Reiteration of a limiting real interpolation method with broken iterated logarithmic functions

Irshaad Ahmed* ${ }^{(1)}$, Fakhra Umar (1)
Department of Mathematics, Government College University, Faisalabad, Pakistan

Abstract

A reiteration theorem for a limiting real interpolation method with broken iterated logarithmic functions is established. An application to the generalized Lorentz-Zygmund spaces is given.

Mathematics Subject Classification (2010). 47B10, 46E30
Keywords. limiting real interpolation methods, K-functional, reiteration, Lorentz-Zygmund spaces, Hardy-type inequalities

1. Introduction

Let $\left(A_{0}, A_{1}\right)$ be a compatible couple of quasi-normed spaces, $0 \leq \theta \leq 1,0<q \leq \infty$, and b be a slowly varying function. The real interpolation space $\overline{\bar{A}}_{\theta, q ; b}=\left(A_{0}, A_{1}\right)_{\theta, q ; b}$ is formed by all those $f \in A_{0}+A_{1}$ for which the quasi-norm

$$
\|f\|_{\bar{A}_{\theta, q ; b}}=\left\|t^{-\theta-1 / q} b(t) K\left(t, f ; A_{0}, A_{1}\right)\right\|_{q,(0, \infty)}
$$

is finite, where $K\left(t, f ; A_{0}, A_{1}\right)$ is the Peetre's K-functional and $\|\cdot\|_{q,(a, b)}$ is the standard L^{q}-quasi-norm on an interval $(a, b) \subset \mathbb{R}$.
Different reiteration theorems for the interpolation spaces $\left(\bar{A}_{\theta_{0}, q_{0} ; b_{0}}, A_{1}\right)_{\theta, q ; b}$, in limiting cases (when $\theta_{0} \in\{0,1\}$ or $\theta \in\{0,1\}$), have been established in [16], [1] and [2]. The results in these papers generalize the earlier results in [8] and [9], where the case when b is a broken logarithmic function was treated. In papers [11-13], similar reiteration theorems have been derived for the extended scale $\bar{A}_{\theta, b, E}$, which is obtained by replacing Lebesgue space L^{q} by an arbitrary rearrangement invariant normed space E. However, the scale $\bar{A}_{\theta, b, E}$ does not cover the spaces $\bar{A}_{\theta, q ; b}$ for the case $q<1$.

In the present paper, we are interested in the limiting case $\theta_{0}=\theta=0$. In general, the spaces $\left(\bar{A}_{0, q_{0} ; b_{0}}, A_{1}\right)_{0, q ; b}$ might not belong to the original scale and a new interpolation scale is needed to describe them (see the reiteration formula (3.53) in [1]). The main result of our paper (see Theorem 3.1 below) asserts that the spaces $\left(\bar{A}_{0, q_{0} ; b_{0}}, A_{1}\right)_{0, q ; b}$ do belong to the original scale when b_{0} and b are taken, in particular, to be the iterated logarithmic functions which are broken in the sense that they are raised to different powers near 0 and near infinity.

[^0]The motivation for the use of iterated logarithmic functions mainly comes from the paper [6], where the reiteration theorem for the case $\left(\theta_{0}, \theta\right) \in\{1\} \times(0,1]$ has been established for such functions. It should be mentioned that this reiteration theorem has subsequently been extended (for the case when $0<q, q_{0}<\infty$) in [2] to general slowly varying functions. The reader is also referred to [5], [10], [14] and [15], where limiting real interpolation methods involving iterated logarithmic functions have appeared.

When $q<q_{0}$, a Hardy-type inequality restricted to non-negative, non-increasing functions (see Lemma 2.4 below) has been applied to obtain reiteration theorems in [16], [1] and [2]. However, this inequality is not applicable in our limiting case $\left(\theta_{0}=\theta=0\right)$ even when b_{0} and b are just logarithmic functions. Therefore, we make use of another Hardy-type inequality restricted to non-negative, non-decreasing functions (see Lemma 2.5 below).

The paper is organised as follows. Section 2 contains all the necessary background along with the Hardy-type inequalities mentioned above. The main result of the paper is in Section 3 where we prove the reiteration theorem. Finally, in Section 4, we give an application of our main result to the interpolation of the generalized Lorentz-Zygmund spaces.

2. Preliminaries

In what follows, we will use the notation $A \lesssim B$ for non-negative quantities to mean that there is a positive constant c, which is independent of appropriate parameters involved in A and B, such that $A \leq c B$. If $A \lesssim B$ and $B \lesssim A$, we put $A \approx B$.

Let $0<q<\infty$, and $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$. Following [6], we say $\bar{\alpha} \in \mathbb{M}_{q, r, S}$ (or $\bar{\alpha} \in$ $\mathbb{M}_{q, r, G}$) for some $2 \leq r \leq n$ if $\alpha_{1}=\ldots=\alpha_{r-1}=-1 / q$ and $\alpha_{r}<-1 / q$ (or $\alpha_{r}>-1 / q$). By $\bar{\alpha} \in \mathbb{M}_{q, 1, S}$ (or $\bar{\alpha} \in \mathbb{M}_{q, 1, G}$), we will mean $\alpha_{1}<-1 / q$ (or $\alpha_{1}>-1 / q$). Moreover, we will write $\bar{\alpha}=<\alpha>_{n}$ if $\alpha_{1}=\ldots=\alpha_{n}=\alpha$. Define positive functions $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ on $(0, \infty)$ by

$$
\lambda_{1}(t)=1+|\ln t|, \quad \lambda_{k}(t)=\lambda_{1}\left(\lambda_{k-1}(t)\right), \quad k=2,3, \ldots, n
$$

and put $\lambda^{\bar{\alpha}}(t)=\lambda_{1}^{\alpha_{1}}(t) \lambda_{2}^{\alpha_{2}}(t) \ldots \lambda_{n}^{\alpha_{n}}(t), t>0$. It is easy to check that the iterated logarithmic function $\lambda^{\bar{\alpha}}$ is slowly varying in the sense of [16, Definition 2.1].

We omit the proof of the next lemma since it can be done as in [6, Lemma 2].
Lemma 2.1. Let $0<q<\infty$.
(a) If $\bar{\alpha} \in \mathbb{M}_{q, r, G}$, then

$$
\begin{equation*}
1+\left(\int_{t}^{1} \lambda^{q \bar{\alpha}}(u) \frac{d u}{u}\right)^{1 / q} \approx \lambda^{\bar{\alpha}+<\frac{1}{q}>_{r}}(t), \quad 0<t<1 \tag{2.1}
\end{equation*}
$$

(b) If $\bar{\alpha} \in \mathbb{M}_{q, r, S}$, then

$$
\begin{equation*}
\left(\int_{t}^{\infty} \lambda^{q \bar{\alpha}}(u) \frac{d u}{u}\right)^{1 / q} \approx \lambda^{\bar{\alpha}+<\frac{1}{q}>_{r}}(t), \quad t \geq 1 \tag{2.2}
\end{equation*}
$$

Let $\left(A_{0}, A_{1}\right)$ be a compatible couple of quasi-normed spaces, that is, we assume that both A_{0} and A_{1} are continuously embedded in the same Hausdorff topological vector space. The Peetre's K-functional is defined, for each $f \in A_{0}+A_{1}$ and $t>0$, by

$$
\begin{aligned}
K(t, f) & =K\left(t, f ; A_{0}, A_{1}\right) \\
& =\inf \left\{\left\|f_{0}\right\|_{A_{0}}+t\left\|f_{1}\right\|_{A_{1}}: f_{0} \in A_{0}, f_{1} \in A_{1}, f=f_{0}+f_{1}\right\}
\end{aligned}
$$

Note that, as functions of $t, K(t, f)$ is non-decreasing and $K(t, f) / t$ is non-increasing.
Definition 2.2. Let $0<q \leq \infty, 0 \leq \theta \leq 1, \bar{\alpha} \in \mathbb{R}^{n}$ and $\bar{\beta} \in \mathbb{R}^{m}$. The real interpolation space $\bar{A}_{\theta, q ; \bar{\alpha}, \bar{\beta}}=\left(A_{0}, A_{1}\right)_{\theta, q ; \bar{\alpha}, \bar{\beta}}$ consists of all $f \in A_{0}+A_{1}$ for which the quasi-norm

$$
\|f\|_{\bar{A}_{\theta, q ; \bar{\alpha}, \bar{\beta}}}=\left\|t^{-\theta-1 / q} \lambda^{\bar{\alpha}}(t) K(t, f)\right\|_{q,(0,1)}+\left\|t^{-\theta-1 / q} \lambda^{\bar{\beta}}(t) K(t, f)\right\|_{q,(1, \infty)}
$$

is finite.

The spaces $\bar{A}_{\theta, q ; \bar{\alpha}, \bar{\beta}}$ are a particular case of the scale $\bar{A}_{\theta, q ; b}$. When $\bar{\alpha}=\bar{\beta}=(0)$ with $0<\theta<1$, we get back the classical scale $\bar{A}_{\theta, q}$ (see $[3,4,18]$). For $\bar{\alpha}=(\alpha)$ and $\bar{\beta}=(\beta)$, we will use the notation $\bar{A}_{\theta, q ; \alpha, \beta}$, and this is the case considered in [8] and [9].

In view of Proposition 2.5 (ii) in [16] and Lemma 2.1 (b), the condition $\bar{\beta} \in \mathbb{M}_{q, r, S}$, for some $1 \leq r \leq m$, will guarantee that the limiting spaces $\bar{A}_{0, q ; \bar{\alpha}, \bar{\beta}}$ are intermediate for the couple (A_{0}, A_{1}), that is,

$$
A_{0} \cap A_{1} \hookrightarrow \bar{A}_{0, q ; ; \bar{\alpha}, \bar{\beta}} \hookrightarrow A_{0}+A_{1},
$$

where the symbol \hookrightarrow denotes the continuous embedding. A similar remark applies in the limiting case $\theta=1$.

We conclude this section with the following weighted Hardy-type inequalities which will be the key ingredients in our proofs.
Lemma 2.3 ([1, Lemma 3.2]). Let $1 \leq s<\infty$, and assume that w, ϕ and h are nonnegative functions on $(0, \infty)$. Then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{0}^{t} \phi(u) h(u) d u\right)^{s} w(t) d t \lesssim \int_{0}^{\infty} h^{s}(t) v(t) d t \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
v(t)=(w(t))^{1-s}\left(\phi(t) \int_{t}^{\infty} w(u) d u\right)^{s} \tag{2.4}
\end{equation*}
$$

Lemma 2.4 ([1, Lemma 3.3]). Let $0<s<1$. Assume that w and ϕ non-negative functions on $(0, \infty)$, and h is a non-negative, non-increasing function on $(0, \infty)$. Then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{0}^{t} \phi(u) h(u) d u\right)^{s} w(t) d t \lesssim \int_{0}^{\infty} h^{s}(t) v_{0}(t) d t \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{0}(t)=\phi(t)\left(\int_{0}^{t} \phi(u) d u\right)^{s-1} \int_{t}^{\infty} w(u) d u \tag{2.6}
\end{equation*}
$$

Lemma 2.5 ([17, Theorem 3.3 (b)]). Let $0<s<1$. Assume that w and v_{1} are nonnegative functions on $(0, \infty)$, and ψ is a non-negative function on $(0, \infty) \times(0, \infty)$. Then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{0}^{\infty} \psi(t, u) h(u) d u\right)^{s} w(t) d t \lesssim \int_{0}^{\infty} h^{s}(t) v_{1}(t) d t \tag{2.7}
\end{equation*}
$$

holds for all non-negative, non-decreasing functions h on $(0, \infty)$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{x}^{\infty} \psi(t, u) d u\right)^{s} w(t) d t \lesssim \int_{x}^{\infty} v_{1}(t) d t \tag{2.8}
\end{equation*}
$$

holds for all $x>0$.

3. Reiteration

The following reiteration theorem is the main contribution of this paper.
Theorem 3.1. Let $0<q_{0}, q<\infty$. If $\bar{\alpha}_{0} \in \mathbb{M}_{q_{0}, j, G}, \bar{\alpha} \in \mathbb{M}_{q, j, G}, \bar{\beta}_{0} \in \mathbb{M}_{q_{0}, k, S}$, and $\bar{\beta} \in \mathbb{M}_{q, k, S}$, then

$$
\left(\bar{A}_{0, q_{0} ; \bar{\alpha}_{0}, \bar{\beta}_{0}}, A_{1}\right)_{0, q ; \bar{\alpha}, \bar{\beta}}=\bar{A}_{0, q ; \bar{\gamma}, \bar{\eta},},
$$

where $\bar{\gamma}=\bar{\alpha}+\bar{\alpha}_{0}+<\frac{1}{q_{0}}>_{j}$ and $\bar{\eta}=\bar{\beta}+\bar{\beta}_{0}+<\frac{1}{q_{0}}>_{k}$.
Proof. Put

$$
b_{0}(t)=\left\{\begin{array}{lc}
\lambda^{\bar{\alpha}_{0}}(t), & 0<t<1 \\
\lambda^{\bar{\beta}_{0}}(t), & t \geq 1
\end{array}\right.
$$

$$
b(t)=\left\{\begin{array}{lc}
\lambda^{\bar{\alpha}}(t), & 0<t<1, \\
\lambda^{\bar{\beta}}(t), & t \geq 1,
\end{array}\right.
$$

and $\bar{A}=\left(\bar{A}_{0, q_{0} ; \bar{\alpha}_{0}, \bar{\beta}_{0}}, A_{0}\right)_{0, q ; \bar{\alpha}, \bar{\beta}}$. Let $f \in A_{0}+A_{1}$. According to the reiteration formula (3.53) in [1], we have

$$
\|f\|_{A}^{q} \approx C+D,
$$

where

$$
C=\int_{0}^{\infty} b^{q}\left(\rho_{0}(t)\right)\left(\int_{0}^{t} b_{0}^{q_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \frac{d t}{t}
$$

and

$$
D=\int_{0}^{\infty} t^{-q} b^{q}\left(\rho_{0}(t)\right) \rho_{0}^{q}(t) K^{q}(t, f) \frac{d t}{t},
$$

with

$$
\rho_{0}(t)=t\left(\int_{t}^{\infty} b_{0}^{q_{0}}(u) \frac{d u}{u}\right)^{1 / q_{0}}, t>0 .
$$

Thanks to the conditions $\bar{\alpha}_{0} \in \mathbb{M}_{q_{0}, j, G}$ and $\bar{\beta}_{0} \in \mathbb{M}_{q_{0}, k, S}$, we can apply Lemma 2.1 to obtain that

$$
\rho_{0}(t) \approx\left\{\begin{array}{lc}
t \lambda^{\bar{\alpha}_{0}+<\frac{1}{q_{0}}>_{j}}(t), & 0<t<1, \\
t \lambda^{\bar{\beta}_{0}+<\frac{1}{q_{0}}>_{k}}(t), & t \geq 1 .
\end{array}\right.
$$

In view of the observation $\left|\ln \rho_{0}(t)\right| \approx|\ln t|, t>0$, we get

$$
C \approx \int_{0}^{\infty} b^{q}(t)\left(\int_{0}^{t} b_{0}^{q_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \frac{d t}{t},
$$

and

$$
D \approx \int_{0}^{\infty} t^{-q} b^{q}(t) \rho_{0}^{q}(t) K^{q}(t, f) \frac{d t}{t} .
$$

Since

$$
\|f\|_{\bar{A}_{0, q}, \bar{\gamma}, \bar{\eta}}^{q} \approx D
$$

thus the proof will be complete if we show that $C \lesssim D$. Now $C \approx C_{1}+C_{2}+C_{3}$ and $D \approx D_{1}+D_{2}$, where

$$
\begin{aligned}
C_{1}= & \int_{0}^{1} \lambda^{q \bar{\alpha}}(t)\left(\int_{0}^{t} \lambda^{q_{0} \bar{\alpha}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \frac{d t}{t}, \\
C_{2}= & \int_{1}^{\infty} \lambda^{q \bar{\beta}}(t)\left(\int_{0}^{1} \lambda^{q_{0} \bar{\alpha}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \frac{d t}{t}, \\
C_{3}= & \int_{1}^{\infty} \lambda^{q \bar{\beta}}(t)\left(\int_{1}^{t} \lambda^{q_{0} \bar{\beta}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \frac{d t}{t}, \\
& D_{1}=\int_{0}^{1} \lambda^{q \bar{\alpha}+q \bar{\alpha}_{0}+<\frac{q}{q_{0}}>_{j}}(t) K^{q}(t, f) \frac{d t}{t},
\end{aligned}
$$

and

$$
D_{2}=\int_{1}^{\infty} \lambda^{q \bar{\beta}+q \bar{\beta}_{0}+<\frac{q}{q_{0}}>_{k}}(t) K^{q}(t, f) \frac{d t}{t} .
$$

Since the condition $\bar{\beta} \in \mathbb{M}_{q, k, S}$ implies the convergence of the integral $\int_{1}^{\infty} \lambda^{q \bar{\beta}}(t) \frac{d t}{t}$, thus

$$
C_{2} \approx\left(\int_{0}^{1} \lambda^{q_{0} \bar{\alpha}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} .
$$

Next we observe that

$$
t \longmapsto \frac{1}{t^{q_{0}} \lambda_{q_{0} \bar{\alpha}_{0}}(t)} \int_{0}^{t} \lambda^{q_{0} \bar{\alpha}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}
$$

is non-increasing since it is an integral average (with respect to the measure $t^{q_{0}-1} \lambda^{q_{0} \bar{\alpha}_{0}}(t)$) of a non-increasing function $t^{-q_{0}} K^{q_{0}}(t, f)$. As a consequence,

$$
C_{1} \geq\left(\int_{0}^{1} \lambda^{q_{0} \bar{\alpha}_{0}}(u) K^{q_{0}}(u, f) \frac{d u}{u}\right)^{q / q_{0}} \int_{0}^{1} t^{q} \lambda^{q\left(\bar{\alpha}+\bar{\alpha}_{0}\right)}(t) \frac{d t}{t}
$$

whence $C_{2} \lesssim C_{1}$. Therefore, $C \approx C_{1}+C_{3}$. Next we establish the estimates $C_{1} \lesssim D_{1}+D_{2}$ and $C_{3} \lesssim D_{2}$. To this end, we distinguish two cases: $q \geq q_{0}$ and $q<q_{0}$. Assume first that $q \geq q_{0}$, and apply Lemma 2.3 with $s=q / q_{0}, h(t)=K^{q_{0}}(t, f), \phi(t)=t^{-1} \lambda^{q_{0} \bar{\alpha}_{0}}(t)$ and $w(t)=t^{-1} \lambda^{q \bar{\alpha}}(t) \chi_{(0,1)}(t)$. We compute, with the aid of Lemma 2.1 (a), that

$$
v(t) \lesssim t^{-1} \lambda^{q \bar{\alpha}+q \bar{\alpha}_{0}+<\frac{q}{q_{0}}>j}(t), 0<t<1,
$$

which implies that $C_{1} \lesssim D_{1}$. Similarly, $C_{3} \lesssim D_{2}$ follows from Lemma 2.3. Next assume that $q<q_{0}$, and take $s=q / q_{0}, h(t)=K^{q_{0}}(t, f), w(t)=t^{-1} \lambda^{q \bar{\alpha}}(t) \chi_{(0,1)}(t), \psi(t, u)=$ $u^{-1} \lambda^{q_{0} \bar{\alpha}_{0}}(u) \chi_{(0, t)}(u)$, and

$$
v_{1}(t)=\left\{\begin{array}{lc}
t^{-1} \lambda^{q \bar{\alpha}+q \bar{\alpha}_{0}+<\frac{q}{q_{0}}>_{j}}(t), & 0<t<1, \\
t^{-1} \lambda^{q \bar{\beta}+q \bar{\beta}_{0}+<\frac{q}{q_{0}}>_{k}}(t), & t \geq 1 .
\end{array}\right.
$$

We observe that (2.8) holds trivially for all $x \geq 1$, and for $0<x<1$, we have

$$
\begin{aligned}
\int_{0}^{\infty}\left(\int_{x}^{\infty} \psi(t, u) d u\right)^{s} w(t) d t & \approx \int_{x}^{1}\left(\int_{x}^{t} \lambda^{q_{0} \bar{\alpha}_{0}}(u) \frac{d u}{u}\right)^{q / q_{0}} \lambda^{q \bar{\alpha}}(t) \frac{d t}{t} \\
& \leq\left(\int_{x}^{1} \lambda^{q_{0} \bar{\alpha}_{0}}(u) \frac{d u}{u}\right)^{q / q_{0}} \int_{x}^{1} \lambda^{q \bar{\alpha}}(t) \frac{d t}{t} \\
& \lesssim \lambda^{q \bar{\alpha}+q \bar{\alpha}_{0}+<\frac{q}{q_{0}}>_{j}+<1>_{j}}(t) \\
& \approx 1+\int_{x}^{1} \lambda^{q \bar{\alpha}+q \bar{\alpha}_{0}+<\frac{q}{q_{0}}>_{j}}(t) \frac{d t}{t} \\
& \approx \int_{x}^{\infty} v_{1}(t) d t
\end{aligned}
$$

which establishes the validity of (2.8). Hence, the estimate $C_{1} \lesssim D_{1}+D_{2}$ follows from (2.7). Similarly, we can obtain $C_{3} \lesssim D_{2}$ from Lemma 2.5. The proof of the theorem is complete.

Writing down Theorem 3.1 in a particular case when $\bar{\alpha}_{0}=\left(\alpha_{0}\right), \bar{\alpha}=(\alpha), \bar{\beta}_{0}=\left(\beta_{0}\right)$ and $\bar{\beta}=(\beta)$, we get the following result which is not contained in [8] and [9].
Corollary 3.2. Let $0<q_{0}, q<\infty$. If $\alpha_{0}>-1 / q_{0}, \alpha>-1 / q, \beta_{0}<-1 / q_{0}$ and $\beta<-1 / q$, then

$$
\left(\bar{A}_{0, q_{0} ; \alpha_{0}, \beta_{0}}, A_{1}\right)_{0, q ; \alpha, \beta}=\bar{A}_{0, q ; \gamma, \eta},
$$

where $\gamma=\alpha+\alpha_{0}+\frac{1}{q_{0}}$ and $\eta=\beta+\beta_{0}+\frac{1}{q_{0}}$.
The next result is a symmetric counterpart of Theorem 3.1, and its proof can be derived from Theorem 3.1 by using the same symmetry argument as in the proof of Theorem 4.3 in [16].
Theorem 3.3. Let $0<q_{1}, q<\infty$. If $\bar{\alpha}_{1} \in \mathbb{M}_{q_{1}, j, S}, \bar{\alpha} \in \mathbb{M}_{q, j, S}, \bar{\beta}_{1} \in \mathbb{M}_{q_{1}, k, G}$, and $\bar{\beta} \in \mathbb{M}_{q, k, G}$, then

$$
\left(A_{0}, \bar{A}_{1, q_{1} ; \bar{\alpha}_{1}, \bar{\beta}_{1}}\right)_{1, q ; \bar{\alpha}, \bar{\beta}}=\bar{A}_{1, q ; \bar{\gamma}, \bar{\eta},},
$$

where $\bar{\gamma}=\bar{\alpha}+\bar{\alpha}_{0}+\left\langle\frac{1}{q_{1}}>_{j}\right.$ and $\bar{\eta}=\bar{\beta}+\bar{\beta}_{0}+\left\langle\frac{1}{q_{1}}>_{k}\right.$.

4. Application

Let (Ω, μ) be a σ-finite measure space. Let f^{*} denotes the non-increasing rearrangement of a μ-measurable function f on Ω (see, for instance, [3]).
Definition 4.1. Let $0<p, q \leq \infty, \bar{\alpha} \in \mathbb{R}^{n}$ and $\bar{\beta} \in \mathbb{R}^{m}$. The generalized LorentzZygmund space $L_{p, q ; \bar{\alpha}, \bar{\beta}}$ consists of all μ-measurable functions f on Ω such that the quasinorm

$$
\|f\|_{L_{p, q ; \bar{\alpha}, \bar{\beta}}}=\left\|t^{1 / p-1 / q} \lambda^{\bar{\alpha}}(t) f^{*}(t)\right\|_{q,(0,1)}+\left\|t^{1 / p-1 / q} \lambda^{\bar{\beta}}(t) f^{*}(t)\right\|_{q,(1, \infty)}
$$

is finite.
The spaces $L_{p, q ; \bar{\alpha}, \bar{\beta}}$ are a particular case of the more general scale of the LorentzKaramata space (see, for example, [16]). For $\bar{\alpha}=\bar{\beta}$, the spaces $L_{p, q ; \bar{\alpha}, \bar{\beta}}$ coincide with the spaces $L_{p, q ; \bar{\alpha}}$ from [7]. If $\bar{\alpha}=(\alpha)$ and $\bar{\beta}=(\beta)$, then we obtain the spaces $L_{p, q ; \mathbb{A}}$, $\mathbb{A}=(\alpha, \beta)$, considered in [8] and [9]. When $\bar{\alpha}=\bar{\beta}=(0)$, the spaces $L_{p, q ; \bar{\alpha}, \bar{\beta}}$ become the Lorentz spaces $L^{p, q}$, which coincide with the classical Lebesgue spaces L^{p} for $p=q$.

The next theorem provides an application of Theorem 3.1 to the interpolation of the generalized Lorentz-Zygumnd spaces in a limiting case which is not covered by the results, concerning the interpolation of the Lorentz-Karamata spaces, in [16].

Theorem 4.2. Let $0<q_{0}, q<\infty$. Assume that $\bar{\alpha}_{0} \in \mathbb{M}_{q_{0}, k, S}, \bar{\alpha} \in \mathbb{M}_{q, j, G}, \bar{\beta}_{0} \in \mathbb{M}_{q_{0}, j, G}$ and $\bar{\beta} \in \mathbb{M}_{q, k, S}$. Then

$$
\left(L_{\infty, q_{0} ; \bar{\alpha}_{0}, \bar{\beta}_{0}}, L^{1}\right)_{0, q ; \bar{\alpha}, \bar{\beta}}=L_{\infty, q ; \bar{\gamma}, \bar{\eta},}
$$

where $\bar{\gamma}=\bar{\beta}+\bar{\alpha}_{0}+<1 / q_{0}>_{k}$ and $\bar{\eta}=\bar{\alpha}+\bar{\beta}_{0}+<1 / q_{0}>_{j}$.
Proof. Take $A_{0}=L^{\infty}$ and $A_{1}=L^{1}$, and apply Theorem 3.1 to obtain

$$
\left(\left(L^{\infty}, L^{1}\right)_{0, q_{0} ; \overline{\beta_{0}}, \bar{\alpha}_{0}}, L^{1}\right)_{0, q ; \bar{\alpha}, \bar{\beta}}=\left(L^{\infty}, L^{1}\right)_{0, q ; \bar{\eta}, \bar{\gamma} .} .
$$

Put $X_{1}=\left(L^{\infty}, L^{1}\right)_{0, q_{0} ; \bar{\beta}_{0}, \bar{\alpha}_{0}}$ and $X_{2}=L_{\infty, q_{0} ; \bar{\alpha}_{0}, \bar{\beta}_{0}}$, and let $f \in L^{1}+L^{\infty}$. Since (see [4, Theorem 5.2.1])

$$
K\left(t, f ; L^{\infty}, L^{1}\right)=t \int_{0}^{1 / t} f^{*}(u) d u
$$

it turns out that

$$
\|f\|_{X_{1}}=\left(\int_{0}^{\infty} t^{-q} b_{0}^{q}(t)\left(\int_{0}^{t} f^{*}(u) d u\right)^{q} \frac{d t}{t}\right)^{1 / q}
$$

where

$$
b_{0}(t)=\left\{\begin{array}{lc}
\lambda^{\bar{\alpha}_{0}}(t), & 0<t<1 \\
\lambda^{\bar{\beta}_{0}}(t), & t \geq 1
\end{array}\right.
$$

Now the estimate $\|f\|_{X_{1}} \geq\|f\|_{X_{2}}$ is trivial, and the converse estimate follows from Lemmas 2.3 and 2.4, applied with $s=q, w(t)=t^{-q-1} b_{0}^{q}(t), \phi(t)=1$ and $h(t)=f^{*}(t)$, so that $v(t) \approx v_{0}(t) \approx t^{-1} b_{0}^{q}(t)$. Therefore, the space $\left(L^{\infty}, L^{1}\right)_{0, q ; \bar{\beta}_{0}, \bar{\alpha}_{0}}$ coincides with the space $L_{\infty, q_{0} ; \bar{\alpha}_{0}, \bar{\beta}_{0}}$. Similarly, we have $\left(L^{\infty}, L^{1}\right)_{0, q ; \bar{\eta}, \bar{\gamma}}=L_{\infty, q ; \bar{\gamma}, \bar{\eta}}$. The proof is complete.

References

[1] I. Ahmed, D.E. Edmunds, W.D. Evans and G.E. Karadzhov, Reiteration theorems for the K-interpolation method in limiting cases, Math. Nachr. 284 (4), 421-442, 2011.
[2] I. Ahmed, G.E. Karadzhov and A. Raza, General Holmstedt's formulae for the Kfunctional, J. Funct. Spaces 2017, Article ID 4958073, 9 pages, 2017.
[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[4] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, New York, 1976.
[5] F. Cobos and T. Kühn, Equivalence of K - and J-methods for limiting real interpolation spaces, J. Funct. Anal. 261 (12), 3696-3722, 2011.
[6] R.Ya. Doktorski, Limiting reiteration for real interpolation with logarithmic functions, Bol. Soc. Mat. Mex. 22 (2), 679-693, 2016.
[7] D.E. Edmunds and W.D. Evans, Hardy operators, function spaces and embeddings, Springer, Berlin-Heidelberg-New York, 2004.
[8] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (5), 920-960, 2000.
[9] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2), 187-269, 2002.
[10] P. Fernández-Martínez, A. Segurado and T. Signes, Compactness results for a class of limiting interpolation methods, Mediterr. J. Math. 13 (5), 2959-2979, 2016.
[11] P. Fernández-Martínez and T. Signes, Real interpolation with symmetric spaces and slowly varying functions, Q. J. Math. 63 (1), 133-164, 2012.
[12] P. Fernández-Martínez and T. Signes, Reiteration theorems with extreme values of parameters, Ark. Mat. 52 (2), 227-256, 2014.
[13] P. Fernández-Martínez and T. Signes, Limit cases of reiteration theorems, Math. Nachr. 288 (1), 25-47, 2015.
[14] P. Fernández-Martínez and T. Signes, A limiting case of ultrasymmetric spaces, Mathematika 62 (3), 929-948, 2016.
[15] P. Fernández-Martínez and T. Signes, Limiting ultrasymmetric sequence spaces, Math. Inequal. Appl. 19 (2), 597-624, 2016.
[16] A. Gogatishvili, B. Opic and W. Trebels, Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr. 278 (1-2) 86-107, 2005.
[17] H. Heinig and L. Maligranda, Weighted inequalities for monotone and concave functions, Studia Math. 116 (2), 133-165, 1995.
[18] H. Triebel, Interpolation theory, function spaces, differential operators, NorthHolland, Amsterdam, 1978.

[^0]: *Corresponding Author.
 Email addresses: quantized84@yahoo.com (I. Ahmed), fakhra.umar@yahoo.com (F. Umar)
 Received: 18.04.2017; Accepted: 06.02.2018

