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Abstract

A reiteration theorem for a limiting real interpolation method with broken iterated log-
arithmic functions is established. An application to the generalized Lorentz-Zygmund
spaces is given.
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1. Introduction

Let (Ao, A1) be a compatible couple of quasi-normed spaces, 0 < 0 < 1,0 < g < oo,
and b be a slowly varying function. The real interpolation space Ag 4, = (Ao, A1)g,qp 18
formed by all those f € Ay + A; for which the quasi-norm

||f||A9,q;b = ||t_0_1/qb(t)K(t7 f; Ao, Al)”q,(o,oo)

is finite, where K(t, f; Ao, A1) is the Peetre’s K-functional and || - ||4 (4,s) 15 the standard
Li-quasi-norm on an interval (a,b) C R.

Different reiteration theorems for the interpolation spaces (Agquo;bo, A1)p,q, in limiting
cases (when 6y € {0,1} or § € {0,1}), have been established in [16], [1] and [2]. The
results in these papers generalize the earlier results in [8] and [9], where the case when b is
a broken logarithmic function was treated. In papers [11-13], similar reiteration theorems
have been derived for the extended scale /_19,1,, g, which is obtained by replacing Lebesgue
space L? by an arbitrary rearrangement invariant normed space E. However, the scale
z‘_lg,b,E does not cover the spaces /_197(1;1, for the case ¢ < 1.

In the present paper, we are interested in the limiting case 8 = 6 = 0. In general,
the spaces (AO,qo;boaAl)O,q;b might not belong to the original scale and a new interpolation
scale is needed to describe them (see the reiteration formula (3.53) in [1]). The main result
of our paper (see Theorem 3.1 below) asserts that the spaces (flom;bw A1)o,4:p do belong
to the original scale when by and b are taken, in particular, to be the iterated logarithmic
functions which are broken in the sense that they are raised to different powers near 0 and
near infinity.
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The motivation for the use of iterated logarithmic functions mainly comes from the
paper [6], where the reiteration theorem for the case (6y,6) € {1} x (0,1] has been es-
tablished for such functions. It should be mentioned that this reiteration theorem has
subsequently been extended (for the case when 0 < ¢,qp < o) in [2] to general slowly
varying functions. The reader is also referred to [5], [10], [14] and [15], where limiting real
interpolation methods involving iterated logarithmic functions have appeared.

When ¢ < qg, a Hardy-type inequality restricted to non-negative, non-increasing func-
tions (see Lemma 2.4 below) has been applied to obtain reiteration theorems in [16], [1] and
[2]. However, this inequality is not applicable in our limiting case (fp = 6 = 0) even when
bo and b are just logarithmic functions. Therefore, we make use of another Hardy-type
inequality restricted to non-negative, non-decreasing functions (see Lemma 2.5 below).

The paper is organised as follows. Section 2 contains all the necessary background
along with the Hardy-type inequalities mentioned above. The main result of the paper
is in Section 3 where we prove the reiteration theorem. Finally, in Section 4, we give an
application of our main result to the interpolation of the generalized Lorentz-Zygmund
spaces.

2. Preliminaries

In what follows, we will use the notation A < B for non-negative quantities to mean that
there is a positive constant ¢, which is independent of appropriate parameters involved in
A and B, such that A <¢B. If A< Band B < A, we put A= B.

Let 0 < ¢ < 00, and & = (a1, a2, ..., ) € R". Following [6], we say & € My, g (or & €

Myrq) for some 2 <r <nifa; =..=0a,—1 =—1/qgand o, < —1/q (or o, > —1/q). By
a € Mgyg (or & € My ), we will mean oy < —1/q (or oy > —1/q). Moreover, we will
write @ =< a >, if a1 = ... = a,, = «. Define positive functions A1, Ag, ..., A, on (0, 00) by

M) =14 |Int], Ae(t) = AM(Meo1(t), k=2,3,...,n,
and put A% (£)=A{1 (£)AG2(t)...A2"(¢), t > 0. It is easy to check that the iterated logarithmic

function A% is slowly varying in the sense of [16, Definition 2.1].
We omit the proof of the next lemma since it can be done as in [6, Lemma 2].

Lemma 2.1. Let 0 < ¢ < o0.
(a) If @ € My, q, then

1 du 1/q o
1+ (/ )\qa(u)> AN, 0<t <1 (2.1)
t u
(b) If @ € My, 5, then
00 B 1/q _
(/ A"°“<u>ci7) P AT (D), £ 1 (2:2)
t

Let (Ao, A1) be a compatible couple of quasi-normed spaces, that is, we assume that
both Ag and A; are continuously embedded in the same Hausdorff topological vector space.
The Peetre’s K-functional is defined, for each f € Ay + A7 and t > 0, by

K(t, f) = K(, f; Ao, A1)
= inf{|[folla, +tllfilla, : fo € Ao, fr € A1, f=fo+ fr}

Note that, as functions of ¢, K (¢, f) is non-decreasing and K (¢, f)/t is non-increasing.

Definition 2.2. Let 0 < ¢ <00, 0<6 <1, @ € R" and 3 € R™. The real interpolation
space Ay Gaf = (Ao, A1) 5 consists of all f € Ay + A; for which the quasi-norm

1111

0,q;&

= [V NS K (g0 + 17N O K ()

6,q;a,8 q,(1,00)

is finite.
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The spaces Ae,q;aﬁ are a particular case of the scale f_l97q;b. When & = 3 = (0) with
0 < @ < 1, we get back the classical scale Ay, (see [3,4,18]). For a=(a) and f=(f), we
will use the notation Ag 4,45, and this is the case considered in [8] and [9].

In view of Proposition 2.5 (ii) in [16] and Lemma 2.1 (b), the condition 3 € M, 5, for
some 1 < r < m, will guarantee that the limiting spaces /_107 a5 are intermediate for the
couple (Ap, A1), that is,

AyNAL — AD#};&,B — Ay + Ay,
where the symbol — denotes the continuous embedding. A similar remark applies in the
limiting case 6§ = 1.

We conclude this section with the following weighted Hardy-type inequalities which will

be the key ingredients in our proofs.

Lemma 2.3 ([1, Lemma 3 2]) Let 1 < s < o0, and assume that w,¢ and h are non-
negative functions on (0,00). Then

/ (/ o(u dU) w(t)dtS/Ooohs(t)v(t)dt, (2.3)

s

o) = (w(®)'* (606 [ wlwdu) (2.4)

Lemma 2.4 ([1, Lemma 3.3]). Let 0 < s < 1. Assume that w and ¢ non-negative functions
n (0,00), and h is a non-negative, non-increasing function on (0,00). Then

/0°° </0t ¢(U)h(u)du>s w(t)dt < /OOO R (t)vo (t)dt, (2.5)

0 < /O t ¢(u)du>5_ /t ~ w(u)du. (2.6)

Lemma 2.5 ([17, Theorem 3.3 (b)]). Let 0 < s < 1. Assume that w and vy are non-
negative functions on (0,00), and ¥ is a non-negative function on (0,00) x (0,00). Then

A (/ Vit uh dU) w()dt S [ w0 @) (2.7)

holds for all non-negative, non-decreasing functions h on (0,00) if and only if

/OOO (/;Ow(t,u)du) dt</ it (2.8)

where

where

holds for all x > 0.

3. Reiteration
The following reiteration theorem is the main contribution of this paper.

Theorem 3.1. Let 0 < qo,q < oo. If &g € My, ja, @ € My ;a, Bo € My, k.5, and
B € Mgy, then

(A07¢I0;510,Bo’ Al)O,q;&,B = AO,Q;’W?’
where"y:o?+d0—|—< qio > andﬁ:5+ﬁo+< qio > .
Proof. Put
A%, 0<t<l,

bo(t) = _
Mot),  t>1,
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A(t), 0<t<1,

b(t) =3
M), t>1,
and A = (/7107(10;&0’30,14 Jo.gap- Let f € Ag+ Aj. According to the reiteration formula
(3.53) in [1], we have
If1% ~ C + D,
where
00 t du\ 9% gt
C= [ #(olt) ( / wwEn @) 5.
0 0
and
—ap( q dt
with

e’} 1/610
po(t) :t(/ bgO(u)dJ) >0,
t

Thanks to the conditions ag € My, ;¢ and Bo € My, k.5, we can apply Lemma 2.1 to
obtain that

_ 1 .
IAOTSWGTI), 0<t <1,
,Oo(t) ~ B )
ISRy, > 1
In view of the observation |In po(t)| =~ |Int|, t > 0, we get

cx [To ([ f)d“)m i

N/ £ () pl (1) K91, f)

and

Since
I71%, =D,

thus the proof will be complete if we show that C' < D. Now C' =~ Cy 4+ Cy + C3 and
D =~ D 4+ D5, where

1 a/q0
01:/ A% (¢ (/ A0 (i) F9 (3, ) L > d
0 U
du a/90 dt
/ )\qb’ (/ /\qoao qu u f )
U

0o - ¢ /90
Cs :/ )ﬂﬂ(t) (/ )\qoﬁo( KO (u, f) CL dt
1 1

Dl / /\q&+qa0+< >]( )Kq(t, f)d?

and i@t
©  4B+aB a
D= [T NPT K, T

Since the condition /3 € M, ks implies the convergence of the integral [ N8 (t)%, thus

( / A9050 (1) (90 (4, f)d“>qm0.
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Next we observe that
1 to du
qo o q0
t— 90 A0 () /0 A0 (1) K90 (w, f)—u

is non-increasing since it is an integral average (with respect to the measure 90~ \900(¢))
of a non-increasing function =% K%(¢, f). As a consequence,

Cl > (/1 )\QOC_VO (u)KqO (u’ f)du)q/qo /1 tQ)\lI(&-i-do)(t)@,

0 u 0 t

whence Cy < C7. Therefore, C =~ C1 + C5. Next we establish the estimates C; < D1+ Do
and C3 < Ds. To this end, we distinguish two cases: ¢ > qg and ¢ < gg. Assume first that
q > qo, and apply Lemma 2.3 with s = ¢/qo, h(t) = K9(t, f), ¢(t) = t~1A90%(¢) and
w(t) = 71X (t)x(0,1)(t). We compute, with the aid of Lemma 2.1 (a), that

~ ~ a < .
o(t) S ETINITINTSG i) 0 <t < 1,
which implies that C7 <

< D;. Similarly, C3 < Dy follows from Lemma 2.3. Next assume
that ¢ < qo, and take s = q/qo, h(t) = K®(t, f), w(t) = t "X (t)x(0,1)(t), P(t,u) =
u A% (u) x (0,4 (1), and

o o qa . .
tfl)\lIa+qoco+< 20 > (t), 0<t< 1’

vi(t) = o
t—l)\qu+q,30+<%>k (t), t>1.

We observe that (2.8) holds trivially for all > 1, and for 0 < x < 1, we have

/Ooo ([Em¢(t, u)du)sw(t)dt ~ /: (/: )\qoao(u)(ﬁL>q/q0 )\q&(t)%

< )\q@+q@o+<%>j+<1>j (t)
- /1 \daHado <L >, (t)@
T

t
~ / vy (t)dt,
which establishes the validity of (2.8). Hence, the estimate C7 < Dy + Do follows from

~

(2.7). Similarly, we can obtain C3 < Ds from Lemma 2.5. The proof of the theorem is
complete. O

IN

Q

Writing down Theorem 3.1 in a particular case when ap = (ao), a = (a), Bo = (Bo)
and 5 = (), we get the following result which is not contained in [8] and [9].

Corollary 3.2. Let 0 < qo,q < oo. If g > —1/qo, a« > —1/q, Bo < —1/qp and B < —1/q,
then
(A0,g0:00,80> A1)0,50,8 = A0,g37,m>
whereyzoz%—ozo—l—qio andnzﬁ—i—ﬁo—i—qio.
The next result is a symmetric counterpart of Theorem 3.1, and its proof can be derived

from Theorem 3.1 by using the same symmetry argument as in the proof of Theorem 4.3
in [16].

Theorem 3.3. Let 0 < q1,q9 < oo. If a1 € My, 5, @ € Mgz, Bl € My, ra, and
5 S Mq7k7g, then
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(AO’ A17Q1;51751)17Q;0_«E - Avaﬁvﬁ’

where’?:d+d0+<q%>j andﬁ:B+Bo+<q%>k'

4. Application

Let (€2, i) be a o-finite measure space. Let f* denotes the non-increasing rearrangement
of a p-measurable function f on Q (see, for instance, [3]).

Definition 4.1. Let 0 < p,q¢ < 0o, @ € R® and 3 € R™. The generalized Lorentz-
Zygmund space L, ,.a 5 consists of all u-measurable functions f on €2 such that the quasi-
norm

1F 1z, pas = 1EP7HASOL (Ol g 01) + IEP7HIN (@) F* () 4,1,00)

is finite.

The spaces L,,ap are a particular case of the more general scale of the Lorentz-

Karamata space (see, for example, [16]). For a = 3, the spaces L ¥ coincide with

Pa;a
the spaces Ly q.q from [7]. If @ = («) and B = (B), then we obtain the spaces Lyga,
A = (a, 8), considered in [8] and [9]. When & = 8 = (0), the spaces L, .5 become the
Lorentz spaces LP'¢, which coincide with the classical Lebesgue spaces LP for p = q.

The next theorem provides an application of Theorem 3.1 to the interpolation of the
generalized Lorentz-Zygumnd spaces in a limiting case which is not covered by the results,

concerning the interpolation of the Lorentz-Karamata spaces, in [16].

Theorem 4.2. Let 0 < qo,q < 0o. Assume that oy € My, g5, & € My ;a, Bg € My,.5,c
and 8 € My,s. Then

1
(Loo,goiciofor L o,gia,p = Loy
where § = B+ ao+ < 1/q0 >, and ij = a+ fo+ < 1/qo >
Proof. Take Ag = L™ and A; = L', and apply Theorem 3.1 to obtain
((LOO’LI)O,qo;Bo@o’Ll)Oﬂ;o’z,B = (LOO’LI)O,q;ﬁfY'

Put X; = (L™, L) and Xy =

[4, Theorem 5.2.1])

and let f € L' + L. Since (see

0,90;80,00 Loquo;&oﬁo’

1/t
K(t, f; L L) =t fH(u)du,
0

b, = ([ o[ o))"

A%(t), 0<t<l1,

it turns out that

where

bo(t) = _
Mot),  t>1.

Now the estimate || f||x, > ||f|lx, is trivial, and the converse estimate follows from Lemmas
2.3 and 2.4, applied with s = ¢, w(t) = t=7b{(t), ¢(t) = 1 and h(t) = f*(t), so that
v(t) = vo(t) ~ t~1b¢(t). Therefore, the space (L, L1) coincides with the space
L

0,g;80,00

co.q0:d0.fo- Similarly, we have (L=, LY0,4:5 = Loo,g5,5- The proof is complete. O
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