
Commun.Fac.Sci.Univ.Ank.Series A2-A3
Volume 58, Number 2, Pages 50-69 (2016)

DOI: 10.1501/commua1-2_0000000096
ISSN 1303-6009

© 2016 Ankara University

 Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering

ACCELERATION OF THE EDGE STRENGTH FUNCTION

ON GPU USING CUDA

Hacer YALIM KELEŞ

Ankara University, Faculty of Engineering, Department of Computer Engineering, 06830, Gölbaşı,

Ankara, TURKEY

E-mail: hkeles@ankara.edu.tr

(Received: October 11, 2016; Accepted: December 23, 2016)

ABSTRACT

Edge strength function (ESF) generates a family of level curves that evolves under the influence of

curvature motions. This function is proved to be useful in representing images in computer vision for
analysis and recognition purposes in different contexts. Computation of the ESF requires solving a partial

differential equation, hence computationally costly. In this work, we present two parallel implementations

of ESF that work on Graphics Processing Units (GPU) using Compute Unified Design Architecture
(CUDA). Both implementations reduce the computational time significantly with respect to their serial

counterpart. The implementations differ mainly in the type of memory that is utilized for accessing data;

the first approach utilizes the shared memory and the second one utilizes the texture memory. We obtain
between 40 to 65 times speedup in the shared memory based implementation and between 35 to 55 times

in the texture memory based implementation with respect to the single threaded CPU implementation. The

amount of speedup changes depending on the data size..

KEYWORDS: Edge strength function; parallelization; general purpose programming on graphics

processing units; compute unified device architecture.

1. INTRODUCTION

Edge strength function (ESF) is offered by (Tari et al., 1997) as an alternative

tool for curve evolution. It is a modified form of the Ambrossio-Tortorelli

approximation (Ambrossio and Tortorelli, 2003) to the Mumford-Shah

functional (Mumford and Shah, 1989) that uses large diffusion values and

interprets a smoothed distance function (Erdem and Tari, 2009). The function

generates a family of level curves that evolves under the influence of curvature

motions. ESF is proved to be useful for extracting essential shape

characteristics and used in different computer vision tasks, such as object

Acceleration of the Edge Strength Function on GPU using CUDA

51

recognition via axis based image representation (Aslan and Tari, 2005), image

segmentation (Erdem et al., 2005), part embedding (Keles et al., 2012), and

critical points detection (Keles and Tari, 2015). A sample image and an ESF

of this image are depicted in Figure 1.

Figure 1. Top: A sample image, bottom: ESF of the image.

This research is performed to improve our preliminary shape grammar

implementation, which is a multi-core evolutionary approach that solves the

embedding problem for sketches (Keles, 2015). In this work, we had to use a

smoothed version of the standard distance transform instead of the ESF for

part embeddings, due to its high computational cost. As a follow up research,

to solve this efficiency problem, we have designed two efficient parallel

solutions for ESF computations. The motivation for this improvement comes

from the fact that ESF is reported to be more accurate for representing intrinsic

characteristics of shapes than the standard distance transform and its smoothed

variants (Keles et al., 2012).

In this work, we provide the details of two different parallel implementations

of the ESF that run on many-core GPU architectures. We evaluate the

performance of the proposed implementations with respect to our serial, single

threaded CPU implementation. The rest of the paper is organized as follows.

In Section 1.1, we introduce the edge strength function and its discrete domain

solution in detail. Following that, an overview of the related works on GPUs

is provided. Then, in Section 2, we present the two CUDA based solutions in

detail. Finally, in Section 3, we compare the performances of the two parallel

implementations with respect to the single threaded CPU implementation.

Hacer YALIM KELEŞ

52

1.1. The Edge Strength Function

The edge strength function, which will be depicted here as 𝑣, generates an

exponentially decaying, smoothed distance field. It is defined as the

minimizer to the following energy functional (Aslan and Tari):
1

2
∬ 𝜌‖∇𝑣‖2 +

𝑣2

𝜌
𝑑𝑥𝑑𝑦 (1)

Subject to 𝑣 = 1 on the shape boundary. Here ρ is a small number which

controls the level of smoothing.

On a binary drawing, where each pixel on the drawing is represented as 1 and

the rest as 0 in a bounded image domain Ω, it is computed by solving the

following PDE (Tari et al. 1997):
𝜕𝑣

𝜕𝑡
= (∇2 −

1

𝜌2) 𝑣 (2)

Where,
𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω. In this equation, 𝜕Ω is the boundary of the image plane

and 𝑛 is the normal direction on the boundary.
The discrete version of the equation (2) can be written using the finite

difference approximations, where central differences are used for spatial

derivatives and forward differences are used for temporal derivatives. In this

equation, ∇2 is the Laplacian operator, which is approximated in the ESF

computations using the 3x3 convolution kernel that is shown below:

[
0 1 0
1 −4 1
0 1 0

]

Then, the solution becomes:
𝑣𝑖,𝑗

𝑘+1−𝑣𝑖,𝑗
𝑘

∆𝑡
= 𝑣𝑖+1,𝑗

𝑘 + 𝑣𝑖−1,𝑗
𝑘 + 𝑣𝑖,𝑗+1

𝑘 + 𝑣𝑖,𝑗−1
𝑘 − (4 +

1

𝜌2) 𝑣𝑖,𝑗
𝑘 (3)

Where, 𝑖, 𝑗 ∈ Ω are the spatial indexes and 𝑘 is the iteration number.

At the beginning, 𝑣0 is initialized with the original image. During the

iterations, the pixel values that belong to the drawing/shape are kept constant

and have their original value; i.e. 1. For convergence, ∆𝑡 needs to be less than

0.25 (Tari et al., 1997); in our experiments, we set ∆𝑡 to 0.2.

1.2. Related Works

Data parallel computation on commodity graphics processors has started with

the fixed function graphics pipeline in the early 2000's. Early works utilized

graphics API functions to solve PDEs for non-linear diffusion (Rumpf and

Strzodka, 2001) and levelsets (Lefohn et al., 2003).

Acceleration of the Edge Strength Function on GPU using CUDA

53

The extended capabilities of the fixed function graphics pipeline, through

programmable vertex and fragment processors, enabled general purpose

programming on GPUs more convenient using the shader languages like Cg

(Fernando and Kilgar, 2003), Direct3D's shading language (HLSL), OpenGL

shading language (GLSL). Programming a GPU using shading languages was

still based on graphics pipeline, yet it was easier to utilize the computational

power of GPUs for general purpose programming. This attracted many

researchers in the field to optimize computationally expensive algorithms by

redesigning the data structures and the data flow for these GPU architectures

(Keles et al., 2006; Rudomin et al., 2005; Ruiz et al., 2008).

CUDA provides a programming model which enables utilization of massive

data parallelism through the abstractions for thread groups, shared memory

and thread synchronization with a minimal set of extensions to C

programming language (Owens et al., 2008). This framework provides

opportunities for developing massively parallel desktop applications that run

on GPUs to solve performance problems for various scientific domains, such

as physics (Gremse et al., 2016), material sciences (Jimenez and Ortiz 2016),

and applied mathematics (Reis et al., 2016).

Solving partial differential equations is a computationally demanding task;

therefore there are some ongoing research activities in the design and

implementation of PDE solvers that run in parallel. One of the early works

that solves a nonlinear diffusion model on GPUs belongs to Rumpf and

Strzodka (2001). The aim in this work is smoothing images based on a

modified Perona-Malik model (Perona and Malik, 1990). Their solution is

based on a finite element scheme implemented using texture hardware where

graphics pipeline is utilized to modify the data that is stored as a texture

through texture processing operations.

Sanderson et al. (2009) present a framework that solves PDEs of advection-

reaction-diffusion models on GPU. The aim of this work is to create spatio-

temporal patterns that can be used for texture synthesis and the visualization

of vector fields. They implemented their GPU based solver with fragment

programs where the data is stored as a texture and the graphics pipeline

functions are utilized to access and modify data.

In the literature, more recent works provide solutions to some reaction-

diffusion problems using CUDA. Molnar et al. (2011) generated simulations

for four different reaction-diffusion problems in 3d; they report 5-40 speedup

in reference to their single threaded CPU implementation. Similarly, Holmen

and Foster (2014) focused on 3d reaction-diffusion simulations to solve the

diffusion of a chemically inert compound using CUDA. Their focus is on

Hacer YALIM KELEŞ

54

improving the performance of single iteration; they reported 8.69x speedup in

reference to their multi-threaded CPU based implementation.

Recently, D'Ambra and Filippone (2016) presented a GPU based solution to

the image segmentation problem that solves the Ambrossio-Tortorelli model.

Their approach is based on solving a system of two coupled elliptic PDEs by

a generalized relaxation method. In the implementation, they use the GPU

extensions of the Parallel Sparse Basic Linear Algebra Subprograms

(PSBLAS) library.

Although there are GPU based solutions to some reaction-diffusion problems

in different domains, to the best of our knowledge, a parallel implementation

to the ESF, as it is presented in Tari et al. (1997), has not been presented in

the literature, yet. The details of our solution are provided in Section 2.

2. MATERIALS AND METHODS

In this section, we discuss the design of our CUDA based solutions to the ESF

computation. Two different approaches are implemented in CUDA, regarding

the GPU memory utilization: (1) shared memory, (2) texture memory. In both

approaches, the same CPU-CUDA implementation is used as a framework;

only the kernel resource initializations and invoked kernels are changed

depending on the configuration. The flow chart of the framework is depicted

in Figure 2.

In this framework, the image is first copied from the host (CPU) memory to

the device (GPU) memory, to be used in the ESF computations over multiple

iterations. The number of iterations is configured by the user in order to

evaluate the performance of the algorithms for a range of iterations. During

these iterations, the evolved ESF of the image is kept in the device memory

all the time. The details of the two solutions will be made clear in the

upcoming sections.

Acceleration of the Edge Strength Function on GPU using CUDA

55

Figure 2. Flow chart of the ESF computation framework.

2.1. Shared Memory Implementation

Shared memory provides data sharing among the threads in the same block,

hence it is more efficient to load and access the data that is used by multiple

threads in a block into the shared memory instead of accessing it through the

Hacer YALIM KELEŞ

56

global memory. In the CUDA supported GPUs, the access times of shared

memory is 100x faster than the global memory; hence, efficiency increases

when a thread needs to access multiple data elements in the same kernel. In

the ESF computation, for convolution computation, each pixel is accessed 9

times. Even when the kernel is optimized by excluding the pixels that

correspond to the zero coefficients, each pixel is read at least 5 times.

In our solution, the image is semantically represented as a set of tiles. The

related image contents corresponding to each tile are copied to the shared

memory. Copy operation is performed in parallel as well. We represent the

two dimensional input image as a one dimensional array in the global memory

of the GPU; while image tiles are represented as 2d arrays in shared memory.

In our implementation, each thread copies four pixels (i.e. floating point

values) from the global memory; the pixels that reside at the upper left, upper

right, lower left and lower right corners of the pixel corresponding to the

kernel center. When all the threads in a block complete this operation, the

content of a tile is loaded into the shared memory. In order to apply

convolution at each pixel in a tile, we also need to copy the apron pixels to the

boundaries of the shared memory. The convolution function in the ESF

requires replication of the boundary values for the apron pixels at the image

boundary (Figure 3). Moreover, the apron pixels for the inner tiles need to be

copied from the content of the neighboring tile boundaries (Figure 4).

Figure 3. Apron pixels on the

boundaries.

Figure 4. Apron pixels of the inner

tiles.

After the thread synchronization, the updated ESF values are computed for

each pixel in parallel (Algorithm 1).

Acceleration of the Edge Strength Function on GPU using CUDA

57

As it is explained in the commented sections of Algorithm 1, each thread

copies 4 pixels; namely the upper left, upper right, lower left and lower right

sections, to keep all the threads active for copying the whole tile content to

their proper positions in the shared memory. In order to keep pseudocode

compact, we provide the algorithms that set the shared memory content in the

Appendix A. The apron pixels at the image boundaries are checked explicitly

in each of them and copied from the proper positions, in order to satisfy the

boundary conditions so that the gradients at the image boundary are zero.

Algorithm 1.Pseudocode of the Shared Memory Kernel
1: procedure SharedESF (dData = ESF values, width = width of data,

height = height of data, lambda = λ, dt = Δt)

2: sData ← allocate 2D shared memory of size [TILE_H + 2][TILE_W + 2]
3: gx ← threadIdx.x + blockIdx.x * blockDim.x
4: gy ← threadIdx.y + blockIdx.y * blockDim.y

5: data_idx ← gy * width + gx
6: offset ← width
7: bx ← threadIdx.x + 1 //Kernel Radius is 1

8: by ← threadIdx.y + 1 //Kernel Radius is 1
9: if data idx < 0 OR data idx ≥ width * height then return

10: end if

11: sData[by - 1][bx - 1]← Copy upper left (Refer to Algorithm UL in
Appendix A)

12: sData[by - 1][bx + 1]← Copy upper right (Refer to Algorithm UR in
Appendix A)

13: sData[by + 1][bx - 1] ← Copy lower left (Refer to Algorithm LL in
Appendix A)

14: sData[by + 1][bx + 1] ← Copy lower right (Refer to Algorithm LR in
Appendix A)

15: __syncthreads()

16: L ← sData[by][bx-1] + sData[by][bx+1] + sData[by+1][bx]+
 sData[by-1][bx] – 4 * sData [by][bx]

17: eps← 1e-5

18: prev_val←sData[by][bx]

19: if prev_val ≤ 1.0f + eps AND prev_val ≥ 1.0f - eps then

20: dData[data_idx] ←1.0f

21: else

22: dData[data_idx] ← prev_val + (dt * (L - (lambda * prev_val)))
23: end if

24: end procedure

As it is explained in the commented sections of Algorithm 1, each thread

copies 4 pixels; namely the upper left, upper right, lower left and lower right

sections, to keep all the threads active for copying the whole tile content to

their proper positions in the shared memory. The apron pixels at the image

boundaries are checked explicitly in each of them and copied from the proper

Hacer YALIM KELEŞ

58

positions, in order to satisfy the boundary conditions so that the gradients at

the image boundary are zero.

2.2. Texture Memory Implementation

In this approach, a 2d floating point texture is utilized for the Laplacian

computation. The advantage of using texture memory is that texture memory

is cached on-chip and texture caches are optimized for thread operations,

where memory access patterns depict spatial locality. Therefore, accessing the

cached texture memory improves the kernel performances and reduces the

memory traffic considerably.

In this approach, a CUDA array, which has the same width and height with

the input image, is allocated and bound as the texture memory. CUDA arrays

optimize the cache coherence for filtering functions, so that reading the data

from the upper and lower rows and neighboring columns are efficient.

Moreover, it is not necessary to consider the tile apron pixels explicitly;

because this is handled automatically by tex2D function. Hence, the

implementation with texture memory is more trivial for the ESF computation.

Initially, the input image is on the host memory. It is copied from the host

memory to the allocated CUDA array, which is on the device memory. For a

number of iterations; (1) a CUDA Kernel is launched which first computes

the Laplacian of the current image using the previously computed ESF values

that are stored on the texture buffer (Algorithm 2), (2) the Laplacian and the

previous values of the ESF are used to compute the updated ESF values

conforming to the Equation (3).

Algorithm 2. Pseudocode of the Texture Memory Kernel
1: procedure textureESF (foatText : texture<float; 2> = current ESF

values, dData=updated ESF values, width = width of data, height =

height of data, lambda = λ, dt = Δt)

2: gx ← threadIdx.x + blockIdx.x * blockDim.x
3: gy ← threadIdx.y + blockIdx.y * blockDim.y

4: data_idx ← gy * width + gx
5: if data_idx < 0 OR data_idx ≥ width * height then return

6: end if

7: L ← tex2D(foatTex, gx-1, gy) + tex2D(foatTex, gx+1, gy) +

tex2D(foatTex, gx, gy-1) + tex2D(foatTex, gx, gy+1) - 4*tex2D(foatTex,

gx, gy)

8: eps ← 1e-5
9: prev_val ← tex2D(foatTex, gx, gy)
10: if prev_val ≤ 1.0f + eps AND prev_val ≥ 1.0f - eps then

11: dData[data_idx] ← 1.0f

Acceleration of the Edge Strength Function on GPU using CUDA

59

12: else

13: dData[data_idx] ← prev_val + (dt * (L - (lambda * prev_val)))
14: end if

15: end procedure

3. RESULTS AND DISCUSSIONS

In this section, we present the performances of the two CUDA

implementations with respect to our single threaded, serial CPU

implementation. We selected two images with different characteristics for

performance evaluations. The first image is a Seljuk pattern from Kayseri

(Anatolia) that is composed of thin, crowded line stripes. The second image

is the Lena image in binary form that is composed of large segments of

foreground and background parts (Figure 5).

Figure 5. Test images: on the left, Seljuk pattern from Kayseri (Anatolia);

on the right, binary Lena image.

The Seljuk pattern has been used embedding parts in a shape grammar related

research (Keles et al., 2012). Such drawings are common in computational

design field. In this work, the ESF is used extensively to transform the images

to a weighted domain and the algebra defined on that domain is used to operate

on the weighted representation of the images. This transformation enables

efficient part searching in a given shape. In the second scenario, we utilize

ESF to remove the noise and fill in the pixel gaps by smoothing that the ESF

provides. The selected test image is the popular Lena image. The resultant

Hacer YALIM KELEŞ

60

ESF images for both patterns are shown in Figure 6. In both of the examples,

𝜌 is set to 64 and ESF is generated after 50 iterations.

Figure 6. On the left, ESF of the Seljuk pattern; on the right, ESF of the

Lena image.

Image size is the bottleneck for the ESF computations; hence, we provide the

performances of the parallel implementations for 4 different image sizes for

the test images. In order to evaluate the performances, we use the speedup

metric. Speedup is computed as the ratio of the execution time on CPU to the

one that we obtain on GPU. It is depicted in Equation (4). Here, 𝑇𝐺𝑃𝑈 is the

total execution time of the ESF kernels on GPU and 𝑇𝐶𝑃𝑈 is the total execution

time of the ESF implementation on CPU. We did not include the memory

allocation and deallocation times, yet we keep track of the execution times of

the kernel calls for a specified number of iterations. All the experiments are

performed for 50 times and their average is reported.

𝑆 =
𝑇𝐶𝑃𝑈

𝑇𝐺𝑃𝑈
 (4)

The experiments on the CUDA kernels are performed on an NVidia GeForce

GTX 970 graphics card and the CPU implementation is tested on a 4GHz Intel

i7 processor. In order to evaluate the speedup performances, we prepared a

totally white image as a benchmark. A white image is the most saturated

image for ESF computations; hence the diffusion computation is not

performed for any of the pixels. The speedup obtained from this image

demonstrates the level of performance improvement by merely subdividing

the data into tiles on GPU. The speedup from our benchmark images in

various sizes are depicted in Figure 7.

Acceleration of the Edge Strength Function on GPU using CUDA

61

Figure 7. Speedup obtained using the benchmark images, for 200 iterations.

The speedup for the benchmark images show two things: (1) the speedup

improves slightly as the data increases, (2) the shared memory implementation

runs faster than the texture memory implementation. Although the memory

access in cached texture memory is fast, the transfer of updated ESF values

from global GPU memory to cuda array creates an overhead; hence, results

in memory-bound execution times (Algorithm 3). The data transfer, which is

performed in each iteration, is necessary since texture memory is cashed and

read-only. The speedup is between 15 to 20 for the shared memory

implementation and around 15 for the texture memory implementation.

Algorithm 3. Pseudocode for Texture Memory Kernel Call
1: procedure callTextureKernel // d array: CUDA array that is bind as

2d float texture , d image: data in global GPU memory

2: copy data from d_image to d_array. // device to device copy

3: bind d array as floatTex

4: for a number of iterations: N do

5: call textureESF Kernel

6: copy data from d_image to d_array. // device to device copy

7: bind d_array as floatTex

8: end for

9: end procedure

Hacer YALIM KELEŞ

62

3.1. Experiments with the Seljuk Pattern Images

The crowded and overlapping line stripes in Seljuk Patterns make them ideal

for ESF performance tests, because in each tile there are both foreground and

background pixels, there is a high branch divergence in almost every tile.

Table 1. Execution times of the Seljuk patterns for 50 iterations (in

milliseconds). SM: Shared memory implementation, TM: Texture memory

implementation.

Size (MB) CPU GPU (SM) GPU (TM)

4 267.7 6.2 7.0

16 1076.3 23.9 25.7

64 4319.5 92.6 101.3

256 17266.4 360.8 410.3

The execution times of the Seljuk patterns in various sizes are depicted in

Table 1. These values are obtained for 50 iterations. The corresponding

speedup obtained with the GPU implementations are shown graphically in

Figure 8.

Figure 8. Speedup obtained with the Seljuk patterns, for 50 iterations.

Execution time of the ESF increases when we increase the data size,

proportionately for both CPU and GPU; yet there is still a slight improvement

in speedup. When the size of the data is small, i.e. 4 MB, speedup does not

Acceleration of the Edge Strength Function on GPU using CUDA

63

increase as fast due to rather inefficient utilization of the data parallelism of

the GPU. Since the ESF kernels are memory-bound, i.e. they require accessing

multiple memory locations, yet do not contain dense arithmetic computations;

the memory access cost becomes more dominant in the overall execution time

(Table 2).

Table 2. Execution times of the Seljuk patterns for 200 iterations (in ms).

Size (MB) CPU GPU (SM) GPU (TM)

4 1070.2 25.3 26.8

16 4309.2 91.5 102.3

64 17270.3 363.9 404.6

256 69295.6 1441.8 1641.3

3.2. Experiments with the Lena Images

The execution times for the ESF computation using the Lena images are

depicted in Table 3. The test results show that the speedup for the Lena images

are relatively higher than the ones that we get from Seljuk images (Figure 9).

It is due to the decrease in branch divergence in Lena images, compared to the

Seljuk pattern; because there is a relatively more coherent distribution of

foreground and background pixels in the Lena images. Note that, the bigger

sized Lena images are created by scaling the image. Therefore, when we scale

the image, the foreground region is doubled while tile dimensions in the

kernels are fixed. This enables the threads in the same block, hence in the

same tile, to execute the same branch most of the time. This is not the case for

the complicated line stripes in Seljuk image, since the Seljuk tiles are extended

to the bigger sizes without scaling.

Table 3. Execution times of the Lena images for 200 iterations (in ms).

Size (MB) CPU GPU (SM) GPU (TM)

4 1042.6 24.9 26.6

16 5016.1 91.5 103.9

64 23192.1 359.2 412.8

256 86319.7 1406.1 1667.3

The tests in Lena images also show that when the data size is increased to

256MB, the average speedup do not improve further. Although the speedup

in this size is not better than 64MB, it is still higher than the other

configurations. We believe that the slight decrease in speedup is due to the

Hacer YALIM KELEŞ

64

change in the tile alignments when the data is doubled in size. The speedup

gets better than 64MB, in this particular test image, in this size, when the

number of iterations is increased to 400 or more.

Figure 9. Speedup obtained with the Lena images, for 200 iterations.

4. CONCLUSION

In this research, we present two GPU implementations of the ESF using

CUDA, namely the shared memory and the texture memory implementations;

and compared their performances. The test images are selected considering

the domains that the ESF is utilized more frequently, and the experiments are

planned on varied sizes of these images. Our experiments show that, the

speedup in the shared memory implementation is higher in all the

experiments, due to the efficient block level data sharing among the treads in

the same tile and faster access times of shared memory. Although the access

times in the texture memory is fast with cached data, there is an overhead for

moving data from the global memory to the texture memory in each iteration.

Both of the GPU implementations result in significant speedups with respect

to our single threaded CPU implementation; the improvement is at least 35

times in the texture memory based implementation and more than 40 times in

the shared memory implementation. Speedup increases as the data size is

increased.

The methods developed in this research are utilized in a shape grammar

interpreter to improve computation times of part embeddings. Moreover, the

Acceleration of the Edge Strength Function on GPU using CUDA

65

proposed CUDA based ESF solutions will also be used in an upcoming

research on a novel shape segmentation algorithm.

Acknowledgements

This research has been funded by Ankara University, Scientific Research

Projects Grant 15H0443009. The author would like to thank to Prof. Dr. Mine

Özkar who draw the original Seljuk pattern.

Appendix A.
Algorithm 4. Setting Upper Left (UL)
1: procedure UL

 // dData = ESF values (global memory), sData = ESF values (shared

memory)

 // width : imagewidth; offset ← width
 // gx ← threadIdx.x + blockIdx.x* blockDim.x

 // gy ← threadIdx.y + blockIdx.y* blockDim.y
 // bx ← threadIdx.x +1, by threadIdx.y +1
 // data_idx ← gy*width+gx
2: if gx - 1 < 0 AND gy - 1 < 0 then // image boundary: top-left pixel

3: sData[by - 1][bx - 1] ← dData[data_idx]
4: else if gx - 1 < 0 then // image boundary: pixel before the first

column

5: sData[by - 1][bx - 1] ← dData[data_idx - offset]
6: else if gy - 1 < 0 then // image boundary: pixel below the _rst

row

7: sData[by - 1][bx - 1] ← dData[data_idx - 1]
8: else

9: sData[by - 1][bx - 1] ← dData[data_idx - offset - 1]
10: end if

11: end procedure

Algorithm 5. Setting Upper Right (UR)
1: procedure UR

 // dData = ESF values (global memory), sData = ESF values (shared

memory)

 // width : imagewidth; offset ← width

 // gx ← threadIdx.x + blockIdx.x* blockDim.x
 // gy ← threadIdx.y + blockIdx.y* blockDim.y
 // bx ← threadIdx.x +1, by threadIdx.y +1

 // data_idx ← gy*width+gx
2: if gx + 1 > width - 1 AND gy - 1 < 0 then // image boundary: top-

right pixel

3: sData[by - 1][bx + 1] ← dData[data_idx]
4: else if gy - 1 < 0 then // image boundary: pixel below the first

row

5: sData[by - 1][bx + 1] dData[data_idx + 1]

6: else if gx + 1 > width - 1 then // image boundary: pixel beyond

the last column

7: sData[by - 1][bx + 1] ← dData[data_idx - offset]
8: else

Hacer YALIM KELEŞ

66

9: sData[by - 1][bx + 1] ← dData[data_idx - offset + 1]
10: end if

11: end procedure

Algorithm 6. Setting Lower Left (LL)
1: procedure LL

 // dData = ESF values (global memory), sData = ESF values (shared

memory)

 // width : imagewidth; offset ← width

 // gx ← threadIdx.x + blockIdx.x* blockDim.x
 // gy ← threadIdx.y + blockIdx.y* blockDim.y
 // bx ← threadIdx.x +1, by threadIdx.y +1

 // data_idx ← gy*width+gx
2: if gx - 1 < 0 AND gy + 1 > height - 1 then // image boundary:

lower-left pixel

3: sData[by + 1][bx - 1] ← dData[data_idx]
4: else if gx - 1 < 0 then // image boundary: pixel before the _rst

column

5: sData[by + 1][bx - 1] ← dData[data_idx + offset]
6: else if gy + 1 > height - 1 then // image boundary: pixel beyond

the last row

7: sData[by + 1][bx - 1] ← dData[data_idx - 1]
8: else

9: sData[by + 1][bx - 1] ← dData[data_idx + offset - 1]
10: end if

11: end procedure

Algorithm 7. Setting Lower Right (LR)
1: procedure LR

 // dData = ESF values (global memory), sData = ESF values (shared

memory)

 // width : imagewidth; offset ← width
 // gx ← threadIdx.x + blockIdx.x* blockDim.x

 // gy ← threadIdx.y + blockIdx.y* blockDim.y
 // bx ← threadIdx.x +1, by threadIdx.y +1

 // data_idx ← gy*width+gx
2: if gx + 1 > width - 1 AND gy + 1 > height - 1 then // image

boundary: lower-right pixel

3: sData[by + 1][bx + 1] ← dData[data_idx]
4: else if gx + 1 > width - 1 then // image boundary: pixel beyond

the last column

5: sData[by + 1][bx + 1] ← dData[data_idx + offset]
6: else if gy + 1 > height - 1 then // image boundary: pixel beyond

the last row

7: sData[by + 1][bx + 1] ← dData[data_idx + 1]
8: else

9: sData[by + 1][bx + 1] ← dData[data_idx + offset + 1]
10: end if

11: end procedure

Acceleration of the Edge Strength Function on GPU using CUDA

67

REFERENCES

[1] Ambrosio, L. and Tortorelli, V. (2003). On the approximation of

functionals depending on jumps by elliptic functionals via Γ-

convergence. Communications on Pure Applied Mathematics. 43(8):

999-1036; doi: 10.1002/cpa.3160430805.

[2] Aslan, C. and Tari, S. (2005). An Axis-Based Representation for

Recognition, In: 10’th IEEE International Conference on Computer

Vision; 17-21 Oct. 2005; Beijing, PRC, pp: 1339- 1346; doi:

10.1109/ICCV.2005.32.

[3] D'Ambra, P. and Filippone, S. (2016). A parallel generalized relaxation

method for high-performance image segmentation on GPUs. Journal of

Computational and Applied Mathematics. 293: 35-44;

http://dx.doi.org/10.1016/j.cam.2015.04.035.

[4] Erdem, E., Erdem, A., Tari, S. (2005). Edge strength functions as shape

priors in image segmentation. Energy Minimization Methods in

Computer Vision and Pattern Recognition. Volume 3757 of the

series Lecture Notes in Computer Science pp. 490-502; doi:

10.1007/11585978_32.

[5] Erdem, E., Tari, S. (2009). Mumford-Shah Regularizer with Contextual

Feedback. Journal of Mathematical Imaging and Vision. 33: 67-84; doi:

10.1007/s10851-008-0109-y.

[6] Fernando, R., Kilgar, M. (2003). Cg: The Cg Tutorial. AddisonWesley,

New York. ISBN: 9780321545398 0321545397.

[7] Gremse, F., Höfter, A., Razik, L., Kiessling, F., Naumann, U. (2016).

GPU-accelerated adjoint algorithmic differentiation. Computer Physics

Communications. 200: 300-311;

http://dx.doi.org/10.1016/j.cpc.2015.10.027.

[8] Holmen, J.K., Foster, D.L. (2014). Accelerating Single Iteration

Performance of CUDA-Based 3D Reaction-diffusion Simulations.

http://dx.doi.org/10.1109/ICCV.2005.32
http://dx.doi.org/10.1016/j.cam.2015.04.035
http://link.springer.com/book/10.1007/11585978
http://link.springer.com/book/10.1007/11585978
http://link.springer.com/bookseries/558
http://dx.doi.org/10.1016/j.cpc.2015.10.027

Hacer YALIM KELEŞ

68

International Journal of Parallel Programming. 42: 343-363; doi:

10.1007/s10766-013-0251-z.

[9] Jimenez, F., Ortiz, C.J. (2016) A GPU-based parallel Object kinetic

Monte Carlo algorithm for the evolution of defects in irradiated

materials. Computational Materials Science. 113: 178-186;

http://dx.doi.org/10.1016/j.commatsci.2015.11.011.

[10] Keles, H.Y., Es, A., Isler, V. (2006). Acceleration of direct volume

rendering with programmable graphics hardware. The Visual Computer.

23: 15-24; doi: 10.1007/s00371-006-0084-5.

[11] Keles, H.Y., Ozkar, M., Tari, S. (2012). Weighted shapes for embedding

perceived wholes. Environment and Planning B: Planning and Design.

39: 360-375; doi: 10.1068/b37067.

[12] Keles, H.Y. and Tari, S. (2015) A robust method for scale independent

detection of curvature-based criticalities and intersections in line

drawings. Pattern Recognition. 48: 140-155;

http://dx.doi.org/10.1016/j.patcog.2014.07.005.

[13] Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker RT. (2003).

Interactive Deformation and visualization of level set surfaces using

graphics hardware. In: Proceedings of the 14th IEEE Visualization,

Washington, DC, USA; pp.11-19; doi: 10.1109/VISUAL.2003.1250357.

[14] Molnar, Jr. F., Izsak, F., Meszaros, R., Lagzi, I. (2011) Simulation of

reaction diffusion processes in three dimensions using CUDA.

Chemometrics and Intelligent Laboratory Systems. 108: 76-85;

http://dx.doi.org/10.1016/j.chemolab.2011.03.009.

[15] Mumford, D., Shah, J. (1989). Optimal approximations by piecewise

smooth functions and associated variational problems. Communications

on Pure Applied Mathematics. 42(5): 577-685; doi:

10.1002/cpa.3160420503.

[16] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips,

J.C. (2008). GPU Computing, Proceedings of the IEEE. 96(5): 879-899;

doi: 10.1109/JPROC.2008.917757.

http://dx.doi.org/10.1016/j.commatsci.2015.11.011
http://dx.doi.org/10.1016/j.patcog.2014.07.005
http://dx.doi.org/10.1109/VISUAL.2003.1250357
http://dx.doi.org/10.1016/j.chemolab.2011.03.009
http://dx.doi.org/10.1109/JPROC.2008.917757

Acceleration of the Edge Strength Function on GPU using CUDA

69

[17] Perona, P. and Malik, J. (1990). Scale space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 12(7): 629-639; doi: 10.1109/34.56205.

[18] Reis, R.F., Loureiro, F.S., Lobosco, M. (2016). 3D numerical

simulations on GPUs of hyperthermia with nanoparticles by a nonlinear

bioheat model. Journal of Computational and Applied Mathematics. 295:

35-47; http://dx.doi.org/10.1016/j.cam.2015.02.047.

[19] Rudomin, I., Millan, E., Hernandez, B. (2005). Fragment shaders for

agent animation using finite state machines. Simulation Modelling

Practice and Theory. 13: 741-751;

http://dx.doi.org/10.1016/j.simpat.2005.08.008.

[20] Ruiz, A., Guil, N., Ujaldon, M. (2008). Recognition of circular patterns

on GPUs: Performance analysis and contributions. Journal of Parallel

and Distributed Computing. 68: 1329-1338;

http://dx.doi.org/10.1016/j.jpdc.2008.05.010.

[21] Rumpf, M. and Strzodka, R. (2001). Nonlinear diffusion in graphics

hardware. In: Proceedings of EG/IEEE TCVG Symposium on

Visualization, pp. 75-84; doi: 10.1007/978-3-7091-6215-6_9.

[22] Sanderson, A.R., Meyer, M.D., Kirby, R.M., Johnson, C.R. (2009). A

framework for exploring numerical solutions of advection-reaction-

diffusion equations using a GPU-based approach. Computing and

Visualization in Science. 12: 155-170; doi: 10.1007/s00791-008-0086-0.

[23] Tari, Z.S., Shah, J., Pien, H. (1997). Extraction of shape skeletons from

grayscale images. Computer Vision and Image Understanding. 66: 133-

146; 10.1006/cviu.1997.0612.

http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1016/j.cam.2015.02.047
http://dx.doi.org/10.1016/j.simpat.2005.08.008
http://dx.doi.org/10.1016/j.jpdc.2008.05.010
http://dx.doi.org/10.1006/cviu.1997.0612

