{F }\\2

R (R P =

Ifr,=0,nrn+*0,y=0,5>0,then Eq. (3.8) becomes

,10ﬁ
Y34(n) =by+6 75C0t2(7]) ) (3.9

when y2 — 48 = 0, we get the rational function solution of Eq. (1.1)

(3.8)

rn+ mnn

2
14
T 6vV1 -=1, 3.10
f r1 + Y] 2) ( )

48

Vs = by £ 6V10 —}/(( T )_g)
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If n=0,nrn+0, y=2,5=1,thenEq. (3.10) becomes
B 1
Vs6(M) = by + 1210 E<ﬁ - 1)

t Wﬁjg (%— 1)2 » (3.11)

Figure 1. The wave solution given by (3.7) in 3D- and 2D-plots, when k = —0.5, =1
y= 2;5=0.5,b0=0.5,0(= 1.

Remark 1. We have verified all the gained solutions by setting them back into the equa-
tions (3.4) with the aid of Maple.
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Figure 2. The wave solution given by (3.9) in 3D- and 2D-plots, when k= 0.5, =1
1
Y= 2;8:§;b0 :O.S,CX: 1.

4 Conclusion

In this research, the (%’)—standard method is efficiently and successfully utilized on the

Gardner-Kawahara to find new solitary waves solutions. The kind of accurate solitary
wave result is variety along with different value of appropriate choice of
parameters (r; and r,) . We note that the special case contains the trigonometric
functions, the hyperbolic functions, and the rational functions. It is also a beneficial
technique to solve other nonlinear evolution equations.
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