

Süleyman Demirel Üniversitesi YEKARUM e-DERGİ (Journal of YEKARUM) Yıl 2019/Cilt 4/ Sayı 1 E - ISNN: 1309-9388

Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal

İbrahim ÜÇGÜL^{a*}, Tansel KOYUN^b ^aTekstil Mühendisliği Bölümü, Mühendislik Fakültesi, Süleyman Demirel Üniversitesi, Isparta ^bMakine Mühendisliği Bölümü, Mühendislik Fakültesi, Süleyman Demirel Üniversitesi, Isparta *Sorumlu yazar e-posta adres: <u>ibrahimucgul@sdu.edu.tr</u>

ABSTRACT:

Scope of this to investigate the steam-gasification in solar assisted gasification reactor of three types of lignite coal that produced in Turkey was investigated. Three different types of lignite coal are TUNCBILEK-B, SEYITOMER and YATAGAN coals respectively. In this gasification process, heat was supplied from solar energy. Process heat can be the use of solar energy, as well as reducing the environmental pollution, increasing the calorific value of the fuel.

Turkey is a rich country in terms of reserve of lignite coal. But these lignite coal reserves have got high ash, humidity and sulphur rates and low calorific value of fuel. Therefore, it is necessary to use these coals with gasification for avoiding the pollutants and increasing the calorific value of the fuel. Moreover, these selected coals are the most suitable fuel type for the gasification process. Because these coals allow sensitive combustion, waste materials are low and suitable for high combustion temperatures.

In this study, exergy and irreversibility calculations related to coal type reactor, heat exchanger and quecher have been made from the data obtained from literature for selected coal. Finally, exergy efficiency expressions for selected three different coal types were obtained and evaluated. As a result, the greatest irreversibility was found in the gasifier and consequently the exergetic efficiency was low (about 40 %). These results gives constrains for designing and efficiently operating solar gasification reactor.

<u>Anahtar Kelimeler</u>: Coal Gasification, Steam-Gasification, Solar Assisted Gasification, Solar Gasification Reactor, Exergy Efficiency.

1. INTRODUCTION

Coal is a rich fuel resource in the world and Turkey [1]. Especially Turkey is rich of lignite coal reserves [2, 3]. Today, predicted lignite coal reserves in Turkey is 76 milliard tons and approximately can be expressed as 79 % is visible, 15 % is probable, and 6 % is possible reserve class [4].

Generally, for the case that the difference between of coal production and consumption rates is increasing, it must be paid more attention to using of coal and its products [3].

In a typical coal combustion system, 1 kg CO_2 gas comes out per kWh with greenhouse gasses and pollutants. These emissions considerably reduced by solar fuels which can be used for coal, and can be completely eliminated [5].

Balyaev et. al. (2002), are made analysis of the possibility to use such low-quality coals as alternative energy sources in fluidized bed gasification process. In their work, gasification performance of low-quality coals with different oxygen/nitrogen mixture examined [6]. Cho and Lee (2001) have carried out performance reactor with primary/secondary swirl intensity and direction in coal gasification process. The numerical code was formulated with PSI-cell method, k-e model for

turbulence flow, Monte-Carlo method radiative heat transfer, and eddy dissipation model for gas-phase reaction rate [7]. Steinfeld (2002), studied exergy analysis and economical cost analysis of solar reactors [8]. Epstein et. al. (2001) has carried out the production of zinc from its oxide solar energy. When carbon is used as reducing agent, the main product gases are CO and CO_2 [9].

In this study, gasification reaction calculations of three different lignite coals that produced in Turkey are made (Table 1). Afterwards, thermodynamic analysis of solar assisted gasification reactor was carried out. Finally, irreversibilities and thermal and exergetic efficiencies are estimated for the same system. These results gives constrains for designing and efficiently operating solar gasification reactor.

2. SOLAR COAL GASIFICATION REACTOR

Figure 1 shows a solar coal gasification reactor schematically.

Fig 1. Solar coal gasification reactor

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

Where HE is heat exchanger, Q is quencher. In Figure 1, values are obtained from reference [5] as; $T_1=300$ K, $T_2=1250$ K, $T_3=T_{reactor}=1350$ K, $T_4=940$ K Lignite is produced in several regions of Turkey (Tuncbilek-B, Seyitomer,

Yatagan). In this study, there are only three different lignite coal are investigated. Required values are given in table 1.

 Table 1. Elementary analysis of some lignite in

 Turkev [10]

Lignite name and symbol	Tuncbilek-B (T)	Seyitomer (S)	Yatagan (Y)	
C (%y)	60,94	63,65	66,34	
0 (%y)	24	27,88	24,65	
N (%y)	1,54	1,79	1,58	
S (%y)	2,93	1,02	2,20	
H (%y)	5,44	5,66	5,23	
H/C (x)	1,0637	1,0596	0,9393	
O/C (y)	0,2956	0,3287	0,2788	
H _u , Low Heat Value (kW)	13,47	6,91	7,81	

The solar concentrating plant is assumed to be a solar tower-reflector system for large-scale collection and concentration of solar energy. The solar tower system uses a field of heliostats to focus the sunrays onto a receiver mounted on top of a centrally located tower. There is a gasification reactor back of the receiver.

Required data for investigated system are

obtained from literature. From the data obtained from references [5] and [11], gasification of lignite coal in solar gasification reactor has been analyzed.

3. GASIFICATION OF LIGNITE COAL

For the selected lignite coals, basic and combustion equations is following;

Gasification equation [5]:

 $C_1H_xO_y + (1 - y) H_2O = [(x / 2) + 1 - y] H_2 + CO$

Combustion equation [5]:

 $[C + (x \ / \ 2) \ H_2 + (y \ / \ 2) \ O_2] + [1 + (x \ / \ 4) \ \text{-} \ (y \ / \ 2)] \ O_2 =$

 $(x \ / \ 2) \ H_2O + CO_2$

Where, x = H/C and y = O/C.

The values calculated according to these equations are given in table 2.

 Table 2. Gasification and basic combustion equations for

 coal types

(T)	Gasification equation	$CH_{1.0637}O_{0.2956} + 0.7044 H_2O = 1.2362 H_2 + CO$
coal	Combustion equation	$C + 0.5318 H_2 + 1.2659 O_2 = 0.5318 H_2 O + CO_2$
(S)	Gasification equation	CH _{1.0596} O _{0.3287} + 0.6713 H ₂ O = 1.2011 H ₂ + CO
coal	Combustion equation	$C + 0.5298 H_2 + 1.2649 O_2 = 0.5298 H_2O + CO_2$
(Y)	Gasification equation	$CH_{0.9393}O_{0.2788} + 0.7212 H_2O = 1.1908 H_2 + CO$
coal	Combustion	$C + 0.4696 H_2 + 1.2348 O_2 = 0.4696 H_2O + CO_2$

For component i, enthalpy is calculated by the equation (1) [12],

$$\overline{\mathbf{H}}_{i} = \overline{\mathbf{H}}_{i}^{0} + \mathbf{m} \int_{300}^{\mathbf{T}_{2}} \overline{\mathbf{C}}_{p} d\mathbf{T} = \overline{\mathbf{H}}_{\mathbf{f}}^{0} + \left(\overline{\mathbf{H}} - \overline{\mathbf{H}}_{300}\right) \dots \dots (1)$$

where forming enthalpy is to reference [12];

Entropy values are calculated by the equation below [12].

$$\overline{\mathbf{S}}_{\mathbf{i}} = \overline{\mathbf{S}}_{\mathbf{i}}^{0} + \left(\overline{\mathbf{S}} - \overline{\mathbf{S}}_{300}\right)....(3)$$

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

Where, forming entropy is calculated from main equation for data obtained from reference [12].

The values calculated according to these equations are given in table 3.

Coal Type	(T) Coal	(S) Coal	(Y) Coal
Formula	CH _{1.0637} O _{0.2956}	CH _{1.0596} O _{0.3287}	CH _{0.9393} O _{0.2788}
\overline{H}_{f}^{o} Forming Enthalpy (kJ/kmol) [11]	- 522125,5986	-521641,9446	-507083,9592
\$\overline{S_f}^o\$ Forming Entropy (kJ/kmolK) [11]	- 20,518	-20,4294	-17,7649
μ Molar mass (kg/kmol) [11]	17,7933	18,3188	17,4001

Table 3. Thermochemical properties for coal types

4. SECOND LAW ANALYSIS OF THE SYSTEM

Second law (exergy) analysis is applied for calculating maximum exergetic efficiency [5]. In this study, reactor, heat exchanger and quencher are investigated separately.

4.1. Solar Reactor

The solar reactor is assumed to be a cavityreceiver operating at $T_{reactor}$. Its capability to absorb incoming concentrated solar energy is expressed by the solar energy absorption efficiency, $\eta_{absorption}$, defined as the net rate at which energy is being absorbed. Solar reactor parameters and temperature values were taken according to reference [5] as;

$$\eta_{absorption} = \frac{\dot{Q}_{reactor,net}}{\dot{Q}_{solar}} = 1 - \left(\frac{\sigma T_{reactor}^4}{IC}\right)....(5)$$

where I is the normal beam insolation; C, the mean flux concentration ratio over the solar reactor's aperture; $T_{reactor}$, the nominal reactor temperature; σ , the Stefan-Boltzmann constant $Q_{reactor net}$, absorbed net energy, Q_{solar} , solar energy coming from solar concentration system to reactor [5].

Coal enters the solar reactor at T_1 . Only steam is assumed to be preheated from T_1 to T_2 in a heat exchanger. The reactants coal and steam enter the solar reactor and are further heated to $T_{reactor}$. Chemical equilibrium at $T_{reactor}$ is assumed to be achieved inside the reactor. The net power absorbed in the solar reactor should match the enthalpy change of the reaction per unit time. Here, is mass flow rate of coal (1 g s⁻¹).

$$\dot{Q}_{reactor,net} = \dot{n}\Delta \overline{H} \mid_{coal @ T_1, H_2O @ T_2 \rightarrow products @ T_{reactor}} ...(6)$$

From the mass flow equations, calculated mass flow rates form T, S, and Y coals were given in table 4.

Table 4. Mass flow rates of coals

Coal	\dot{n}_{CHO}	\dot{n}_{H_20}	\dot{n}_{H_2}	<i>'n_{CO}</i>
type	(g/s)	(g/s)	(g/s)	(g/s)
(T) coal	1	0,7125	0,1389	1,5736
(S) coal	1	0,6594	0,1311	1,5284
(Y) coal	1	0,746	0,1368	1,6091

Heat flux equation for steady state is defined below from references [5] and [12]:

$$\begin{split} \dot{Q} &= \sum \dot{n}_{out} (\overline{H}_{f}^{0} + \overline{H} - \overline{H}^{0})_{out} \frac{1}{\mu_{out}} 10^{-3} - \sum \dot{n}_{in} (\overline{H}_{f}^{0} + \overline{H} - \overline{H}^{0})_{in} \frac{1}{\mu_{in}} 10^{-3} [kW] \dots(7) \\ For the equation above, required enthalpy values were obtained from Table 1 and mole rates were calculated basic equation. Where subscripts in and out are inlet and outlet, respectively.$$

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

The irreversibility in the solar reactor was calculated with the equation below. In this equation, the first three terms to reference [5] and the last term to reference [13] are calculated.

 $\Delta \dot{S}_{gen} = \frac{\dot{Q}_{solar}}{T_{reactor}} + \frac{\dot{Q}_{radiation \, loss}}{T_1} + \frac{\dot{Q}_{radiation \, loss}}$

 $\dot{n}\Delta s_{|coal@T_1H_2O@T_2 \rightarrow products@T_{reactor}} + \dot{n}\Delta s_{mix}.....(8)$ Where, Δs_{mix} is entropy generation which is born of being formed of mixture phenomena. Δs_{mix} may be expressed as,

 $\Delta s_{\text{mix}} = -\sum R_i y_i \ln x_i \text{ and } R_i = R_{\text{mix}} \frac{x_i}{y_i} \dots (9)$

The radiation heat loss by the reactor at $T_{reactor}$ to the surroundings at T_1 , (Q_{reradiation}) [5];

Irreversibility according to Gouy-Stadola can be defined as;

The values calculated according to these equations are given in table 5.

 Table 5. Reactor energy, entropy generations and

irreversibility for coal types

Coal type	(T) coal	(S) coal	(Y) coal
<i>Ż</i> _{reactor,net} (k₩)	35,324	33,853	35,3744
Q́ _{solar} (k₩)	38,8175	37,201	38,8729
$\dot{Q}_{reradiation} \ ({ m kW})$	3,4935	3,3480	3,4985
'n∆s (kW/K)	0,0174	0,0183	0,0170
'n∆s _k (kW/K)	1,396.10 ⁻³	1,0956.10 ⁻³	1,0443.10 ⁻³
$\Delta \dot{S}_{gen}$ (kW/K)	0,059	0,0469	0,05426
Irr, reactor (kW)	17,7	14,07	16,278

4.2. Heat exchanger

The reactants are preheated in an adiabatic countercurrent-flow heat exchanger where some portion of the sensible heat of the products is transferred to the reactants. Water enters at ambient temperature T_1 and exit at T_2 ; the products enter at T_3 and exit at T_4 . It is assumed that the composition of the reactants and products remain unchanged during the heating and cooling processes inside the heat exchanger. Heat transferred from the products,

Q_{heat exchanger};

 $\dot{Q}_{heat exchanger} = \dot{n}\Delta h_{|H_2O@T_1 \rightarrow H_2O@T_2} =$ $\dot{n}\Delta h_{|producs@T_3 \rightarrow products@T_4}$(13) Assuming water vapor was ideal gas, enthalpy values were obtained from reference [12] for $\dot{Q}_{heat exchanger}$ for T_1 =300 K, T_2 =1250 K. In the same way, obtained for products (CO+H₂) for T_3 =1350 K ve T_4 =940 K and $\dot{Q}_{heat exchanger}$ was calculated

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

entropy generation for heat exchanger;
$\Delta \dot{S}_{gen\;heat\;exchanger} = \dot{n} \Delta h_{ H_2 O @ T_1 \rightarrow H_2 O @ T_2} =$
$\dot{n}\Delta h_{ producs@T_3 \rightarrow products@T_4} \dots \dots (15)$
Reactor irreversibility;

For $T_0=300$ K calculated values were given in table 6.

 Table 6. Exchanger temperatures, entropy generation

 and irreversibility for coal types

	(T)	(S)	(Y)
	coal	coal	coal
Q _{heat exchanger} (kW) = n∆h _{productT3→T4}	1,655	1,5841	1,6599
'n∆h _{productT3→T1} (kW)	4,0658	3,8888	4,075
$\eta_{heatexchanger}$	0,40	0,34	0,40
hΔs _{H2OT1→T2} (kW/K)	2,105. 10 ⁻³	1,9485. 10 ⁻³	2,204. 10 ⁻³
n∆s _{productT3→T4} (kW/K)	1,458. 10 ⁻³	- 1,3959. 10 ⁻³	-1,463. 10 ⁻³
ΔŠ _{gen} (kW/K)	0,647. 10 ⁻³	0,5526. 10 ⁻³	0,741. 10 ⁻³
Irr, (kW)	194,1. 10 ⁻³	165,78. 10 ⁻³	222,3. 10 ⁻³

4.3. Quencher

After leaving the heat exchanger, the products are cooled quickly to ambient temperature T_1 . The chemical composition of the products remains unchanged upon cooling in the quencher. The power lost during quenching is:

 $\dot{Q}_{quencher} = \dot{n}\Delta h \mid_{products @ T_4 \rightarrow products @ T_1}$(17) The irreversibility and entropy generation associated with quenching is:

 $\Delta \dot{S}_{gen} = \frac{\dot{Q}_{quencher}}{T_1} + \dot{n} \Delta h_{|products@T_4 \rightarrow products@T_1}(18)$ Irr_{quencher} = T₀ \Delta \Sigma_{gen}....(19) Values calculated for quencher were given in table 7.

 Table 7. Quencher temperature, entropy generation and

irreversibility for coal types

Coal type	(T) coal	(S) coal	(Y) coal
Q _{quencher} (kW)	2,4103	2,3053	2,4155
$\dot{n}\Delta s_{\text{product}T_3 \rightarrow T_1}$ (kW/K)	-4,2726.10 ⁻³	-4,087.10 ⁻³	-4,2822.10 ⁻³
ΔŠ _{gen} (kW/K)	3,7617.10 ⁻³	3,5973.10 ⁻³	3,7694.10 ⁻³
Irr, (kW)	1,128	1,079	1,1308

5. SYSTEM EXERGY CALCULATIONS

5.1. Exergetic Efficiency of Absorber in Solar Reactor Receiver

Absorber exergetic efficiency is given below according to reactor heat energy $E_{Q,reactor}$ and, incoming solar energy exergy $E_{Q,solar}$;

Where;

$$E_{Q,reactor} = \dot{Q}_{reactor,net} \left(\frac{T-T_0}{T}\right)....(21)$$

 $\dot{Q}_{reactor,net}$ is taken from Table 5 and $E_{Q,reactor}$ calculated for all three coals types and for T=1350K ve T₀=300K. For unit area, $e_{Q,solar}$ can be calculated from [14];

$$e_{Q,solar} = I_e \left(1 - \frac{4}{3} \frac{T_0}{T_s} (1 - 0.28 \ln f) \right)....(22)$$

Where $I_e=1kW/m^2$, $T_0=300K$, $T_s=5777K$ and $f=158,528.10^{-7}$ for Isparta [15]. For Isparta $e_{0,solar} = 0.9309 \text{ kW/m}^2$ is calculated.

From here, absorber exergy can be calculated by the equation below according to values taken from Table 8;

 $E_{Q,solar} = e_{Q,solar} x A....(23)$

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

Table 8. Absorber parameters for coal types

Coal Type	Q _{solar} , (kW)	Required Absorber area,[A](m ²)
(T) coal	38,8175	39,5334
(S) coal	37,2010	35,2691
(Y) coal	38,8729	36,8542

Absorber exergetic efficiencies were given in table 9 for three different coal types.

Table 9. Absorber exergetic efficiencies for three

different coal types

Coal Type	E _{Q,reactor} (kW)	E _{Q,solar} (kW)	$\eta_{\text{ex,abs}}$
(T) coal	27,4467	36,8017	0,74
(S) coal	28,9051	35,2691	0,82
(Y) coal	27,4859	36,8542	0,74

5.2. Reactor Exergetic Efficiency

 $\eta_{\text{eks,r}} = \frac{\sum E_{\text{product}}}{\sum E_{\text{reactant}}} = \frac{\frac{E_{\text{ch,product}} + E_{\text{ph,product}}}{E_{Q,H_2} 0 + E_{Q,\text{coal}} + E_{Q,\text{solar}}}.....(24)$

Where;

 $E_{ch,p}$ =Chemical exergy for products

 $E_{ph,p}$ = Physical exergy for products

Calculation of chemical exergy was carried out according to equation below [16]: $E_{ch} = \sum x_i \varepsilon_{0i} + RT_0 \sum x_i \ln x_i.....(25)$

For the terms in Eq.(25), chemical exergies calculated taking standart exergy values from reference [16] as $\varepsilon_{0,CO} = 275430$ (kj/kmol) and $\varepsilon_{0,H_2} = 238490$ (kj/kmol). Here product mole numbers calculated for three lignite coals according to $x_i = \frac{n_i}{n}$

formula.

 Table 10. Mole numbers calculated for three lignite

coals				
Coal	X _{H2}	X _{co}		
Т	0,5060	0,4471		
S	0,5456	0,4543		
Y	0,5456	0,4543		

Although, physical exergy was calculated according to equation below [16, 17].

$$E_{ph} = \frac{n(h-h_0-T_0(s-s_0)).10^{-3}}{...} (kW).....(26)$$

Required values were taken from reference [12] and calculations were made.

The low heat value of fuel can taken equal to the reactant coal exergy. For three different lignite coals, the low heat values were taken from reference [11]. The reactor exergy fluxes calculated based on these values are given in Table 11.

Table 11. Reactor exergy fluxes for coal types

Exergies	(T) Coal	(S) Coal	(Y) Coal
E _{ph,H2} (kW)	1,2532	1,1828	1,2342
E _{ph,CO} (kW)	1,0942	1,0628	1,1189
E _{ph,product} (kW)	2,3474	2,2456	2,3531
E _{ch,product} (kW)	15,9688	15,2562	15,9821
E _{Q,H2} O (kW)	0	0	0
E _{Q,coal} (kW)	3,47	6,91	7,81
E _{Q,solar} (kW)	36,8017	35,2691	36,8542
$\eta_{ex,r}$ (kW)	%36	%41	%41
Hu (LHV) (kW)	3,47	6,91	7,81

5.3. Exergetic efficiency for heat exchanger

Exergetic efficiency was calculated according to equation below:

$$\eta_{ex,exc} = \frac{\sum E_{product}}{\sum E_{reac tan t}} = \frac{E_{Q,H_2O}(T_2) + E_{Q,CO}(T_4) + E_{Q,H_2}(T_4)}{E_{Q,water} + E_{Q,CO}(T_4) + E_{Q,H_2}(T_4)} \dots (27)$$

Here, physical exergy values were taken from reference [12]. Heat exchanger exergy values calculated for different coal types are given in Table 12.

Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

Exergies	(T) coal	(S) coal	(Y) coal
$E_{Q,H_2O}~(T_2)~(kW)$	0,8175	0,7565	0,8558
$E_{Q,CO}$ (T ₄) (kW)	0,52	0,5051	0,5318
E_{Q,H_2} (T ₄) (kW)	0,6096	0,5753	0,6004
$E_{Q,su}$ (T ₁) (kW)	0	0	0
$E_{Q,CO}$ (T ₃) (kW)	1,2066	1,1719	1,2338
E_{Q,H_2} (T ₃) (kW)	1,2532	1,1828	1,2342
$\eta_{\text{ex,exc}}$	%79	%78	%80

Table 12. Exchanger exergies for coal types

The exergetic efficiencies for all system are presented in following (Fig. 2.).

Fig 2. The exergetic efficiencies vs. the absorber, reactor and exchanger (tuncbilek lignite coal, soma lignite coal, yatagan lignite coal are the exergetic efficiencies

6. RESULTS

Exergy analyses guides to energy for efficiency use in processes, and helps for determining the major sources of irreversibility for improving the system efficiencies. In this study, solar thermal gasification process of lignite that have high economic value but have pollution effects, analyzed in terms of energy and exergy. In analyses, three types of coal were used. It is seen that for the three types of lignite coals, the maximum exergetic losses were in reactor because of irreversibilities. According to Figure 2, the most exergetic efficiencies for all system components (absorber, reactor, and exchanger) are seen for the Soma lignite coal. However, these systems are the most environmentally friendly systems. However, these systems are the most prevent the growth appropriate to of environmental problems. The system presented in this study provides a promising perspective for the future and encouraging the use of renewable energy systems.

Acknowledgements: This work was supported by the S.D.U. B.A.P.Y.B. unit under Contract Project no 2003-14 with Suleyman Demirel University.

REFERENCES

[1] EİGM Raporları, T.C. Enerji ve Tabii Kaynaklar Bakanlığı, ''https://www.enerji.gov.tr/tr-TR/EIGM-Raporlari'' 2019.

[2] Onat, K., "Kömürün Gazlaştırılması", Isı Bilimi ve Tekniği Dergisi, Cilt 9, Sayı 3, s.19-26, 1986.

[3] Borat, O., Balcı, M., Sürmen, A., "Yanma Bilgisi", s.261, 1992.

[4] Pişkin, S., "Kömür gazlaştırma", Kömür(Editör: Kural Orhan), İTÜ Maden Fak., Maden Müh. Böl., Şubat 1991.

[5] Steinfeld, A., Zedtwitz, P.V., "The Solar Thermal Gasification of Coal-Energy Conversion Efficiency and CO2 Mitigation Potential". Energy, Switzerland. 2003.

[6] Belyaev, A.A., Yampolskii, Yu.P., Starannikova, L.E., Polyakov, A.M., Clarizia, G., Drioli, E., Marigliano, G., Barbieri, G., "Membrane air seperation for intensification of coal gasification process",Fuel Processing Technology, vol.80, pp.119-141, 2003. Üçgül, İ., ve Koyun, T., "Theoretical Investigation of Solar Gasification of Different Types of Lignite Coal", Yekarum e-Dergi, 2019

[7] Cho, H.C., Lee, Y.K., "Reactor performance with primary/secondary swirl intensity and direction in coal gasification process", International Journal of Energy Research, Vol.25, pp. 1151-1163, 2001.

[8] Steinfeld, A., "Solar hydrogen production via a two-step water splitting thermochemical cycle based on Zn/ZnO redox reactions", International Journal of Hydrogen Energy, Vol. 27, pp.611-619, 2002.

[9] Epstein, M., Ehrensberger, K., Yogev, A., "Ferro-reduction of ZnO using concentrated solar energy", Energy, 2003.

[10] Tüsiad, Turkey Energy Report,2003.

[11] Telli, Z.K., "Yakıtlar ve Yanma", Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Yayınları, Yayın No:17, 1984, Isparta.

[12] Çengel, Y.A., Boles, M.A., "Mühendislik yaklaşımıyla termodinamik", McGraw-Hill Literatür Yayıncılık, Ekim 2000, İstanbul.

[13] Telli,Z.K.,"Termodinamik(ProblemleriileBirlikte)",PalmeYayıncılık, 3. Baskı, s.275, 1998.

[14] You, Y., Hu, E.J., "A mediumtemperature solar thermal power system and its efficiency optimization", Applied Thermal Engineering, pp.357-364, Australia, 2002.

[15] Üçgül, İ., Koyun, T., "Silindirik yansıtıcılı iki yüzeyli kollektörler ile düz yüzeyli kolektörlerin I. ve II. yasa verimliliklerinin irdelenmesi", Mühendis ve Makine, Sayı:530, Mart 2004.

[16] Kotas, T.J., "The exergy method of thermal plant analysis", 1985.

[17] Szargut, J., Moris, D.R., Steward, F.R., "Exergy analysis of thermal, chemical and metallurgycal processes", hemisphere publishing corporation, 1988.