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Abstract
In this work, we define some Čech based ordered function space topologies and we introduce
ordered semi-uniformizability. Then we investigate ordered semi-uniformizability of the
ordered function space topologies such as compact-open (interior) and point-open (interior)
ordered topologies.
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1. Introduction and basic concepts
Closure operators are frequently used in mathematics and computer sciences. One of

the well known closure operator is Čech closure operator. Čech closure operator was in-
troduced by Čech in [4]. Čech closure spaces has a numerous applications. For instance,
Slapal has used Čech closure operators in [19] to solve the digital image proccessing prob-
lems. The relations between Čech closure space and structural configuration of proteins
were studied in [18]. The reader may find more details about Čech closure spaces in
[1,2,5,6,11–13]. Ordered topological spaces were defined by Nachbin in [14]. According to
[14], the triple (X, τ, ≼) is called ordered topological space where τ is a topology and ≼ is a
partial order on X. Several authors have studied ordered topological spaces (see, [3,7–9]).
Nailana, in [15], defined compact-open ordered and point-open ordered topology on the
set of continuous and order preserving functions between the ordered topological spaces.
Also, in [15], quasi-uniformizable ordered spaces were studied. According to [15] , let X
be a set and U be a quasi-uniformity on X such that (X, τ(U)) is T0, then (X, τ(U), ∩U)
is an ordered space. An ordered space (X, τ, ≼) is said to be quasi-uniformizable if there
exists a quasi-uniformity U on X such that τ = τ(U ∨ U−1) and ≼= ∩U holds. Nachbin
proved in [14] that an ordered topological space is quasi-uniformizable if and only if it is
completely regular ordered space. This paper is organized as follows. In section 2, we will
define compact-open (interior), point-open (interior) ordered topologies and we will study
some properties of these function space topologies. Then in the last section motivated by
[15], we will introduce semi-uniformizable ordered spaces and we will investigate the or-
dered semi-uniformizability of the ordered function space topologies which will be defined
in the second section.
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Now, we will give some basic notions about closure and ordered spaces.
Following [17], a partially ordered set (poset) is a set X with a binary relation ≼ which

is reflexive, antisymmetric and transitive. If the relation is only reflexive and transitive
then it is called preorder. In a preordered set (X, ≼), a subset A of X is called decreasing
if a ∈ A, b ∈ X and b ≼ a implies b ∈ A and called increasing if a ∈ A, b ∈ X and a ≼ b
implies b ∈ A. The smallest decreasing set containing A is denoted by ↓ A and the smallest
increasing set containing A is denoted by ↑ A. If A is a decreasing (increasing) set, then
the complement of A which will be denoted by Ac is increasing (decreasing) set. Let X
and Y be ordered sets. A map f : X → Y is said to be order preserving (or, alternatively,
increasing) function if x ≼ y in X implies f(x) ≼ f(y) in Y . Suppose X is any set and Y
an ordered set. Then the set Y X of all maps from X to Y may be ordered by pointwise
order ≼s as follows. Let f, g ∈ Y X and f ≼s g if and only if f(x) ≼ g(x) in Y for all
x ∈ X. According to [4], let {≼i}i∈I be a family of relations, then the relation consisting
of all pairs, ((xi)i∈I , (yi)i∈I), where xi ≼i yi for all i ∈ I, is called the relational cartesian
product of {≼i}i∈I and it will be denoted by

∏
i∈I

≼i.

Following [4], an operator c: P(X) → P(X) defined on the power set P(X) of a set X
satisfying the axioms

(i) c(∅) = ∅
(ii) A ⊆ c(A) for all A ⊆ X
(iii) c(A ∪ B) = c(A) ∪ c(B) for all A, B ⊆ X

is called a Čech closure operator and the pair (X, c) is called Čech closure space and
we briefly call it closure space. If cc(A) = c(A) holds, then it is called topological closure
operator. Let consider the unit function c:P(X) → P(X). Then c is a topological closure
operator and it is called discrete closure. A subset A of a closure space (X, c) is called closed
if c(A) = A, open if its complement is closed. The interior operator intc : P(X) → P(X)
is defined by intc(A) = (c(Ac))c for all A ⊆ X. A subset U of X is a neighbourhood of
a point x in X if x ∈ intc(U) holds. The collection of all neighbourhoods of x is called
neighbourhood sytem of x and will be denoted by Vc(x). A collection W of X is a local base
of the neighbourhood system of a point x if and only if each U ∈ W is a neighbourhood
of x and contains a V ∈ W. The topological modification ĉ of c is the finest Kuratowski
closure operator coarser than c. The corresponding topology τ(ĉ) consists of all open sets
in (X, c). Also, τ(ĉ) is called the associated topology. According to [2], the collection
B = {intc(B) | B ⊆ X} is a base for a topology τ(c̃) and its Kuratowski closure operator
is denoted by c̃.

An ordered topological space is a nonempty set X endowed with a topology τ and a
partial order ≼ which will be denoted by (X, τ, ≼). The Kuratowski closure operator of a
topology τ will be denoted by clτ . In this work we mean by an ordered topological space,
a triple (X, τ, ≼) where τ is a topology and ≼ is a preorder on X. If we endow X with a
Čech closure operator c, and a preorder ≼, then (X, c, ≼) is called an ordered Čech closure
space. If the preorder on X is the discrete order defined as

a ≼ b ⇔ a = b,

then every ordered Čech closure space is an ordinary Čech closure space. According to [5]
an ordered Čech closure space (X, c, ≼) is called

(i) upper T1-ordered if for each pair of elements a � b in X, there exists a decreasing
neighbourhood U of b such that a /∈ U .

(ii) lower T1-ordered if for each pair of elements a � b in X, there exists an increasing
neighbourhood U of a such that b /∈ U .

(iii) T1-ordered if both (i) and (ii) are satisfied.
(iv) T2-ordered if for each a, b ∈ X such that a � b, there exists an increasing neigh-

bourhood U of a and a decreasing neighbourhood V of b such that U ∩ V = ∅.
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(v) lower regular ordered if for each decreasing set A ⊆ X and each element x /∈ c(A)
there exist disjoint neighbourhoods U of x and V of A such that U is increasing
and V is decreasing.

(vi) upper regular ordered if for each increasing set A ⊆ X and each x /∈ c(A) there
exist disjoint neighbourhoods U of x and V of A such that U is decreasing and V
is increasing.

(vii) regular ordered if both (v) and (vi) are satisfied.

2. Some Čech based ordered function space topologies
In this section, we will construct some function space topologies based on Čech closure

ordered spaces.
Following lemma is straightforward from the Lemma 15 in [15].

Lemma 2.1. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces and A ⊆ X,
B ⊆ Y . Let C↑(X, Y ) denote the set of all continuous and order preserving functions
from X to Y . Define [A, B] = {f | f ∈ C↑(X, Y ) : f(A) ⊆ B}. Then ↑ [A, B]=[A, ↑ B]
and ↓ [A, B]=[A, ↓ B] holds.

In the light of [2], we give the following definition and our aim is to extend the concepts
in [2] to the ordered case.

Definition 2.2. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be two ordered closure spaces and
C↑(X, Y ) denote the set of all continuous and order preserving functions from (X, cX , ≼X)
to (Y, cY , ≼Y ). Define [C, O] = {f ∈ C↑(X, Y )|f(C) ⊆ O} where C is a compact subset
of X and O is an open set in Y . The family of the sets [C, O] forms a subbase for a topol-
ogy τCO on C↑(X, Y ) which will be called compact-open topology and endow C↑(X, Y )
with the pointwise order ≼s. Then the triple (C↑(X, Y ), τCO, ≼s) is called compact-open
ordered space. The sets [C, intcY G] where C is a compact subset of X and G ⊆ Y form
a subbase for a topology τCI on C↑(X, Y ) which will be called compact-interior topology
and the triple (C↑(X, Y ), τCI , ≼s) will be called compact-interior ordered space.

Theorem 2.3. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be two ordered closure spaces. If
(Y, cY , ≼Y ) is T2 -ordered space, then (C↑(X, Y ), τCI , ≼s) is T2-ordered.

Proof. Let (Y, cY , ≼Y ) be a T2-ordered space and f, g ∈ C↑(X, Y ) such that f �s g .
Then there exists a point x of X such that f(x) �Y g(x). Since (Y, cY , ≼Y ) is T2-ordered
space, there exist an increasing neighbourhood U of f(x) and a decreasing neighbourhood
V of g(x) such that U ∩ V =∅. Clearly, [x, intcY U ] ∈ VτCI (f) and [x, intcY V ] ∈ VτCI (g).
Since U is increasing and V is decreasing, by using Lemma 2.1, [x, U ] and [x, V ] are
increasing and decreasing neighbourhoods of f and g, respectively. Since U ∩V =∅, we get
that [x, U ] ∩ [x, V ]=∅. Consequently, (C↑(X, Y ), τCI , ≼s) is T2-ordered space. �

We show in the next example that the converse of the above theorem is not necessarily
true.

Example 2.4. Let X = {a, b} and Y = {1, 2, 3}. Define the closure operators cX and cY

by the following:
cX({a}) = {a, b}, cX({b}) = {b}, cX({a, b}) = {a, b}, cX(∅) = ∅

and
cY ({1}) = {1, 3}, cY ({2}) = {2}, cY ({3}) = cY ({2, 3}) = {2, 3},

cY ({1, 2}) = cY ({1, 3}) = Y = cY (Y ), cY (∅) = ∅.
Morever, endow X and Y by the following preorders ≼X= {(a, a), (b, b), (a, b)} and ≼Y =
{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}. Then, (X, cX , ≼X) and (Y, cY , ≼Y ) are ordered closure
spaces. Now, we construct the compact-interior topology on C↑(X, Y ). In Table 1, we
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give all continuous and order preserving functions from X to Y .

Table 1

x f1(x) f2(x) f3(x) f4(x)
a 1 2 3 1
b 1 2 3 3

Thus, C↑(X, Y ) = {f1, f2, f3, f4} and subbase elements of τCI are given by
[{a}, {1}] = {f1, f4}, [{a}, {1, 3}] = [{b}, {1, 3}] = [X, {1, 3}] = {f1, f3, f4},

[{a}, {2}] = [{b}, {2}] = [X, {2}] = {f2}, [{b}, {1}] = [X, {1}] = {f1}, [∅, Y ] = C↑(X, Y )
and [X, ∅] = ∅

Therefore, we get that
τCI = {{f1}, {f2}, {f1, f2}, {f1, f4}, {f1, f3, f4}, {f1, f2, f4}, ∅, C↑(X, Y )}

and (C↑(X, Y ), τCI , ≼s) is T2-ordered space. Indeed, for every two functions fi, fj ∈
C↑(X, Y ) such that fi �s fj (1 ≤ i, j ≤ 4), there exist an increasing neighbourhood U of
fi and a decreasing neighbourhood V of fj such that U ∩V = ∅. Nevertheless, (Y, cY , ≼Y )
is not T2-ordered, since 1 �Y 2 and the intersection of every increasing neighbourhood of
1 and every decreasing neighbourhood of 2 is nonempty.

Theorem 2.5. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Then the
following assertions are true:

(i) (C↑(X, Y ), τCO, ≼s) is T1-ordered ⇔ (Y, ĉY , ≼Y ) is T1-ordered.
(ii) (C↑(X, Y ), τCO, ≼s) is T2-ordered ⇔ (Y, ĉY , ≼Y ) is T2-ordered.

Proof. (i) Let (C↑(X, Y ), τCO, ≼s) be a T1-ordered space and y1, y2 ∈ Y such that y1 �Y

y2. Let f and g be constant functions, f(X) = {y1} and g(X) = {y2}. So, it is clear that
f �s g. Since (C↑(X, Y ), τCO, ≼s) is T1-ordered , there exist an increasing neighbourhood
U of f such that g /∈ U and a decreasing neighbourhood V of g such that f /∈ V . Taking
into account the definiton of compact-open topology we have f ∈

n⋂
i=1

[Ci, Oi] ⊆ U and

g ∈
n⋂

i=1
[C ′

i, O′
i] ⊆ V where Ci and C ′

i are compact subsets of X, Oi and O′
i are open

subsets of Y for all i ∈ {1, 2, ..., n}. Since U is increasing we have
f ∈↑

n⋂
i=1

[Ci, Oi] ⊆ U . Then f ∈
n⋂

i=1
[Ci, ↑ Oi] ⊆ U and this implies that

n⋂
i=1

↑ Oi is an

increasing neighbourhood of y1 and y2 /∈
n⋂

i=1
↑ Oi. To show this let assume y2 ∈↑ Oi for all

1 ≤ i ≤ n. Thus, g ∈
n⋂

i=1
[Ci, ↑ Oi] and this implies g ∈ U , which contradicts with g /∈ U .

Similarly,
n⋂

i=1
↓ O′

i is a decreasing neighbourhood of y2 and y1 /∈
n⋂

i=1
O′

i. Conversely, let

f, g ∈ C↑(X, Y ) and f �s g. Then there exists a point x of X such that f(x) �Y g(x).
Since (Y, ĉY , ≼Y ) is T1-ordered, there exist an open increasing neighbourhood U of f(x)
such that g(x) /∈ U and open decreasing neighbourhood V of g(x) such that f(x) /∈ V .
Therefore, [x, U ] is an increasing neighbourhood of f such that g /∈ [x, U ] and [x, V ] is a
decreasing neighbourhood of g such that f /∈ [x, V ]. Consequently, (C↑(X, Y ), τCO, ≼s) is
T1-ordered space.

(ii) The statement is similar to (i) and we omitted it. �
Theorem 2.6. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Then the
following assertions are true:
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(i) (C↑(X, Y ), τCI , ≼s) is T1-ordered ⇔ (Y, c̃Y , ≼Y ) is T1-ordered.
(ii) (C↑(X, Y ), τCI , ≼s) is T2-ordered ⇔ (Y, c̃Y , ≼Y ) is T2-ordered.

Proof. We will only prove (ii). The statement (i) can be shown by using the same ar-
guments as for Theorem 2.5. Let (C↑(X, Y ), τCI , ≼s) be a T2-ordered and y1, y2 ∈ Y
such that y1 �Y y2. Consider the constant functions f and g such that f(X) = {y1}
and g(X) = {y2}. Then, f �s g. Since (C↑(X, Y ), τCI , ≼s) is T2-ordered there exist an
increasing subbasic element [C, intcY V ] and a decreasing subbasic element [C ′, intcY V ′]
such that [C, intcY V ] ∩ [C ′, intcY V ′]=∅. Thus, intcY V and intcY V ′ are increasing and
decreasing neighbourhoods of y1 and y2, respectively. Morever, intcY V ∩ intcY V ′=∅. Con-
sequently, (Y, c̃Y , ≼Y ) is T2-ordered. On the other hand, let f, g ∈ C↑(X, Y ) and f �s g.
Then, there exists a point x of X such that f(x) �Y g(x). Since (Y, c̃Y , ≼Y ) is T2-
ordered there exist an increasing base element intcY U containing f(x) and a decreasing
base element intcY U ′ containing g(x) such that intcY U ∩ intcY U ′=∅. Clearly, [x, intcY U ]
and [x, intcY U ′] are increasing and decreasing neighbourhoods of f and g, respectively.
Consequently, (C↑(X, Y ), τCI , ≼s) is T2-ordered. �
Proposition 2.7. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces.If (Y, ĉY , ≼Y )
((Y, c̃Y , ≼Y )) is regular ordered space, then (C↑(X, Y ), τCO, ≼s) ((C↑(X, Y ), τCI , ≼s)) is
regular ordered.

Proof. Let f ∈ C↑(X, Y ) and [C, V ] be an increasing subbase element containing f .
Then for each x ∈ C, f(x) ∈ V such that V is increasing and there exists an increasing
open set Ux such that f(x) ∈ Ux ⊆ ĉY (Ux) ⊆ V , since (Y, ĉY , ≼Y ) is lower regular.
The family {Ux | x ∈ C} is an interior cover of f(C). Since f(C) is compact, there
is a finite subcover {Uxi | i ∈ {1, 2, ..., n}}. The set U =

n⋃
i=1

Uxi is open increasing and

f(C) ⊆ U ⊆ ĉY (U) ⊆ V holds. Furthermore, the open increasing set [C, U ] satisfies
the inclusions [C, U ] ⊆ clτCO [C, U ] ⊆ [C, ĉY (U)] ⊆ [C, V ]. Thus, (C↑(X, Y ), τCO, ≼s) is
lower regular ordered space and similarly, it can be shown that it is upper regular ordered
space. Consequently, (C↑(X, Y ), τCO, ≼s) is regular ordered space. Second part can be
shown similarly. �
Definition 2.8. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. The sets
[{x}, V ] = {f ∈ C↑(X, Y ) | f(x) ∈ V }, where V is an open set in (Y, cY ), is a subbase for a
topology τP O on C↑(X, Y ) which will be called point-open topology and endow C↑(X, Y )
with the pointwise order ≼s. Then the triple (C↑(X, Y ), τP O, ≼s) is called point-open
ordered space and the sets

[{x}, intcY V ] = {f ∈ C↑(X, Y ) | f(x) ∈ intcY V }
form a subbase for a topology τP I which will be called point-interior topology and the
triple (C↑(X, Y ), τP I , ≼s) is called point-interior ordered space.

Theorem 2.9. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Then the
following assertions are true:

(i) (C↑(X, Y ), τP O, ≼s) is T1-ordered ⇔ (Y, ĉY , ≼Y ) is T1-ordered.
(ii) (C↑(X, Y ), τP O, ≼s) is T2-ordered ⇔ (Y, ĉY , ≼Y ) is T2-ordered.

Proof. We will only prove the second assertion, (i) follows using the same arguments as
for Theorem 2.5. Let (C↑(X, Y ), τP O, ≼s) be a T2-ordered space and y1, y2 ∈ Y such that
y1 �Y y2. Define the constant functions f and g by f(x) = y1 and g(x) = y2 for all
x ∈ X. It is clear that f �s g. Since (C↑(X, Y ), τP O, ≼s) is T2-ordered, there exist an
increasing subbasic set [x, U ] containing f and a decreasing subbasic set [x, V ] containing
g such that [x, U ] ∩ [x, V ] = ∅. Therefore, U is an increasing neighbourhood of y1 and
V is a decreasing neighbourhood of y2 and U ∩ V = ∅. Hence (Y, ĉY , ≼Y ) is T2-ordered.
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Conversely, let (Y, ĉY , ≼Y ) be a T2-ordered space and f, g ∈ C↑(X, Y ) such that f �s g.
Then there exists a point x of X such that f(x) �Y g(x). Since (Y, ĉY , ≼Y ) is T2-ordered,
there exist an open increasing set U containing f(x) and open decreasing set V containing
g(x) such that U ∩V = ∅. Therefore, [x, U ] is an increasing neighbourhood of f and [x, V ]
is a decreasing neighbourhood of g such that [x, U ]∩ [x, V ] = ∅. Thus, (C↑(X, Y ), τP O, ≼s)
is T2-ordered. �

Theorem 2.10. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Then the
following assertions are true:

(i) (C↑(X, Y ), τP I , ≼s) is T1-ordered ⇔ (Y, c̃Y , ≼Y ) is T1-ordered.
(ii) (C↑(X, Y ), τP I , ≼s) is T2-ordered ⇔ (Y, c̃Y , ≼Y ) is T2-ordered.

Proof. It is similar to previous statements. �

Proposition 2.11. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Then
(Y, ĉY , ≼Y ) ((Y, c̃Y , ≼Y )) is regular ordered if and only if (C↑(X, Y ), τP O, ≼s)
((C↑(X, Y ), τP I , ≼s)) is regular ordered.

Proof. We will only prove the second part. First part can be obtained similarly. Let
(Y, c̃Y , ≼Y ) be a regular ordered space. Let f ∈ C↑(X, Y ) and [x, intcY U ] be an in-
creasing subbasic open set containing f . Then f(x) ∈ intcY U . Also, intcY U is an in-
creasing open set in (Y, c̃Y , ≼Y ) . Since Y is regular ordered, there exists an increasing
subbasic open set intcY V containing f(x) and c̃Y (intcY V ) ⊆ intcY U holds. Therefore,
[x, intcY V ] is an increasing neighbourhood of f and we get that f ∈ clτP I ([x, intcY V ]) ⊆
[x, c̃Y (intcY V )] ⊆ [x, intcY U ]. Hence C↑(X, Y ) is lower regular ordered and similarly it
is upper regular ordered. Consequently, C↑(X, Y ) is a regular ordered space. Conversely,
let (C↑(X, Y ), τP I , ≼s) be a regular ordered space. We show that (Y, c̃Y , ≼Y ) is a regular
ordered space. To this end, consider a function

Φ : (Y, c̃Y , ≼Y ) → (C↑(X, Y ), τP I , ≼s)

given by Φ(y) = fy where fy(x) = y for all x ∈ X. Then Φ is an order embedding, that is,

Φ : (Y, c̃Y , ≼Y ) → (Φ(Y ), (τP I)Φ(Y ), (≼s)Φ(Y ))

is an order homeomorphism (i.e, Φ is a homeomorphism and the functions Φ and Φ−1

are order preserving), where (τP I)Φ(Y ) is the induced topology on Φ(Y ) by τP I and (≼s

)Φ(Y ) =≼s ∩(Φ(Y ) × Φ(Y )). By using Theorem 5.2 (ii) given in [2], we get that Φ is an
embedding. Also, it is clear that Φ and Φ−1 are order preserving. Therefore, Φ is an
order embedding. Now we show that the subspace (Φ(Y ), (τP I)Φ(Y ), (≼s)Φ(Y )) is regular
ordered. Let [a, intcY U ] ∩ Φ(Y ) be an increasing subbase element where a ∈ X, U ⊆ Y
and fy ∈ [a, intcY U ] ∩ Φ(Y ). Then, [a, intcY U ] is an increasing neighbourhood of fy in
(C↑(X, Y ), τP I , ≼s). Indeed, let f ∈ [a, intcY U ] and g ∈ C↑(X, Y ) such that f ≼s g. We
need to show that g ∈ [a, intcY U ]. Define the constant functions cf(a) and cg(a) where
cf(a)(x) = f(a) and cg(a)(x) = g(a) for all x ∈ X. Then, cf(a) ≼s cg(a). Since [a, intcY U ] ∩
Φ(Y ) is increasing, we get that cg(a) ∈ [a, intcY U ]∩Φ(Y ). Thus, g ∈ [a, intcY U ]. Therefore,
[a, intcY U ] is an increasing set in (C↑(X, Y ), ≼s). Since (C↑(X, Y ), τP I , ≼s) is regular
ordered, there exists an increasing neighbourhood W of fy such that

fy ∈ clτP I (W ) ⊆ [a, intcY U ]

holds. Morever, it is clear that W ∩ Φ(Y ) is an increasing neighbourhood of fy in
(Φ(Y ), (τP I)Φ(Y ), (≼s)Φ(Y )). Thus, we have that

fy ∈ cl(τP I)Φ(Y )(W ∩ Φ(Y )) ⊆ [a, intcY U ] ∩ Φ(Y )
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Therefore, (Φ(Y ), (τP I)Φ(Y ), (≼s)Φ(Y )) is lower regular ordered and similarly it is upper
regular ordered. Thus, (Φ(Y ), (τP I)Φ(Y ), (≼s)Φ(Y )) is regular ordered. Since Φ is an order
homeomorphism between Y and Φ(Y ), we get that (Y, c̃Y , ≼Y ) is regular ordered. �

3. Semi uniform spaces and ordered semi uniformizability
In this section, we first recall some basic notions about semi-uniform spaces and then

motivated from [15] we will introduce semi-uniformizable ordered spaces.
Let X be a set and let △ = {(x, x) | x ∈ X}. A ⊆ X × X is called symmetric if

A = A−1, where A−1 = {(x, y) | (y, x) ∈ A}. For A, B ⊆ X × X, A ◦ B = {(x, y) :
(x, z) ∈ A and (z, y) ∈ B for some z ∈ X}. A filter U of subsets on X × X is called a
semi-uniformity if △ ⊆ U and U−1 ∈ U for all U ∈ U. The pair (X,U) is called semi-
uniform space. Semi-uniform structure induces a Čech closure operator in such a way that
let consider the collection [U][x] of all subsets of X of the form U [x] = y ∈ X|(x, y) ∈ U ,
where U ∈ U, then there exists a unique closure operator c for X such that [U][x] is a
local base at x in (X, c). This closure operator is called the closure induced by U and
denoted by cU. Also, it is possible to define a topology by using a semi-uniformity. Let U

be a semi-uniformity on X. Then there is a unique topology τU on X such that [U][x0] is
a base for the τU-neighbourhoods of x0 ∈ X, where base means a family of subsets of X
containing x. Morever, G ∈ τU iff ∀x ∈ G there is a V ∈ U such that V [x] ⊆ G. Although
every τU-neighbourhood of x0 ∈ X is a member of [U][x0], the converse is not neccesarily
true and this causes considerable complications. To get around to this problem topological
semi-uniformity definition was given in [16] by the following:

Definition 3.1. Let (X,U) be a semi-uniform space. If cU = τU-closure holds, then U is
called topological semi-uniformity.

The following definition was given by Čech in [4].

Definition 3.2. The product of a family {(Xi,Ui) | i ∈ I} of semi-uniform spaces,
denoted by

∏
{(Xi,Ui) | i ∈ I} is defined to be the semi-uniform space (X,U) where X is

the product of the family {Xi} and U called the product semi-uniformity is the collection
of all subsets of X × X containing a set of the form {(x, y) | (x, y) ∈ X × X, i ∈ J ⇒
(πi(x), πi(y)) ∈ Ui} where J is a finite subset of I and Ui ∈ Ui for each i.

Now we will give the following lemma and then we will introduce the semi-uniformizable
ordered spaces.

Lemma 3.3. Let (X,U) be a semi-uniform space. For every x, y ∈ X, the relation ≼U is
defined by the following:

x ≼U y ⇔ U [y] ⊆ U [x] for all U ∈ U .
Then ≼U is a preorder.

Proof. i) Clearly, x ≼U x for all x ∈ X.
ii) Let x, y, z ∈ X such that x ≼U y and y ≼U z. Let consider any U ∈ U. Then,
U [y] ⊆ U [x] and U [z] ⊆ U [y]. By transivity of the inclusion we have U [z] ⊆ U [x]. Hence,
x ≼U z. Therefore, ≼U is a preorder. �
Definition 3.4. Let (X, c, ≼) be an ordered closure space and U be a semi-uniformity
on X. If c = cU and ≼=≼U, then X is called semi-uniformizable ordered space. We
can give this definition in the concept of topological ordered spaces. Let (X, τ, ≼) be a
topological ordered space. If τ = τU and ≼=≼U, then X is called semi-uniformizable
ordered topological space. If U is a topological semi-uniform structure, then (X, τ, ≼) is
called topological semi-uniformizable ordered space.

We give the following example to illustrate the Definition 3.4.
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Example 3.5. Let X = {a, b, c} and U = {U1, U2, U3, U4} be a semi-uniformity on X,
where

U1 = △ ∪ {(a, b), (b, a), ((b, c), (c, b)}, U2 = △ ∪ {(a, b), (b, a), ((b, c), (c, b), (a, c)},
U3 = △ ∪ {(a, b), (b, a), ((b, c), (c, b), (a, c), (c, a)},

U4 = △ ∪ {(a, b), (b, a), ((b, c), (c, b), (c, a)}
Then the closure operator cU induced by U will be the following one:

cU({a}) = {a, b}, cU({b}) = {a, b, c}, cU({c}) = {b, c},
cU({a, b}) = cU({b, c}) = cU({a, c}) = X = cU(X), cU(∅) = ∅

Also, the preorder induced by U is ≼U= {(a, a), (b, b), (c, c), (b, a), (b, c)}. Therefore,
(X, cU, ≼U) is a semi-uniformizable ordered space induced by U and the topology induced
by U is τU = {∅, X}. Thus, (X, τU, ≼U) is a semi-uniformizable ordered topological space.

Remark 3.6. Let (X, c, ≼) be an ordered closure space induced by a topological semi-
uniform structure U, then it is clear that the closure operator c is a topological closure
operator.

Lemma 3.7. Let (X, c) be a closure space and τc be the topology associated with c. If c
is induced by a semi-uniformity U on X, then τc = τU holds.

Proof. Let U be a semi-uniformity on X and c = cU. We will show that τc = τU. Let
G ∈ τc and x ∈ G. Notice that

x /∈ Gc ⇒ x /∈ c(Gc)
⇒ ∃U ∈ U ∋ U [x] ∩ Gc = ∅
⇒ ∃U ∈ U ∋ U [x] ⊆ G.

Hence, G ∈ τU. In the other direction, let G ∈ τU and let x ∈ c(Gc). Hence U [x] ∩ Gc ̸=
∅ holds. We claim that x /∈ G. Suppose that x ∈ G, then there exists U ′ ∈ U such that
U ′[x] ⊆ G and whence U ′[x] ∩ Gc=∅. But this contradicts with x ∈ c(Gc). Hence x /∈ G.
Therefore G ∈ τc and consequently, τc = τU holds. �

According to [10], let (X, τ, ≼) be an ordered topological space where ≼ is a preorder
on X. A subset A of X with the induced topology τA and induced preorder ≼A is called
subspace.

Lemma 3.8. Every subspace of a topological semi-uniformizable ordered space is a topo-
logical semi-uniformizable ordered space.

Proof. Let (X, τ, ≼) be a topological semi-uniformizable ordered space and induced by
a topological semi-uniformity U. Let A ⊆ X. We claim that the semi-uniformity UA =
(A×A)∩U induces the subspace (A, τA, ≼A). Firstly, we would like to show that ≼A=≼UA

.
Let x, y ∈ A. Then

x ≼A y ⇔ x ≼ y

⇔ x ≼U y

⇔ x ≼UA
y.

Therefore, ≼A=≼UA
. Now we will show that τA = τUA

. Let G ∈ τA and x ∈ G. By the
definition of τA, there exists H ∈ τ such that G = H ∩ A. Also,

x ∈ G ⇒ x ∈ H and x ∈ A

⇒ ∃U ∈ U ∋ U [x] ⊆ H and x ∈ A

⇒ ((A × A) ∩ U)[x] ⊆ G.

Whence G ∈ τUA
. Now, let G ∈ τUA

and x ∈ G. By the definition of τUA
, there exists

U ∈ U such that ((A × A) ∩ U)[x] ⊆ G. Since U [x] is a neighbourhood of the point x,
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there exists H ∈ τ such that x ∈ H ⊆ U [x]. Therefore we get that x ∈ A ∩ H ⊆ G.
Consequently, G ∈ τA and whence τA = τUA

. �

Theorem 3.9. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. The following
assertions are true:

(i) (Y, ĉY , ≼Y ) is semi-uniformizable if and only if (C↑(X, Y ), τP O, ≼s) is topological
semi-uniformizable.

(ii) (Y, c̃Y , ≼Y ) is semi-uniformizable if and only if (C↑(X, Y ), τP I , ≼s) is topological
semi-uniformizable.

Proof. (i) Let (Y, ĉY , ≼Y ) be a semi-uniformizable ordered space and induced by a semi-
uniformity U. In [4], it was shown that the product of semi-uniformizable spaces is semi-
uniformizable and the product closure

∏
x∈X

(ĉY )x is induced by the product uniform Up =∏
x∈X

Ux where Ux = U and (ĉY )x = ĉY for all x ∈ X. Also, it is clear that Up is topological

semi-uniformity since ĉY is a topological closure operator. By Lemma 3.7, τ(
∏

x∈X
(ĉY )x)

is induced by Up. Hence (
∏

x∈X
Yx, τ(

∏
x∈X

(ĉY )x)) is induced by Up, where Yx = Y for all

x ∈ X. Now we show that
∏

x∈X
(≼Y )x is induced by ≼Up , where (≼Y )x =≼Y for all x ∈ X

(Denote
∏

x∈X
(≼Y )x by ≼p ). Let a, b ∈

∏
x∈X

Yx such that a ≼p b. Using the definition

of product order, we have ax ≼Y bx for all x ∈ X, where πx(a) = ax, πx(b) = bx. Let
us take any U ∈ Up. We have to show that U [b] ⊆ U [a] holds. Let z ∈ U [b]. Then
(b, z) ∈ U . From the definition of product semi uniformity, there exist Ux ∈ U such that
(b, z) ∈

∏
x∈X

Ux ⊆ U , where except for a finite number of x′s, Ux = Y × Y . Therefore,

(bx, zx) ∈ Ux for all x ∈ X. Since ax ≼Y bx , we have that Ux[bx] ⊆ Ux[ax]. Thus,
zx ∈ Ux[ax]. Therefore (a, z) ∈ U and z ∈ U [a]. Whence U [b] ⊆ U [a]. We get that
≼p⊆≼Up . Now, we show the other side. Let a, b ∈

∏
x∈X

Yx such that a ≼Up b. We want

to show that a ≼p b. To this end we have to show ax ≼U bx for all x ∈ X. Let U ∈ U

and z ∈ X. Define U ′ =
∏

x∈X
Ux where Uz = U for z ∈ X and except for the point z,

Ux = Y × Y . Since a ≼Up b, U ′[b] ⊆ U ′[a]. We claim that U [bz] ⊆ U [az]. Let t ∈ U [bz] and
t′ = (t, t, ..., t, ..). Then it is clear that (b, t′) ∈ U ′. Therefore, t′ ∈ U ′[a]. Clearly, t ∈ U [az].
By now we obtained that (

∏
x∈X

Yx, τ(
∏

x∈X
(ĉY )x),

∏
x∈X

(≼Y )x) is induced by Up. In [2], it was

showen that τ(
∏

x∈X
(ĉY )x) = τP O and, by Lemma 3.8, we have that (C↑(X, Y ), τP O, ≼s)

is semi-uniformizable ordered space. Conversely, let (C↑(X, Y ), τP O, ≼s) be a topological
semi-uniformizable ordered space and consider a function

Φ : (Y, ĉY , ≼Y ) → (C↑(X, Y ), τP O, ≼s)

given by Φ(y) = fy where fy(x) = y for all x ∈ X. Then, it is clear that Φ is an
order embedding. By Lemma 3.8, we know that the subspace of (C↑(X, Y ), τP O, ≼s) is
a topological semi-uniformizable ordered space. Since Φ is order embedding, we get that
(Y, ĉY , ≼Y ) is semi-uniformizable ordered space.

(ii) In [2], it was shown that τ(
∏

x∈X
(c̃Y )x) = τP I . Therefore, (ii) follows using the similar

arguments as for (i). �

Lemma 3.10. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces and U be a semi-
uniformity on C↑(X, Y ). Define U c[g] = {f ∈ C↑(X, Y ) | f is a constant function and
(f, g) ∈ U}. Let f, g ∈ C↑(X, Y ). Then the relation ≼c

U , which is defined by the following:
f ≼c

U g ⇔ U c[g] ⊆ U c[f ] for all U ∈ U
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is a preorder.

Proof. (i) Clearly, f ≼c
U f

(ii) Let f, g, h ∈ C↑(X, Y ) such that f ≼c
U g and g ≼c

U h. Let take U ∈ U. Then,
U c[g] ⊆ U c[f ] and U c[h] ⊆ U c[g]. Thus U c[h] ⊆ U c[f ] and hence f ≼c

U h. Consequently,
"≼c

U" is a preorder. �

Proposition 3.11. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces. Con-
sider an ordered topological space (C↑(X, Y ), τP O, ≼s)((C↑(X, Y ), τP I , ≼s)). If a topo-
logical semi-uniformity U on C↑(X, Y ) induces τP O(τP I) and ≼s=≼c

U, then (Y, ĉY , ≼Y )
((Y, c̃Y , ≼Y )) is a semi-uniformizable ordered closure space.

Proof. Let τP O = τU and ≼s=≼c
U. Define the constant functions fa and fb by fa(x) = a

and fb(x) = b for all x ∈ X. Let Û = {(a, b) | (fa, fb) ∈ U} for all U ∈ U. Clearly,
the collection B = {Û | U ∈ U} is a base for a semi-uniformity on Y . Let Û be the
semi-uniformity generated by B. We claim that ĉY = c

Û
. To prove this equality, we will

show that for any point y of Y , the family {Û [y] | U ∈ U} is a neighbourhood base at y
in (Y, ĉY , ≼Y ). To this end we show the following two conditions:

i) Û [y] ∈ VĉY
(y) for all U ∈ U,

ii) ∀V ∈ VĉY
(y) ∃U ∈ U such that Û [y] ⊆ V .

Let us consider a constant function fy defined by fy(x) = y for all x ∈ X. It is clear that
U [fy] ∈ VτP O (fy) for any U ∈ U. By the definition of the compact open topology there
exists a subbasic element [z, O] such that fy ∈ [z, O] ⊆ U [fy]. Therefore, y ∈ O ⊆ Û [y]
and whence Û [y] ∈ VĉY

(y). Now we show ii). Take any V ∈ VĉY
(y). We can take V as an

open set. Then for any x ∈ X, we have that [x, V ] ∈ τP O and fy ∈ [x, V ]. Since τP O = τU,
there exists U ∈ U such that U [fy] ⊆ [x, V ]. Clearly, Û [y] ⊆ V . Indeed, notice that for
any point z of X

z ∈ Û [y] ⇒ (y, z) ∈ Û

⇒ (fy, fz) ∈ U

⇒ fz ∈ U [fy]
⇒ z ∈ V.

Hence Û [y] ⊆ V and we have that ĉY = c
Û

. Now we show that ≼Y =≼
Û

. Let y1, y2 ∈ Y

such that y1 ≼Y y2. Let Û ∈ Û. Define the constant functions fy1 , fy2 by fy1(x) = y1 and
fy2(x) = y2 for all x ∈ X. Therefore fy1 ≼s fy2 . Since ≼s=≼c

Û
, we have fy1 ≼c

Û
fy2 . Hence

U c[fy1 ] ⊆ U c[fy2 ] for all U ∈ U. Also, Û [y2] ⊆ Û [y1]. Indeed, for any point z of X

z ∈ Û [y2] ⇒ (y2, z) ∈ Û

⇒ (fy2 , fz) ∈ U

⇒ fz ∈ U c[fy2 ]
⇒ fz ∈ U c[fy1 ]
⇒ (fy1 , fz) ∈ U

⇒ z ∈ Û [y1].

Hence Û [y2] ⊆ Û [y1]. Conversely, let y1, y2 ∈ Y and y1 ≼
Û

y2. Consider the constant
functions fy1 and fy2 defined by fy1(x) = y1 and fy2(x) = y2 for all x ∈ X. Clearly,
U c[fy2 ] ⊆ U c[fy1 ] for all U ∈ U. Thus fy1 ≼c

Û
fy2 and whence fy1 ≼s fy2 . Therefore

y1 ≼Y y2. Consequently, we have that ≼Y =≼
Û

. �



Some ordered function space topologies and ordered semi-uniformizability 1089

Corollary 3.12. Let (X, cX , ≼X) and (Y, cY , ≼Y ) be ordered closure spaces and (X, cX)
be a discrete space. Then, (Y, ĉY , ≼Y )((Y, c̃Y , ≼Y )) is semi-uniformizable ordered space
if and only if (C↑(X, Y ), τCO, ≼s)((C↑(X, Y ), τCI , ≼s)) is topological semi-uniformizable
ordered space.

Proof. Since X is discrete, τP O(τP I) coincides with τCO(τCI). Therefore, proof follows
from Theorem 3.9. �

The following definition was given by Williams in [20] .

Definition 3.13. A filter U of subsets on X × X is called locally-uniformity if it is a
semi-uniformity and ∀U ∈ U and x ∈ X, there is a V ∈ U such that (V ◦ V )[x] ⊆ U [x].
Then (X,U) is called locally-uniform space.

Remark 3.14. Locally-uniform spaces are topological semi-uniform spaces.

Definition 3.15. Let (X, cX , ≼X) be an ordered closure space and U be a locally-uniformity
on Y . Define;

(K, U) = {(f, g) ∈ C↑(X, Y ) × C↑(X, Y ) | (f(x), g(x)) ∈ U for all x ∈ K}
where K is a compact subset of X and U be an element of U. The collection of the sets
(K, U) is a base for a locally-uniformity Uk on C↑(X, Y ) and Uk is called locally-uniformity
of U-local uniform convergence on compact sets. Then the triple (C↑(X, Y ), τUk

, ≼Uk
) is

called ordered topological space of U-local uniform convergence on compact sets.

The following Lemma is obvious from Theorem 1.2 in [20] and Corollary 1.17 in [16].

Lemma 3.16. Let (X,U) be a locally-uniform space. Then for all U ∈ U and x ∈ X there
exists a symmetric and closed set V ∈ U such that V [x] ⊆ U [x].

Theorem 3.17. Let (X, cX , ≼X) be an ordered closure space and (Y, ĉY , ≼Y ) ((Y, c̃Y , ≼Y ))
be an ordered closure space induced by a locally-uniformity U on Y . Then compact-open
(interior) ordered topological space coincides with the ordered space of U-locally uniform
convergence on compact sets.

Proof. Let [K, U ] be a subbasic open set in the compact-open topology and g ∈ [K, U ].
Then there exists E ∈ U such that E[g(K)] ⊆ U . Indeed,

x ∈ g(K) ⇒ x ∈ U

⇒ ∃Dx ∈ U ∋ Dx[x] ⊆ U

⇒ ∃Ex ∈ U ∋ E2
x[x] ⊆ Dx[x] ⊆ U

and since g(K) is compact we have that g(K) ⊆ Ex1 [x1]∪Ex2 [x2]∪...∪Exn [xn]. Define E =
Ex1 ∩ ...∩Exn . Then it is clear that E[g(K)] ⊆ U . Consider D = {(f, h) | (f(x), h(x)) ∈ E
for all x ∈ K}. It is clear that D ∈ Uk. Morever, g ∈ D[g] ⊆ [K, U ]. Indeed

h ∈ D[g] ⇒ (g(x), h(x)) ∈ E for all x ∈ K

⇒ h(x) ∈ E[g(x)] for all x ∈ K

⇒ h(x) ∈ E[g(K)] ⊆ U

⇒ h ∈ [K, U ].
Hence τCO ⊆ τUk

. Now let G ∈ τUk
and f ∈ G. By the definition of τUk

there exists a
compact subset K of X and U ∈ U such that

f ∈ (K, U)[f ] ⊆ G

By Theorem 1.2 in [20] and using Lemma 3.16, for all x ∈ K there exists a closed and
symmetric subset Tx of Y × Y such that T 3

x [f(x)] ⊆ U [f(x)]. Put T =
⋂

x∈K
Tx. Clearly, T
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is closed and symmetric. Since f(K) is compact, f(K) ⊆
n⋃

i=1
T [f(xi)] holds. Define Ki =

K ∩ f−1(T [f(xi)]) and Gi = intĉY
(T 2[f(xi)]) for all i ∈ {1, 2, ..., n}. Put A =

n⋂
i=1

[Ki, Gi].

Then f ∈ A ⊆ (K, U)[f ]. Indeed let g ∈ A. Thus g(Ki) ⊆ Gi for all i ∈ {1, 2, ..., n}.
Therefore

g(a) ∈ Gi for all a ∈ Ki ⇒ g(a) ∈ intĉY
(T 2[f(xi)]) for all a ∈ Ki

⇒ g(a) ∈ T 2[f(xi)] for all a ∈ Ki

⇒ (f(xi), g(a)) ∈ T 2 for all a ∈ Ki.

Also f(a) ∈ T [f(xi)] for all a ∈ Ki. Whence (f(a), g(a)) ∈ T 3. We deduce g(a) ∈
T 3[f(a)] and g(a) ∈ U [f(a)]. Therefore, A ⊆ (K, U)[f ] holds.

Now we show that ≼Uk
=≼s holds. Let f, g ∈ C↑(X, Y ) and f ≼s g. Then f(x) ≼Y g(x)

for all x ∈ X. Since ≼Y =≼U, we have that U [g(x)] ⊆ U [f(x)] for all U ∈ U. Let
(K, U) ∈ Uk. It is clear that (K, U)[g] ⊆ (K, U)[f ]. Then f ≼U g. Therefore, ≼s⊆≼Uk

.
Now let f, g ∈ C↑(X, Y ) and f ≼Uk

g. Let x ∈ X and U ∈ U. Clearly, (x, U) ∈ Uk. Since
f ≼Uk

g, U [g(x)] ⊆ U [f(x)] holds. Thus, f ≼s g. Consequently, ≼Uk
=≼s. Second part

can be shown similarly to the first part. �
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