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ABSTRACT 

Edge strength function (ESF) generates a family of level curves that evolves under the influence of 

curvature motions. This function is proved to be useful in representing images in computer vision for 
analysis and recognition purposes in different contexts. Computation of the ESF requires solving a partial 

differential equation, hence computationally costly. In this work, we present two parallel implementations 

of ESF that work on Graphics Processing Units (GPU) using Compute Unified Design Architecture 
(CUDA). Both implementations reduce the computational time significantly with respect to their serial 

counterpart. The implementations differ mainly in the type of memory that is utilized for accessing data; 

the first approach utilizes the shared memory and the second one utilizes the texture memory. We obtain 
between 40 to 65 times speedup in the shared memory based implementation and between 35 to 55 times 

in the texture memory based implementation with respect to the single threaded CPU implementation. The 

amount of speedup changes depending on the data size.. 

 

KEYWORDS: Edge strength function; parallelization; general purpose programming on graphics 

processing units; compute unified device architecture. 

 

1. INTRODUCTION 

 

Edge strength function (ESF) is offered by (Tari et al., 1997) as an alternative 

tool for curve evolution. It is a modified form of the Ambrossio-Tortorelli 

approximation (Ambrossio and Tortorelli, 2003) to the Mumford-Shah 

functional (Mumford and Shah, 1989) that uses large diffusion values and 

interprets a smoothed distance function (Erdem and Tari, 2009). The function 

generates a family of level curves that evolves under the influence of curvature 

motions. ESF is proved to be useful for extracting essential shape 

characteristics and used in different computer vision tasks, such as object 



Acceleration of the Edge Strength Function on GPU using CUDA 

 

51 

recognition via axis based image representation (Aslan and Tari, 2005), image 

segmentation (Erdem et al., 2005), part embedding (Keles et al., 2012), and 

critical points detection (Keles and Tari, 2015). A sample image and an ESF 

of this image are depicted in Figure 1.  

 
Figure 1. Top: A sample image, bottom: ESF of the image. 

 

This research is performed to improve our preliminary shape grammar 

implementation, which is a multi-core evolutionary approach that solves the 

embedding problem for sketches (Keles, 2015). In this work, we had to use a 

smoothed version of the standard distance transform instead of the ESF for 

part embeddings, due to its high computational cost. As a follow up research, 

to solve this efficiency problem, we have designed two efficient parallel 

solutions for ESF computations. The motivation for this improvement comes 

from the fact that ESF is reported to be more accurate for representing intrinsic 

characteristics of shapes than the standard distance transform and its smoothed 

variants (Keles et al., 2012).  

In this work, we provide the details of two different parallel implementations 

of the ESF that run on many-core GPU architectures. We evaluate the 

performance of the proposed implementations with respect to our serial, single 

threaded CPU implementation. The rest of the paper is organized as follows. 

In Section 1.1, we introduce the edge strength function and its discrete domain 

solution in detail. Following that, an overview of the related works on GPUs 

is provided. Then, in Section 2, we present the two CUDA based solutions in 

detail. Finally, in Section 3, we compare the performances of the two parallel 

implementations with respect to the single threaded CPU implementation. 
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1.1. The Edge Strength Function 

 
The edge strength function, which will be depicted here as 𝑣, generates an 

exponentially decaying, smoothed distance field. It is defined as the 

minimizer to the following energy functional (Aslan and Tari): 
1

2
∬ 𝜌‖∇𝑣‖2 +

𝑣2

𝜌
𝑑𝑥𝑑𝑦     (1) 

Subject to 𝑣 = 1 on the shape boundary. Here ρ is a small number which 

controls the level of smoothing.  

On a binary drawing, where each pixel on the drawing is represented as 1 and 

the rest as 0 in a bounded image domain Ω, it is computed by solving the 

following PDE (Tari et al. 1997): 
𝜕𝑣

𝜕𝑡
= (∇2 −

1

𝜌2) 𝑣     (2) 

Where, 
𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω. In this equation, 𝜕Ω is the boundary of the image plane 

and 𝑛 is the normal direction on the boundary.   
The discrete version of the equation (2) can be written using the finite 

difference approximations, where central differences are used for spatial 

derivatives and forward differences are used for temporal derivatives. In this 

equation, ∇2  is the Laplacian operator, which is approximated in the ESF 

computations using the 3x3 convolution kernel that is shown below: 

[
0 1 0
1 −4 1
0 1 0

] 

Then, the solution becomes: 
𝑣𝑖,𝑗

𝑘+1−𝑣𝑖,𝑗
𝑘

∆𝑡
= 𝑣𝑖+1,𝑗

𝑘 + 𝑣𝑖−1,𝑗
𝑘 + 𝑣𝑖,𝑗+1

𝑘 + 𝑣𝑖,𝑗−1
𝑘 − (4 +

1

𝜌2) 𝑣𝑖,𝑗
𝑘   (3) 

Where, 𝑖, 𝑗 ∈ Ω are the spatial indexes and 𝑘 is the iteration number.  

At the beginning, 𝑣0 is initialized with the original image. During the 

iterations, the pixel values that belong to the drawing/shape are kept constant 

and have their original value; i.e. 1. For convergence, ∆𝑡 needs to be less than 

0.25 (Tari et al., 1997); in our experiments, we set ∆𝑡 to 0.2. 

 

1.2. Related Works 

 
Data parallel computation on commodity graphics processors has started with 

the fixed function graphics pipeline in the early 2000's. Early works utilized 

graphics API functions to solve PDEs for non-linear diffusion (Rumpf and 

Strzodka, 2001) and levelsets (Lefohn et al., 2003). 
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The extended capabilities of the fixed function graphics pipeline, through 

programmable vertex and fragment processors, enabled general purpose 

programming on GPUs more convenient using the shader languages like Cg 

(Fernando and Kilgar, 2003), Direct3D's shading language (HLSL), OpenGL 

shading language (GLSL). Programming a GPU using shading languages was 

still based on graphics pipeline, yet it was easier to utilize the computational 

power of GPUs for general purpose programming. This attracted many 

researchers in the field to optimize computationally expensive algorithms by 

redesigning the data structures and the data flow for these GPU architectures 

(Keles et al., 2006; Rudomin et al., 2005; Ruiz et al., 2008).  

CUDA provides a programming model which enables utilization of massive 

data parallelism through the abstractions for thread groups, shared memory 

and thread synchronization with a minimal set of extensions to C 

programming language (Owens et al., 2008). This framework provides 

opportunities for developing massively parallel desktop applications that run 

on GPUs to solve performance problems for various scientific domains, such 

as physics (Gremse et al., 2016), material sciences (Jimenez and Ortiz 2016), 

and applied mathematics (Reis et al., 2016). 

Solving partial differential equations is a computationally demanding task; 

therefore there are some ongoing research activities in the design and 

implementation of PDE solvers that run in parallel. One of the early works 

that solves a nonlinear diffusion model on GPUs belongs to Rumpf and 

Strzodka (2001). The aim in this work is smoothing images based on a 

modified Perona-Malik model (Perona and Malik, 1990). Their solution is 

based on a finite element scheme implemented using texture hardware where 

graphics pipeline is utilized to modify the data that is stored as a texture 

through texture processing operations.  

Sanderson et al. (2009) present a framework that solves PDEs of advection-

reaction-diffusion models on GPU. The aim of this work is to create spatio-

temporal patterns that can be used for texture synthesis and the visualization 

of vector fields. They implemented their GPU based solver with fragment 

programs where the data is stored as a texture and the graphics pipeline 

functions are utilized to access and modify data.  

In the literature, more recent works provide solutions to some reaction-

diffusion problems using CUDA. Molnar et al. (2011) generated simulations 

for four different reaction-diffusion problems in 3d; they report 5-40 speedup 

in reference to their single threaded CPU implementation. Similarly, Holmen 

and Foster (2014) focused on 3d reaction-diffusion simulations to solve the 

diffusion of a chemically inert compound using CUDA. Their focus is on 
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improving the performance of single iteration; they reported 8.69x speedup in 

reference to their multi-threaded CPU based implementation. 

Recently, D'Ambra and Filippone (2016) presented a GPU based solution to 

the image segmentation problem that solves the Ambrossio-Tortorelli model. 

Their approach is based on solving a system of two coupled elliptic PDEs by 

a generalized relaxation method. In the implementation, they use the GPU 

extensions of the Parallel Sparse Basic Linear Algebra Subprograms 

(PSBLAS) library.  

Although there are GPU based solutions to some reaction-diffusion problems 

in different domains, to the best of our knowledge, a parallel implementation 

to the ESF, as it is presented in Tari et al. (1997), has not been presented in 

the literature, yet. The details of our solution are provided in Section 2. 

 

2. MATERIALS AND METHODS 

 
In this section, we discuss the design of our CUDA based solutions to the ESF 

computation. Two different approaches are implemented in CUDA, regarding 

the GPU memory utilization: (1) shared memory, (2) texture memory. In both 

approaches, the same CPU-CUDA implementation is used as a framework; 

only the kernel resource initializations and invoked kernels are changed 

depending on the configuration. The flow chart of the framework is depicted 

in Figure 2. 

 

In this framework, the image is first copied from the host (CPU) memory to 

the device (GPU) memory, to be used in the ESF computations over multiple 

iterations. The number of iterations is configured by the user in order to 

evaluate the performance of the algorithms for a range of iterations. During 

these iterations, the evolved ESF of the image is kept in the device memory 

all the time. The details of the two solutions will be made clear in the 

upcoming sections. 
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Figure 2. Flow chart of the ESF computation framework. 

 

2.1. Shared Memory Implementation 

 
Shared memory provides data sharing among the threads in the same block, 

hence it is more efficient to load and access the data that is used by multiple 

threads in a block into the shared memory instead of accessing it through the 
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global memory. In the CUDA supported GPUs, the access times of shared 

memory is 100x faster than the global memory; hence, efficiency increases 

when a thread needs to access multiple data elements in the same kernel. In 

the ESF computation, for convolution computation, each pixel is accessed 9 

times. Even when the kernel is optimized by excluding the pixels that 

correspond to the zero coefficients, each pixel is read at least 5 times. 

In our solution, the image is semantically represented as a set of tiles. The 

related image contents corresponding to each tile are copied to the shared 

memory. Copy operation is performed in parallel as well. We represent the 

two dimensional input image as a one dimensional array in the global memory 

of the GPU; while image tiles are represented as 2d arrays in shared memory.  

In our implementation, each thread copies four pixels (i.e. floating point 

values) from the global memory; the pixels that reside at the upper left, upper 

right, lower left and lower right corners of the pixel corresponding to the 

kernel center. When all the threads in a block complete this operation, the 

content of a tile is loaded into the shared memory. In order to apply 

convolution at each pixel in a tile, we also need to copy the apron pixels to the 

boundaries of the shared memory. The convolution function in the ESF 

requires replication of the boundary values for the apron pixels at the image 

boundary (Figure 3). Moreover, the apron pixels for the inner tiles need to be 

copied from the content of the neighboring tile boundaries (Figure 4). 

  
Figure 3. Apron pixels on the 

boundaries. 

Figure 4. Apron pixels of the inner 

tiles. 

  

After the thread synchronization, the updated ESF values are computed for 

each pixel in parallel (Algorithm 1). 
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As it is explained in the commented sections of Algorithm 1, each thread 

copies 4 pixels; namely the upper left, upper right, lower left and lower right 

sections, to keep all the threads active for copying the whole tile content to 

their proper positions in the shared memory. In order to keep pseudocode 

compact, we provide the algorithms that set the shared memory content in the 

Appendix A. The apron pixels at the image boundaries are checked explicitly 

in each of them and copied from the proper positions, in order to satisfy the 

boundary conditions so that the gradients at the image boundary are zero. 

 
Algorithm 1.Pseudocode of the Shared Memory Kernel 
1: procedure SharedESF (dData = ESF values, width = width of data, 

height = height of data, lambda = λ, dt = Δt) 
 

2: sData ← allocate 2D shared memory of size [TILE_H + 2][TILE_W + 2] 
3: gx  ← threadIdx.x + blockIdx.x * blockDim.x 
4: gy  ← threadIdx.y + blockIdx.y * blockDim.y 

5: data_idx ←   gy * width + gx 
6: offset ←   width 
7: bx ← threadIdx.x + 1  //Kernel Radius is 1 

8: by ← threadIdx.y + 1  //Kernel Radius is 1 
9: if data idx < 0 OR data idx ≥ width * height then return 

10: end if 

11: sData[by - 1][bx - 1]← Copy upper left (Refer to Algorithm UL in 
Appendix A)  

12: sData[by - 1][bx + 1]← Copy upper right (Refer to Algorithm UR in 
Appendix A) 

13: sData[by + 1][bx - 1] ← Copy lower left (Refer to Algorithm LL in 
Appendix A) 

14: sData[by + 1][bx + 1] ← Copy lower right (Refer to Algorithm LR in 
Appendix A) 

15: __syncthreads() 

16: L ← sData[by][bx-1] + sData[by][bx+1] + sData[by+1][bx]+ 
 sData[by-1][bx] – 4 * sData [by][bx] 

17: eps← 1e-5 

18: prev_val←sData[by][bx] 

19: if prev_val ≤ 1.0f + eps AND prev_val ≥ 1.0f - eps then 

20:  dData[data_idx] ←1.0f 

21: else 

22:  dData[data_idx] ← prev_val + (dt * (L - (lambda * prev_val))) 
23: end if 

24: end procedure 

 

As it is explained in the commented sections of Algorithm 1, each thread 

copies 4 pixels; namely the upper left, upper right, lower left and lower right 

sections, to keep all the threads active for copying the whole tile content to 

their proper positions in the shared memory. The apron pixels at the image 

boundaries are checked explicitly in each of them and copied from the proper 
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positions, in order to satisfy the boundary conditions so that the gradients at 

the image boundary are zero. 

 

2.2. Texture Memory Implementation 

 
In this approach, a 2d floating point texture is utilized for the Laplacian 

computation. The advantage of using texture memory is that texture memory 

is cached on-chip and texture caches are optimized for thread operations, 

where memory access patterns depict spatial locality. Therefore, accessing the 

cached texture memory improves the kernel performances and reduces the 

memory traffic considerably. 

In this approach, a CUDA array, which has the same width and height with 

the input image, is allocated and bound as the texture memory. CUDA arrays 

optimize the cache coherence for filtering functions, so that reading the data 

from the upper and lower rows and neighboring columns are efficient. 

Moreover, it is not necessary to consider the tile apron pixels explicitly; 

because this is handled automatically by tex2D function. Hence, the 

implementation with texture memory is more trivial for the ESF computation.  

Initially, the input image is on the host memory. It is copied from the host 

memory to the allocated CUDA array, which is on the device memory. For a 

number of iterations; (1) a CUDA Kernel is launched which first computes 

the Laplacian of the current image using the previously computed ESF values 

that are stored on the texture buffer (Algorithm 2), (2) the Laplacian and the 

previous values of the ESF are used to compute the updated ESF values 

conforming to the Equation (3). 

 
Algorithm 2. Pseudocode of the Texture Memory Kernel 
1: procedure textureESF (foatText : texture<float; 2> = current ESF 

values, dData=updated ESF values, width = width of data, height = 

height of data, lambda = λ, dt = Δt) 
 

2: gx ← threadIdx.x + blockIdx.x * blockDim.x 
3: gy ← threadIdx.y + blockIdx.y * blockDim.y 

4: data_idx ← gy * width + gx 
5: if data_idx < 0 OR data_idx ≥ width * height then return 

6: end if 

7: L ← tex2D(foatTex, gx-1, gy) + tex2D(foatTex, gx+1, gy) + 

tex2D(foatTex, gx, gy-1) + tex2D(foatTex, gx, gy+1) - 4*tex2D(foatTex, 

gx, gy) 

8: eps ← 1e-5 
9: prev_val ← tex2D(foatTex, gx, gy) 
10: if prev_val ≤ 1.0f + eps AND prev_val ≥ 1.0f - eps then 

11:  dData[data_idx] ← 1.0f 
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12: else 

13:  dData[data_idx] ← prev_val + (dt * (L - (lambda * prev_val))) 
14: end if 

15: end procedure 

 

 

3. RESULTS AND DISCUSSIONS 

 
In this section, we present the performances of the two CUDA 

implementations with respect to our single threaded, serial CPU 

implementation. We selected two images with different characteristics for 

performance evaluations. The first image is a Seljuk pattern from Kayseri 

(Anatolia) that is composed of thin, crowded line stripes. The second image 

is the Lena image in binary form that is composed of large segments of 

foreground and background parts (Figure 5).  

  

 
Figure 5. Test images: on the left, Seljuk pattern from Kayseri (Anatolia); 

on the right, binary Lena image. 

 

The Seljuk pattern has been used embedding parts in a shape grammar related 

research (Keles et al., 2012). Such drawings are common in computational 

design field. In this work, the ESF is used extensively to transform the images 

to a weighted domain and the algebra defined on that domain is used to operate 

on the weighted representation of the images. This transformation enables 

efficient part searching in a given shape. In the second scenario, we utilize 

ESF to remove the noise and fill in the pixel gaps by smoothing that the ESF 

provides. The selected test image is the popular Lena image. The resultant 
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ESF images for both patterns are shown in Figure 6. In both of the examples, 

𝜌 is set to 64 and ESF is generated after 50 iterations. 

 

 
Figure 6. On the left, ESF of the Seljuk pattern; on the right, ESF of the 

Lena image. 

 

Image size is the bottleneck for the ESF computations; hence, we provide the 

performances of the parallel implementations for 4 different image sizes for 

the test images. In order to evaluate the performances, we use the speedup 

metric. Speedup is computed as the ratio of the execution time on CPU to the 

one that we obtain on GPU. It is depicted in Equation (4). Here, 𝑇𝐺𝑃𝑈 is the 

total execution time of the ESF kernels on GPU and 𝑇𝐶𝑃𝑈 is the total execution 

time of the ESF implementation on CPU. We did not include the memory 

allocation and deallocation times, yet we keep track of the execution times of 

the kernel calls for a specified number of iterations. All the experiments are 

performed for 50 times and their average is reported. 

𝑆 =
𝑇𝐶𝑃𝑈

𝑇𝐺𝑃𝑈
     (4) 

The experiments on the CUDA kernels are performed on an NVidia GeForce 

GTX 970 graphics card and the CPU implementation is tested on a 4GHz Intel 

i7 processor. In order to evaluate the speedup performances, we prepared a 

totally white image as a benchmark. A white image is the most saturated 

image for ESF computations; hence the diffusion computation is not 

performed for any of the pixels. The speedup obtained from this image 

demonstrates the level of performance improvement by merely subdividing 

the data into tiles on GPU. The speedup from our benchmark images in 

various sizes are depicted in Figure 7. 
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Figure 7. Speedup obtained using the benchmark images, for 200 iterations. 

 

The speedup for the benchmark images show two things: (1) the speedup 

improves slightly as the data increases, (2) the shared memory implementation 

runs faster than the texture memory implementation. Although the memory 

access in cached texture memory is fast, the transfer of updated ESF values 

from global GPU memory to cuda array creates an overhead; hence, results 

in memory-bound execution times (Algorithm 3). The data transfer, which is 

performed in each iteration, is necessary since texture memory is cashed and 

read-only. The speedup is between 15 to 20 for the shared memory 

implementation and around 15 for the texture memory implementation. 

 
Algorithm 3. Pseudocode for Texture Memory Kernel Call 
1: procedure callTextureKernel // d array: CUDA array that is bind as 

2d float texture , d image: data in global GPU memory 

 

2: copy data from d_image to d_array. // device to device copy 

3: bind d array as floatTex 

4: for a number of iterations: N do 

5:  call textureESF Kernel 

6:  copy data from d_image to d_array. // device to device copy 

7:  bind d_array as floatTex 

8: end for 

9: end procedure 
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3.1. Experiments with the Seljuk Pattern Images 

 
The crowded and overlapping line stripes in Seljuk Patterns make them ideal 

for ESF performance tests, because in each tile there are both foreground and 

background pixels, there is a high branch divergence in almost every tile. 

 

Table 1. Execution times of the Seljuk patterns for 50 iterations (in 

milliseconds). SM: Shared memory implementation, TM: Texture memory 

implementation. 

Size (MB) CPU GPU (SM) GPU (TM) 

4 267.7 6.2 7.0 

16 1076.3 23.9 25.7 

64 4319.5 92.6 101.3 

256 17266.4 360.8 410.3 

 

The execution times of the Seljuk patterns in various sizes are depicted in 

Table 1. These values are obtained for 50 iterations. The corresponding 

speedup obtained with the GPU implementations are shown graphically in 

Figure 8.   

 
Figure 8. Speedup obtained with the Seljuk patterns, for 50 iterations. 

 

Execution time of the ESF increases when we increase the data size, 

proportionately for both CPU and GPU; yet there is still a slight improvement 

in speedup. When the size of the data is small, i.e. 4 MB, speedup does not 
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increase as fast due to rather inefficient utilization of the data parallelism of 

the GPU. Since the ESF kernels are memory-bound, i.e. they require accessing 

multiple memory locations, yet do not contain dense arithmetic computations; 

the memory access cost becomes more dominant in the overall execution time 

(Table 2). 

 

Table 2. Execution times of the Seljuk patterns for 200 iterations (in ms). 

Size (MB) CPU GPU (SM) GPU (TM) 

4 1070.2 25.3 26.8 

16 4309.2 91.5 102.3 

64 17270.3 363.9 404.6 

256 69295.6 1441.8 1641.3 

  

3.2. Experiments with the Lena Images 

 
The execution times for the ESF computation using the Lena images are 

depicted in Table 3. The test results show that the speedup for the Lena images 

are relatively higher than the ones that we get from Seljuk images (Figure 9). 

It is due to the decrease in branch divergence in Lena images, compared to the 

Seljuk pattern; because there is a relatively more coherent distribution of 

foreground and background pixels in the Lena images. Note that, the bigger 

sized Lena images are created by scaling the image. Therefore, when we scale 

the image, the foreground region is doubled while tile dimensions in the 

kernels are fixed. This enables the threads in the same block, hence in the 

same tile, to execute the same branch most of the time. This is not the case for 

the complicated line stripes in Seljuk image, since the Seljuk tiles are extended 

to the bigger sizes without scaling. 

 

Table 3. Execution times of the Lena images for 200 iterations (in ms). 

Size (MB) CPU GPU (SM) GPU (TM) 

4 1042.6 24.9 26.6 

16 5016.1 91.5 103.9 

64 23192.1 359.2 412.8 

256 86319.7 1406.1 1667.3 

  

The tests in Lena images also show that when the data size is increased to 

256MB, the average speedup do not improve further. Although the speedup 

in this size is not better than 64MB, it is still higher than the other 

configurations. We believe that the slight decrease in speedup is due to the 
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change in the tile alignments when the data is doubled in size. The speedup 

gets better than 64MB, in this particular test image, in this size, when the 

number of iterations is increased to 400 or more.   

 
Figure 9. Speedup obtained with the Lena images, for 200 iterations. 

 

4. CONCLUSION 

 
In this research, we present two GPU implementations of the ESF using 

CUDA, namely the shared memory and the texture memory implementations; 

and compared their performances. The test images are selected considering 

the domains that the ESF is utilized more frequently, and the experiments are 

planned on varied sizes of these images. Our experiments show that, the 

speedup in the shared memory implementation is higher in all the 

experiments, due to the efficient block level data sharing among the treads in 

the same tile and faster access times of shared memory. Although the access 

times in the texture memory is fast with cached data, there is an overhead for 

moving data from the global memory to the texture memory in each iteration. 

Both of the GPU implementations result in significant speedups with respect 

to our single threaded CPU implementation; the improvement is at least 35 

times in the texture memory based implementation and more than 40 times in 

the shared memory implementation. Speedup increases as the data size is 

increased.  

The methods developed in this research are utilized in a shape grammar 

interpreter to improve computation times of part embeddings. Moreover, the 
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proposed CUDA based ESF solutions will also be used in an upcoming 

research on a novel shape segmentation algorithm. 
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Appendix A. 
Algorithm 4. Setting Upper Left (UL) 
1: procedure UL 

  // dData = ESF values (global memory), sData = ESF values (shared 

memory) 

  // width : imagewidth; offset ← width 
  // gx ← threadIdx.x + blockIdx.x* blockDim.x 

  // gy ← threadIdx.y + blockIdx.y* blockDim.y 
  // bx ← threadIdx.x +1, by   threadIdx.y +1 
  // data_idx ← gy*width+gx 
2: if gx - 1 < 0 AND gy - 1 < 0 then // image boundary: top-left pixel 

3:    sData[by - 1][bx - 1] ← dData[data_idx] 
4: else if gx - 1 < 0 then // image boundary: pixel before the first 

column 

5:    sData[by - 1][bx - 1] ← dData[data_idx - offset] 
6: else if gy - 1 < 0 then // image boundary: pixel below the _rst 

row 

7:    sData[by - 1][bx - 1] ← dData[data_idx - 1] 
8: else 

9:     sData[by - 1][bx - 1] ←  dData[data_idx - offset - 1] 
10: end if 

11: end procedure 

 
Algorithm 5. Setting Upper Right (UR) 
1: procedure UR 

  // dData = ESF values (global memory), sData = ESF values (shared 

memory) 

  // width : imagewidth; offset ← width 

  // gx ← threadIdx.x + blockIdx.x* blockDim.x 
  // gy ← threadIdx.y + blockIdx.y* blockDim.y 
  // bx ← threadIdx.x +1, by   threadIdx.y +1 

  // data_idx ← gy*width+gx 
2: if gx + 1 > width - 1 AND gy - 1 < 0 then // image boundary: top-

right pixel 

3:    sData[by - 1][bx + 1] ← dData[data_idx] 
4: else if gy - 1 < 0 then // image boundary: pixel below the first 

row 

5:    sData[by - 1][bx + 1]   dData[data_idx + 1] 

6: else if gx + 1 > width - 1 then // image boundary: pixel beyond 

the last column 

7:    sData[by - 1][bx + 1] ← dData[data_idx - offset] 
8: else 
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9:    sData[by - 1][bx + 1] ←  dData[data_idx - offset + 1] 
10: end if 

11: end procedure 

 
Algorithm 6. Setting Lower Left (LL) 
1: procedure LL 

  // dData = ESF values (global memory), sData = ESF values (shared 

memory) 

  // width : imagewidth; offset ← width 

  // gx ← threadIdx.x + blockIdx.x* blockDim.x 
  // gy ← threadIdx.y + blockIdx.y* blockDim.y 
  // bx ← threadIdx.x +1, by   threadIdx.y +1 

  // data_idx ← gy*width+gx 
2: if gx - 1 < 0 AND gy + 1 > height - 1 then // image boundary: 

lower-left pixel 

3:    sData[by + 1][bx - 1] ← dData[data_idx] 
4: else if gx - 1 < 0 then // image boundary: pixel before the _rst 

column 

5:    sData[by + 1][bx - 1] ← dData[data_idx + offset] 
6: else if gy + 1 > height - 1 then // image boundary: pixel beyond 

the last row 

7:    sData[by + 1][bx - 1] ←  dData[data_idx - 1] 
8: else 

9:    sData[by + 1][bx - 1] ←  dData[data_idx + offset - 1] 
10: end if 

11: end procedure 

 
Algorithm 7. Setting Lower Right (LR) 
1: procedure LR 

  // dData = ESF values (global memory), sData = ESF values (shared 

memory) 

  // width : imagewidth; offset ← width 
  // gx ← threadIdx.x + blockIdx.x* blockDim.x 

  // gy ← threadIdx.y + blockIdx.y* blockDim.y 
  // bx ← threadIdx.x +1, by   threadIdx.y +1 

  // data_idx ← gy*width+gx 
2: if gx + 1 > width - 1 AND gy + 1 > height - 1 then // image 

boundary: lower-right pixel 

3:    sData[by + 1][bx + 1] ← dData[data_idx] 
4: else if gx + 1 > width - 1 then // image boundary: pixel beyond 

the last column 

5:    sData[by + 1][bx + 1] ← dData[data_idx + offset] 
6: else if gy + 1 > height - 1 then // image boundary: pixel beyond 

the last row 

7:    sData[by + 1][bx + 1] ← dData[data_idx + 1] 
8: else 

9:    sData[by + 1][bx + 1] ← dData[data_idx + offset + 1] 
10: end if 

11: end procedure 
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