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Abstract
A reiteration theorem for a limiting real interpolation method with broken iterated log-
arithmic functions is established. An application to the generalized Lorentz-Zygmund
spaces is given.
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1. Introduction
Let (A0, A1) be a compatible couple of quasi-normed spaces, 0 ≤ θ ≤ 1, 0 < q ≤ ∞,

and b be a slowly varying function. The real interpolation space Āθ,q;b = (A0, A1)θ,q;b is
formed by all those f ∈ A0 +A1 for which the quasi-norm

‖f‖Āθ,q;b
= ‖t−θ−1/qb(t)K(t, f ;A0, A1)‖q,(0,∞)

is finite, where K(t, f ;A0, A1) is the Peetre’s K-functional and ‖ · ‖q,(a,b) is the standard
Lq-quasi-norm on an interval (a, b) ⊂ R.

Different reiteration theorems for the interpolation spaces (Āθ0,q0;b0 , A1)θ,q;b, in limiting
cases (when θ0 ∈ {0, 1} or θ ∈ {0, 1}), have been established in [16], [1] and [2]. The
results in these papers generalize the earlier results in [8] and [9], where the case when b is
a broken logarithmic function was treated. In papers [11–13], similar reiteration theorems
have been derived for the extended scale Āθ,b,E , which is obtained by replacing Lebesgue
space Lq by an arbitrary rearrangement invariant normed space E. However, the scale
Āθ,b,E does not cover the spaces Āθ,q;b for the case q < 1.

In the present paper, we are interested in the limiting case θ0 = θ = 0. In general,
the spaces (Ā0,q0;b0 , A1)0,q;b might not belong to the original scale and a new interpolation
scale is needed to describe them (see the reiteration formula (3.53) in [1]). The main result
of our paper (see Theorem 3.1 below) asserts that the spaces (Ā0,q0;b0 , A1)0,q;b do belong
to the original scale when b0 and b are taken, in particular, to be the iterated logarithmic
functions which are broken in the sense that they are raised to different powers near 0 and
near infinity.
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The motivation for the use of iterated logarithmic functions mainly comes from the
paper [6], where the reiteration theorem for the case (θ0, θ) ∈ {1} × (0, 1] has been es-
tablished for such functions. It should be mentioned that this reiteration theorem has
subsequently been extended (for the case when 0 < q, q0 < ∞) in [2] to general slowly
varying functions. The reader is also referred to [5], [10], [14] and [15], where limiting real
interpolation methods involving iterated logarithmic functions have appeared.

When q < q0, a Hardy-type inequality restricted to non-negative, non-increasing func-
tions (see Lemma 2.4 below) has been applied to obtain reiteration theorems in [16], [1] and
[2]. However, this inequality is not applicable in our limiting case (θ0 = θ = 0) even when
b0 and b are just logarithmic functions. Therefore, we make use of another Hardy-type
inequality restricted to non-negative, non-decreasing functions (see Lemma 2.5 below).

The paper is organised as follows. Section 2 contains all the necessary background
along with the Hardy-type inequalities mentioned above. The main result of the paper
is in Section 3 where we prove the reiteration theorem. Finally, in Section 4, we give an
application of our main result to the interpolation of the generalized Lorentz-Zygmund
spaces.

2. Preliminaries
In what follows, we will use the notation A . B for non-negative quantities to mean that

there is a positive constant c, which is independent of appropriate parameters involved in
A and B, such that A ≤ cB. If A . B and B . A, we put A ≈ B.

Let 0 < q < ∞, and ᾱ = (α1, α2, ..., αn) ∈ Rn. Following [6], we say ᾱ ∈ Mq,r,S (or ᾱ ∈
Mq,r,G) for some 2 ≤ r ≤ n if α1 = ... = αr−1 = −1/q and αr < −1/q (or αr > −1/q). By
ᾱ ∈ Mq,1,S (or ᾱ ∈ Mq,1,G), we will mean α1 < −1/q (or α1 > −1/q). Moreover, we will
write ᾱ =< α >n if α1 = ... = αn = α. Define positive functions λ1, λ2, ..., λn on (0,∞) by

λ1(t) = 1 + | ln t|, λk(t) = λ1(λk−1(t)), k = 2, 3, ..., n,
and put λᾱ(t)=λα1

1 (t)λα2
2 (t)...λαn

n (t), t > 0. It is easy to check that the iterated logarithmic
function λᾱ is slowly varying in the sense of [16, Definition 2.1].

We omit the proof of the next lemma since it can be done as in [6, Lemma 2].

Lemma 2.1. Let 0 < q < ∞.

(a) If ᾱ ∈ Mq,r,G, then

1 +
(∫ 1

t
λqᾱ(u)du

u

)1/q

≈ λ
ᾱ+< 1

q
>r (t), 0 < t < 1. (2.1)

(b) If ᾱ ∈ Mq,r,S , then(∫ ∞

t
λqᾱ(u)du

u

)1/q

≈ λ
ᾱ+< 1

q
>r (t), t ≥ 1. (2.2)

Let (A0, A1) be a compatible couple of quasi-normed spaces, that is, we assume that
both A0 and A1 are continuously embedded in the same Hausdorff topological vector space.
The Peetre’s K-functional is defined, for each f ∈ A0 +A1 and t > 0, by

K(t, f) = K(t, f ;A0, A1)
= inf{‖f0‖A0 + t‖f1‖A1 : f0 ∈ A0, f1 ∈ A1, f = f0 + f1}.

Note that, as functions of t, K(t, f) is non-decreasing and K(t, f)/t is non-increasing.

Definition 2.2. Let 0 < q ≤ ∞, 0 ≤ θ ≤ 1, ᾱ ∈ Rn and β̄ ∈ Rm. The real interpolation
space Āθ,q;ᾱ,β̄ = (A0, A1)θ,q;ᾱ,β̄ consists of all f ∈ A0 +A1 for which the quasi-norm

‖f‖Āθ,q;ᾱ,β̄
= ‖t−θ−1/qλᾱ(t)K(t, f)‖q,(0,1) + ‖t−θ−1/qλβ̄(t)K(t, f)‖q,(1,∞)

is finite.
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The spaces Āθ,q;ᾱ,β̄ are a particular case of the scale Āθ,q;b. When ᾱ = β̄ = (0) with
0 < θ < 1, we get back the classical scale Āθ,q (see [3, 4, 18]). For ᾱ=(α) and β̄=(β), we
will use the notation Āθ,q;α,β, and this is the case considered in [8] and [9].

In view of Proposition 2.5 (ii) in [16] and Lemma 2.1 (b), the condition β̄ ∈ Mq,r,S , for
some 1 ≤ r ≤ m, will guarantee that the limiting spaces Ā0,q;ᾱ,β̄ are intermediate for the
couple (A0, A1), that is,

A0 ∩A1 ↪→ Ā0,q;ᾱ,β̄ ↪→ A0 +A1,

where the symbol ↪→ denotes the continuous embedding. A similar remark applies in the
limiting case θ = 1.

We conclude this section with the following weighted Hardy-type inequalities which will
be the key ingredients in our proofs.

Lemma 2.3 ([1, Lemma 3.2]). Let 1 ≤ s < ∞, and assume that w, φ and h are non-
negative functions on (0,∞). Then∫ ∞

0

(∫ t

0
φ(u)h(u)du

)s

w(t)dt .
∫ ∞

0
hs(t)v(t)dt, (2.3)

where
v(t) = (w(t))1−s

(
φ(t)

∫ ∞

t
w(u)du

)s

. (2.4)

Lemma 2.4 ([1, Lemma 3.3]). Let 0 < s < 1. Assume that w and φ non-negative functions
on (0,∞), and h is a non-negative, non-increasing function on (0,∞). Then∫ ∞

0

(∫ t

0
φ(u)h(u)du

)s

w(t)dt .
∫ ∞

0
hs(t)v0(t)dt, (2.5)

where

v0(t) = φ(t)
(∫ t

0
φ(u)du

)s−1 ∫ ∞

t
w(u)du. (2.6)

Lemma 2.5 ([17, Theorem 3.3 (b)]). Let 0 < s < 1. Assume that w and v1 are non-
negative functions on (0,∞), and ψ is a non-negative function on (0,∞) × (0,∞). Then∫ ∞

0

(∫ ∞

0
ψ(t, u)h(u)du

)s

w(t)dt .
∫ ∞

0
hs(t)v1(t)dt (2.7)

holds for all non-negative, non-decreasing functions h on (0,∞) if and only if∫ ∞

0

(∫ ∞

x
ψ(t, u)du

)s

w(t)dt .
∫ ∞

x
v1(t)dt (2.8)

holds for all x > 0.

3. Reiteration
The following reiteration theorem is the main contribution of this paper.

Theorem 3.1. Let 0 < q0, q < ∞. If ᾱ0 ∈ Mq0,j,G, ᾱ ∈ Mq,j,G, β̄0 ∈ Mq0,k,S , and
β̄ ∈ Mq,k,S , then

(Ā0,q0;ᾱ0,β̄0
, A1)0,q;ᾱ,β̄ = Ā0,q;γ̄,η̄,

where γ̄ = ᾱ+ ᾱ0+ < 1
q0
>j and η̄ = β̄ + β̄0+ < 1

q0
>k .

Proof. Put

b0(t) =


λᾱ0(t), 0 < t < 1,

λβ̄0(t), t ≥ 1,
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b(t) =


λᾱ(t), 0 < t < 1,

λβ̄(t), t ≥ 1,
and Ā = (Ā0,q0;ᾱ0,β̄0

, A0)0,q;ᾱ,β̄. Let f ∈ A0 + A1. According to the reiteration formula
(3.53) in [1], we have

‖f‖q

Ā
≈ C +D,

where

C =
∫ ∞

0
bq(ρ0(t))

(∫ t

0
bq0

0 (u)Kq0(u, f)du
u

)q/q0 dt

t
,

and
D =

∫ ∞

0
t−qbq(ρ0(t))ρq

0(t)Kq(t, f)dt
t
,

with

ρ0(t) = t

(∫ ∞

t
bq0

0 (u)du
u

)1/q0

, t > 0.

Thanks to the conditions ᾱ0 ∈ Mq0,j,G and β̄0 ∈ Mq0,k,S , we can apply Lemma 2.1 to
obtain that

ρ0(t) ≈


tλ

ᾱ0+< 1
q0

>j (t), 0 < t < 1,

tλ
β̄0+< 1

q0
>k(t), t ≥ 1.

In view of the observation | ln ρ0(t)| ≈ | ln t|, t > 0, we get

C ≈
∫ ∞

0
bq(t)

(∫ t

0
bq0

0 (u)Kq0(u, f)du
u

)q/q0 dt

t
,

and
D ≈

∫ ∞

0
t−qbq(t)ρq

0(t)Kq(t, f)dt
t
.

Since
‖f‖q

Ā0,q;γ̄,η̄
≈ D,

thus the proof will be complete if we show that C . D. Now C ≈ C1 + C2 + C3 and
D ≈ D1 +D2, where

C1 =
∫ 1

0
λqᾱ(t)

(∫ t

0
λq0ᾱ0(u)Kq0(u, f)du

u

)q/q0 dt

t
,

C2 =
∫ ∞

1
λqβ̄(t)

(∫ 1

0
λq0ᾱ0(u)Kq0(u, f)du

u

)q/q0 dt

t
,

C3 =
∫ ∞

1
λqβ̄(t)

(∫ t

1
λq0β̄0(u)Kq0(u, f)du

u

)q/q0 dt

t
,

D1 =
∫ 1

0
λ

qᾱ+qᾱ0+< q
q0

>j (t)Kq(t, f)dt
t
,

and
D2 =

∫ ∞

1
λ

qβ̄+qβ̄0+< q
q0

>k(t)Kq(t, f)dt
t
.

Since the condition β̄ ∈ Mq,k,S implies the convergence of the integral
∫ ∞

1 λqβ̄(t)dt
t , thus

C2 ≈
(∫ 1

0
λq0ᾱ0(u)Kq0(u, f)du

u

)q/q0

.
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Next we observe that

t 7−→ 1
tq0λq0ᾱ0(t)

∫ t

0
λq0ᾱ0(u)Kq0(u, f)du

u

is non-increasing since it is an integral average (with respect to the measure tq0−1λq0ᾱ0(t))
of a non-increasing function t−q0Kq0(t, f). As a consequence,

C1 ≥
(∫ 1

0
λq0ᾱ0(u)Kq0(u, f)du

u

)q/q0 ∫ 1

0
tqλq(ᾱ+ᾱ0)(t)dt

t
,

whence C2 . C1. Therefore, C ≈ C1 +C3. Next we establish the estimates C1 . D1 +D2
and C3 . D2. To this end, we distinguish two cases: q ≥ q0 and q < q0. Assume first that
q ≥ q0, and apply Lemma 2.3 with s = q/q0, h(t) = Kq0(t, f), φ(t) = t−1λq0ᾱ0(t) and
w(t) = t−1λqᾱ(t)χ(0,1)(t). We compute, with the aid of Lemma 2.1 (a), that

v(t) . t−1λ
qᾱ+ ¯qα0+< q

q0
>j (t), 0 < t < 1,

which implies that C1 . D1. Similarly, C3 . D2 follows from Lemma 2.3. Next assume
that q < q0, and take s = q/q0, h(t) = Kq0(t, f), w(t) = t−1λqᾱ(t)χ(0,1)(t), ψ(t, u) =
u−1λq0ᾱ0(u)χ(0,t)(u), and

v1(t) =


t−1λ

qᾱ+qᾱ0+< q
q0

>j (t), 0 < t < 1,

t−1λ
qβ̄+qβ̄0+< q

q0
>k(t), t ≥ 1.

We observe that (2.8) holds trivially for all x ≥ 1, and for 0 < x < 1, we have∫ ∞

0

(∫ ∞

x
ψ(t, u)du

)s

w(t)dt ≈
∫ 1

x

(∫ t

x
λq0ᾱ0(u)du

u

)q/q0

λqᾱ(t)dt
t

≤
(∫ 1

x
λq0ᾱ0(u)du

u

)q/q0 ∫ 1

x
λqᾱ(t)dt

t

. λ
qᾱ+qᾱ0+< q

q0
>j+<1>j (t)

≈ 1 +
∫ 1

x
λ

qᾱ+qᾱ0+< q
q0

>j (t)dt
t

≈
∫ ∞

x
v1(t)dt,

which establishes the validity of (2.8). Hence, the estimate C1 . D1 + D2 follows from
(2.7). Similarly, we can obtain C3 . D2 from Lemma 2.5. The proof of the theorem is
complete. �

Writing down Theorem 3.1 in a particular case when ᾱ0 = (α0), ᾱ = (α), β̄0 = (β0)
and β̄ = (β), we get the following result which is not contained in [8] and [9].

Corollary 3.2. Let 0 < q0, q < ∞. If α0 > −1/q0, α > −1/q, β0 < −1/q0 and β < −1/q,
then

(Ā0,q0;α0,β0 , A1)0,q;α,β = Ā0,q;γ,η,

where γ = α+ α0 + 1
q0

and η = β + β0 + 1
q0
.

The next result is a symmetric counterpart of Theorem 3.1, and its proof can be derived
from Theorem 3.1 by using the same symmetry argument as in the proof of Theorem 4.3
in [16].

Theorem 3.3. Let 0 < q1, q < ∞. If ᾱ1 ∈ Mq1,j,S , ᾱ ∈ Mq,j,S , β̄1 ∈ Mq1,k,G, and
β̄ ∈ Mq,k,G, then
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(A0, Ā1,q1;ᾱ1,β̄1
)1,q;ᾱ,β̄ = Ā1,q;γ̄,η̄,

where γ̄ = ᾱ+ ᾱ0+ < 1
q1
>j and η̄ = β̄ + β̄0+ < 1

q1
>k .

4. Application
Let (Ω, µ) be a σ-finite measure space. Let f∗ denotes the non-increasing rearrangement

of a µ-measurable function f on Ω (see, for instance, [3]).

Definition 4.1. Let 0 < p, q ≤ ∞, ᾱ ∈ Rn and β̄ ∈ Rm. The generalized Lorentz-
Zygmund space Lp,q;ᾱ,β̄ consists of all µ-measurable functions f on Ω such that the quasi-
norm

‖f‖Lp,q;ᾱ,β̄
= ‖t1/p−1/qλᾱ(t)f∗(t)‖q,(0,1) + ‖t1/p−1/qλβ̄(t)f∗(t)‖q,(1,∞)

is finite.

The spaces Lp,q;ᾱ,β̄ are a particular case of the more general scale of the Lorentz-
Karamata space (see, for example, [16]). For ᾱ = β̄, the spaces Lp,q;ᾱ,β̄ coincide with
the spaces Lp,q;ᾱ from [7]. If ᾱ = (α) and β̄ = (β), then we obtain the spaces Lp,q;A,
A = (α, β), considered in [8] and [9]. When ᾱ = β̄ = (0), the spaces Lp,q;ᾱ,β̄ become the
Lorentz spaces Lp,q, which coincide with the classical Lebesgue spaces Lp for p = q.

The next theorem provides an application of Theorem 3.1 to the interpolation of the
generalized Lorentz-Zygumnd spaces in a limiting case which is not covered by the results,
concerning the interpolation of the Lorentz-Karamata spaces, in [16].

Theorem 4.2. Let 0 < q0, q < ∞. Assume that ᾱ0 ∈ Mq0,k,S, ᾱ ∈ Mq,j,G, β̄0 ∈ Mq0,j,G

and β̄ ∈ Mq,k,S. Then
(L∞,q0;ᾱ0,β̄0

, L1)0,q;ᾱ,β̄ = L∞,q;γ̄,η̄,

where γ̄ = β̄ + ᾱ0+ < 1/q0 >k and η̄ = ᾱ+ β̄0+ < 1/q0 >j .

Proof. Take A0 = L∞ and A1 = L1, and apply Theorem 3.1 to obtain

((L∞, L1)0,q0;β̄0,ᾱ0
, L1)0,q;ᾱ,β̄ = (L∞, L1)0,q;η̄,γ̄ .

Put X1 = (L∞, L1)0,q0;β̄0,ᾱ0
and X2 = L∞,q0;ᾱ0,β̄0

, and let f ∈ L1 + L∞. Since (see
[4, Theorem 5.2.1])

K(t, f ;L∞, L1) = t

∫ 1/t

0
f∗(u)du,

it turns out that

‖f‖X1 =
(∫ ∞

0
t−qbq

0(t)
(∫ t

0
f∗(u)du

)q dt

t

)1/q

,

where

b0(t) =


λᾱ0(t), 0 < t < 1,

λβ̄0(t), t ≥ 1.

Now the estimate ‖f‖X1 ≥ ‖f‖X2 is trivial, and the converse estimate follows from Lemmas
2.3 and 2.4, applied with s = q, w(t) = t−q−1bq

0(t), φ(t) = 1 and h(t) = f∗(t), so that
v(t) ≈ v0(t) ≈ t−1bq

0(t). Therefore, the space (L∞, L1)0,q;β̄0,ᾱ0
coincides with the space

L∞,q0;ᾱ0,β̄0
. Similarly, we have (L∞, L1)0,q;η̄,γ̄ = L∞,q;γ̄,η̄. The proof is complete. �
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