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Abstract
Let R be a commutative Noetherian ring, Φ a system of ideals of R and I ∈ Φ. Let t ∈ N0
be an integer and M an R-module such that Exti

R(R/I, M) is minimax for all i ≤ t+1. We
prove that if the R-module Hi

Φ(M) is FD≤1 (or weakly Laskerian) for all i < t, then Hi
Φ(M)

is Φ-cominimax for all i < t and for any FD≤0 (or minimax) submodule N of Ht
Φ(M), the

R-modules HomR(R/I, Ht
Φ(M)/N) and Ext1

R(R/I, Ht
Φ(M)/N) are minimax. Let N be a

finitely generated R-module. We also prove that Extj
R(N, Hi

Φ(M)) and TorR
j (N, H i

Φ(M))
are Φ-cominimax for all i and j whenever M is minimax and Hi

Φ(M) is FD≤1 (or weakly
Laskerian) for all i.

Mathematics Subject Classification (2010). 13D45, 13E05, 14B15
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1. Introduction
Throughout this paper R is a commutative Noetherian ring with non-zero identity and

I is an ideal of R. For an R-module M , the ith local cohomology module M with respect
to ideal I is defined as

Hi
I(M) ∼= lim−→

n

Exti
R(R/In, M).

Grothendieck in [22] posed the following conjecture:

Conjecture 1.1. Let M be a finitely generated R–module and I an ideal of R. Then
HomR(R/I, Hi

I(M)) is finite for all i ≥ 0.

This conjecture is not true in general as Hartshorne showed in [23], but some authors
proved that for some number t, the module HomR(R/I, Ht

I(M)) is finite under some
conditions. See [7, Theorem 3.3], [19, Theorem 6.3.9], [18, Theorem 2.1], [10, Theorem
2.6], [9, Theorem 2.3] and [4, Theorem 3.4]. Hartshorne also defined a module M to be
I–cofinite if SuppR(M) ⊆ V(I) and Exti

R(R/I, M) is finitely generated for all i ≥ 0 and
posed the following question:

Question 1.2. Let M be a finite R–module and I be an ideal of R. When are Hi
I(M)

I–cofinite for all i ≥ 0?
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This question was studied by several authors in [4, 10,17,23,25,30–32].
There are some generalizations of the theory of ordinary local cohomology modules.

The following is introduced by Bijan-Zadeh in [13].
Let Φ be a non-empty set of ideals of R. We call Φ a system of ideals of R if, whenever

I1, I2 ∈ Φ, then there is an ideal J ∈ Φ such that J ⊆ I1I2. For such a system, for every
R-module M , one can define

ΓΦ(M) = { x ∈ M | Ix = 0 for some I ∈ Φ}.

Then ΓΦ(−) is a functor from C (R) to itself (where C (R) denotes the category of
all R-modules and all R-homomorphisms). The functor ΓΦ(−) is additive, covariant, R-
linear and left exact. In [12], ΓΦ(−) is denoted by LΦ(−) and is called the “general local
cohomology functor with respect to Φ”. For each i ≥ 0, the i-th right derived functor of
ΓΦ(−) is denoted by Hi

Φ(−). The functor Hi
Φ(−) and lim−→

I∈Φ
Hi

I(−) (from C (R) to itself) are

naturally equivalent (see [13]). For an ideal I of R, if Φ = {In|n ∈ N0}, then the functor
Hi

Φ(−) coincides with the ordinary local cohomology functor Hi
I(−). It is shown that, the

study of torsion theory over R is equivalent to study the general local cohomology theory
(see [12]).

As a special case of [35, Definition 2.1] and generalization of FSF modules (see [26, Defi-
nition 2.1]), in [4, Definition 2.1] the author of present paper and Bahmanpour introduced
the class of FD≤n modules. A module M is said to be FD≤n module, if there exists a
finitely generated submodule N of M such that dim M/N ≤ n. For more details about
properties of this class see [4, Lemma 2.3]. Note that the class of FD≤−1 is the same as
finitely generated R-modules. Recall that a module M is a minimax module if there is
a finitely generated submodule N of M such that the quotient module M/N is Artinian.
Minimax modules have been studied by Zöschinger in [37]. Note that for a complete Noe-
therian local ring, the class of minimax modules is the same as the class of Matlis reflexive
modules (see [21] and [36]). Since the class of minimax modules is a generalization of
Matlis reflexive modules, thus the study of minimax modules is as important as the study
of Matlis reflexive modules.

Recall too that an R-module M is called weakly Laskerian if AssR(M/N) is a finite set
for each submodule N of M . The class of weakly Laskerian modules introduced in [20].
In [5, Definition 3.1] the author of present paper and Bahmanpour introduced the concept
of Φ-cominimaxness of general local cohomology modules. The general local cohomology
module Hj

Φ(M) is defined to be Φ-cominimax if there exists an ideal I ∈ Φ such that
Exti

R(R/I, Hj
Φ(M)) is minimax, for all i, j ≥ 0.

Recently many authors studied the minimaxness and cominimaxness of local cohomol-
ogy modules and answered the Conjecture 1.1 and Question 1.2 in the class of minimax
modules in some cases (see [1, 3, 9, 14, 24, 27, 29]). The purpose of this note is to make
a suitable generalization of Conjecture 1.1 and Question 1.2 in terms of minimax mod-
ules instead of finitely generated modules for general local cohomology modules. In this
direction in Section 2, we generalize [4, Theorem 3.4 and Corollaries 3.5 and 3.6] and
[3, Theorem 2.7 and Corollaries 2.8 and 2.9]. More precisely, we shall show that:

Theorem 1.3. (See Theorem 2.10) Let R be a Noetherian ring and I ∈ Φ an ideal of R.
Let t ∈ N0 be an integer and M an R-module such that Exti

R(R/I, M) are minimax for
all i ≤ t + 1. Let the R-modules Hi

Φ(M) are FD≤1 (or weakly Laskerian) R-modules for
all i < t. Then, the following conditions hold:

(i) The R-modules Hi
Φ(M) are Φ-cominimax for all i < t.

(ii) For all FD≤0 (or minimax) submodule N of Ht
Φ(M), the R-modules

HomR(R/I, Ht
Φ(M)/N) and Ext1

R(R/I, Ht
Φ(M)/N)

are minimax.
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Corollary 1.4. (See Corollary 2.11) Let R be a Noetherian ring and I ∈ Φ an ideal of R.
Let M be an R-module such that Exti

R(R/I, M) are minimax for all i and the R-modules
Hi

Φ(M) are FD≤1 (or weakly Laskerian) R-modules for all i. Then,
(i) the R-modules Hi

Φ(M) are Φ-cominimax for all i.
(ii) for any i ≥ 0 and for any FD≤0 (or minimax) submodule N of Hi

Φ(M), the R-
module Hi

Φ(M)/N is Φ-cominimax.

Hartshorne also asked the following question:

Question 1.5. Whether the category M (R, I)cof of I-cofinite modules forms an Abelian
subcategory of the category of all R-modules? That is, if f : M −→ N is an R-module
homomorphism of I-cofinite modules, are Ker f and Coker f I-cofinite?

With respect to this question, Hartshorne showed that if I is a prime ideal of dimen-
sion one in a complete regular local ring R, then the answer to his question is positive.
On the other hand, in [17], Delfino and Marley extended this result to arbitrary com-
plete local rings. Recently, Kawasaki [28] generalized the Delfino and Marley’s result
for an arbitrary ideal I of dimension one in a local ring R. Finally, Melkersson in [33]
completely have removed local assumption on R. More recently, in [11] (resp. [4]) it
is shown that Hartshorne’s question is true for the category of all I-cofinite R-modules
M with dim M ≤ 1 (resp. the class of I- cofinite FD≤1 modules), for all ideals I in
a commutative Noetherian ring R. Also in [27] (resp. [3]) it is proved that the same
question is true for the category of all I-cominimax R-modules M with dim M ≤ 1
(resp. the class of I- cominimax FD≤1 modules), for all ideals I in R. In this direc-
tion we introduced the concept of I-ETH-cominimax or ETH-cominimax modules with
respect to I in Definition 2.1. One of the main results of this section is to prove that the
class of I-ETH-cominimax weakly Laskerian (W L (R, I)ethcom) and I-ETH-cominimax
FD≤1(FD1(R, I)ethcom) modules are Abelian category (see Theorem 2.13). Using this
fact we generalize [24, Corollry 3.5] as below:

Corollary 1.6. (See Corollary 2.15) Let Φ be a system of ideals of a Noetherian ring
R, M a non-zero I-ETH-cominimax R-module such that Hi

Φ(M) are FD≤1(or weakly
Laskerian) R-modules for all i ≥ 0. Then for each finite R-module N , the R-modules
Extj

R(N, Hi
Φ(M)) and TorR

j (N, Hi
Φ(M)) are Φ-cominimax and FD≤1(or weakly Laske-

rian) R-modules for all i ≥ 0 and j ≥ 0.

In Section 3 we prove that similar corollaries are true for local cohomology modules
defined by a pair of ideals because it is a special case of local cohomology with respect to
a system of ideals.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero
identity and I will be an ideal of R. We denote {p ∈ Spec R : p ⊇ I} by V (I). For any
unexplained notation and terminology we refer the reader to [15] and [16].

2. ETH-cominimax modules with respect to an ideal
The definitions of ETH-cofinite module and cominimax module with respect to an ideal

([2, Definitions 2.2] and [8, Definitions 3.1]), motivate the following definition.

Definition 2.1. An R-module M is called ETH-cominimax with respect to an ideal I of
R or I-ETH-cominimax if Exti

R(R/I, M) is a minimax R-module for all i.

Remark 2.2. Let I be an ideal of R.
(i) All minimax R-modules, ETH-cofinite and cominimax R-modules with respect to

ideal I are I-ETH-cominimax.
(ii) Suppose M is an I-torsion module, then M is I-ETH-cominimax if and only if it

is I-cominimax module.
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We claim that the class of ETH-cominimax modules with respect to an ideal is strictly
larger than the class of ETH-cofinite modules and cominimax modules with respect to
the same ideal. To do this, see the following examples.

Example 2.3. (i) Let (R,m) be a Noetherian local ring of dimension d > 0. Let M =
R ⊕ E(R/m). It is easy to see that M is an m-ETH-cominimax R-module that is not
m-cominimax.

(ii) Let (R,m) be a local ring and p be a prime ideal of R such that dim R/p = 1, then
it is easy to see that the R-module E(R/p) is p-ETH-cominimax but it is not p-ETH-
cofinite.

The following lemma is also true and well-known for I-cofinite modules.

Lemma 2.4. If 0 −→ N −→ L −→ T −→ 0 is exact and two of the modules in the
sequence are I-ETH-cominimax, then so is the third one.

Lemma 2.5. Let I be an ideal of a Noetherian ring R and M be an R-module such that
SuppR(M) ⊆ Max(R). Then the following statements are equivalent:

(i) M is I-ETH-cominimax.
(ii) The R-module HomR(R/I, M) is minimax.

Proof. (i)=⇒(ii) follows by definition.
In order to prove (ii)=⇒(i) note that

HomR(R/I, ΓI(M)) ∼= HomR(R/I, M).

Since SuppR(ΓI(M)) ⊆ Max(R), it is easy to see that HomR(R/I, ΓI(M)) is an Artinian
R-module and so by Melkersson’s theorem [15, Theorem 7.1.2] ΓI(M) is also an Artinian
R-module. On the other hand by [15, Theorem 6.1.2] Hi

I(M) = 0 for all i ≥ 1. Thus the
R-module Hi

I(M) is I-cominimax for all i ≥ 0. Now by [32, Corollary 3.10], it follows that
Exti

R(R/I, M) are minimax for all i ≥ 0, as required. �
Theorem 2.6. Let I be an ideal of a Noetherian ring R and M be an FD≤0 (or minimax)
R-module. Then the following statements are equivalent:

(i) M is I-ETH-cominimax.
(ii) The R-module HomR(R/I, M) is minimax.

Proof. By definition there is a finitely generated submodule N of M such that dim(M/N) ≤
0. Also, the exact sequence

0 → N → M → M/N → 0, (∗)
induces the following exact sequence

0 −→ HomR(R/I, N) −→ HomR(R/I, M) −→ HomR(R/I, M/N)

−→ Ext1
R(R/I, N).

Whence, it follows that the R-modules HomR(R/I, M/N) is minimax. Therefore, in view
of Lemma 2.5, the R-module M/N is I-ETH-cominimax. Now it follows from the exact
sequence (∗) and Lemma 2.4 that M is I-ETH-cominimax. �

We are now ready to state and prove the first main theorem of this section. The following
theorem is a generalization of [4, 11, Proposition 2.6] and [3, 27, Proposition 2.4]. In fact,
we remove I-torsion condition from these propositions. Note that I is not dimension one
too.

Lemma 2.7. Let R be a Noetherian ring and I be an ideal of R (not necessary dimension
one). Let M be a non-zero R-module (not necessary I-torsion) such that dim M ≤ 1.
Then the following conditions are equivalent:
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(i) M is I-ETH-cominimax.
(ii) The R-modules HomR(R/I, M) and Ext1

R(R/I, M) are minimax.

Proof. (ii)=⇒(i) Using the exact sequence
0 → ΓI(M) → M → M/ΓI(M) → 0,

we get the exact sequence

0 −→ HomR(R/I, ΓI(M)) −→ HomR(R/I, M) −→ HomR(R/I, M/ΓI(M)) −→
Ext1

R(R/I, ΓI(M)) −→ Ext1
R(R/I, M).

Since HomR(R/I, M/ΓI(M)) = 0, it follows that the R-modules

HomR(R/I, ΓI(M)) and Ext1
R(R/I, ΓI(M))

are minimax, and so in view of [27, Proposition 2.4] the R-module ΓI(M) is I-cominimax.
Now as the R-module Ext1

R(R/I, M) is minimax, it follows from [6, Theorem 4.1 (c)] that
the R-module HomR(R/I, H1

I(M)) is minimax. If p ∈ SuppR(H1
I(M)) ⊆ SuppR(M), then

H1
IRp

(Mp) ∼= H1
I(M)p ̸= 0.

Since dim M ≤ 1, it is easy to see that dim R/p = 0 or dim R/p = 1. If dim R/p = 1 then
Mp is a zero dimensional Rp-module that implies H1

IRp
(Mp) = 0 by using Grothendieck

vanishing theorem [15, Theorem 6.1.2] which is a contradiction. Thus dim R/p = 0 and
so p is a maximal ideal. So we have the following inclusion

SuppR(HomR(R/I, H1
I(M))) ⊆ SuppR(H1

I(M)) ⊆ Max R.

It is easy to see that the R-module HomR(R/I, H1
I(M)) is Artinian and so by [15, Theorem

7.1.2] the R-module H1
I(M) is Artinian. Thus in view of Melkersson’s theorem [15, Theo-

rem 6.1.2] the R-module Hi
I(M) is I-cominimax for all i ≥ 0. Now by [32, Corollary 3.10],

it follows that Exti
R(R/I, M) are minimax for all i ≥ 0, as required.

(i)=⇒(ii) It is obviously true. �
The following theorem is a generalization of [4, Theorem 3.1] and [3, Theorem 2.5] that

in what follows the next theorem plays an important role.

Theorem 2.8. Let R be a Noetherian ring and I be an ideal of R. Let M be an FD≤1 R-
module. Then M is I-ETH-cominimax if and only if HomR(R/I, M) and Ext1

R(R/I, M)
are minimax.

Proof. By definition there is a finitely generated submodule N of M such that dim(M/N) ≤
1. Also, the exact sequence

0 → N → M → M/N → 0, (∗)
induces the following exact sequence

0 −→ HomR(R/I, N) −→ HomR(R/I, M) −→ HomR(R/I, M/N)

−→ Ext1
R(R/I, N) −→ Ext1

R(R/I, M) −→ Ext1
R(R/I, M/N) −→ Ext2

R(R/I, N).
Whence, it follows that the R-modules HomR(R/I, M/N) and Ext1

R(R/I, M/N) are min-
imax. Therefore, in view of Proposition 2.7, the R-module M/N is I-ETH-cominimax.
Now it follows from the exact sequence (∗) that M is I-ETH-cominimax. �

The following lemma is needed in the proof of second main result of this paper.

Lemma 2.9. Let I be an ideal of a Noetherian ring R, M a non-zero R-module and
t ∈ N0. Suppose that the R-module Hi

Φ(M) is I-ETH-cominimax for all i = 0, ..., t − 1,
and the R-modules Extt

R(R/I, M) and Extt+1
R (R/I, M) are minimax. Then the R-modules

HomR(R/I, Ht
Φ(M)) and Ext1

R(R/I, Ht
Φ(M)) are minimax.
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Proof. We use induction on t. The exact sequence

0 −→ ΓΦ(M) −→ M −→ M/ΓΦ(M) −→ 0, (∗)
induces the following exact sequence:

0 −→ HomR(R/I, ΓΦ(M)) −→ HomR(R/I, M) −→ HomR(R/I, M/ΓΦ(M))

−→ Ext1
R(R/I, ΓΦ(M)) −→ Ext1

R(R/I, M).
Since HomR(R/I, M/ΓΦ(M)) = 0 so

HomR(R/I, ΓΦ(M)) and Ext1
R(R/I, ΓΦ(M))

are minimax. Assume inductively that t > 0 and that we have established the result for
non-negative integers smaller than t. By applying the functor HomR(R/I, −) to the exact
sequence (∗), we can deduce that Extj

R(R/I, M/ΓΦ(M)) is minimax for j = t, t + 1. On
the other hand,

H0
I(M/ΓΦ(M)) = 0 and Hj

Φ(M/ΓΦ(M)) ∼= Hj
Φ(M)

for all j > 0. Therefore we may assume that ΓΦ(M) = 0. Let E be an injec-
tive hull of M and put N = E/M . Then HomR(R/I, E) = 0 = ΓΦ(E). Hence
Extj

R(R/I, N) ∼= Extj+1
R (R/I, M) and Hj

Φ(N) ∼= Hj+1
Φ (M) for all j ≥ 0. Now, the induc-

tion hypothesis yields that HomR(R/I, Ht−1
Φ (N)) and Ext1

R(R/I, Ht−1
Φ (N)) are minimax

and so HomR(R/I, Ht
Φ(M)) and Ext1

R(R/I, Ht
Φ(M)) are minimax, as required. �

We are now ready to state and prove the following main results (Theorem 2.10 and the
Corollaries 2.11 and 2.12) which are extension of Bahmanpour-Naghipour’s results in [9,10]
in terms of minimax modules, [14, Corollary 2.3], [1, Corollary 2.3], Hong Quy’s result in
[26], [4, Theorem 3.4 and Corollaries 3.5 and 3.6] and [3, Theorem 2.7 and Corollaries 2.8
and 2.9].

Theorem 2.10. Let R be a Noetherian ring and I ∈ Φ an ideal of R. Let t ∈ N0 be an
integer and M an R-module such that Exti

R(R/I, M) are minimax for all i ≤ t + 1. Let
the R-modules Hi

Φ(M) are FD≤1 (or weakly Laskerian) R-modules for all i < t. Then, the
following conditions hold:

(i) The R-modules Hi
Φ(M) are I-ETH-cominimax (in particular Φ-cominimax) for

all i < t.
(ii) For all FD≤0 (or minimax) submodule N of Ht

Φ(M), the R-modules

HomR(R/I, Ht
Φ(M)/N) and Ext1

R(R/I, Ht
Φ(M)/N)

are minimax. In particular the sets
AssR(HomR(R/I, Ht

Φ(M)/N)) and AssR(Ext1
R(R/I, Ht

Φ(M)/N))
are finite sets.

Proof. (i) We proceed by induction on t. In the case t = 0 there is nothing to prove.
So, let t > 0 and the result has been proved for smaller values of t. By the inductive
assumption, Hi

Φ(M) is I-ETH-cominimax for i = 0, 1, ..., t − 2. Hence by Lemma 2.9 and
assumption, HomR(R/I, Ht−1

Φ (M)) and Ext1
R(R/I, Ht−1

Φ (M)) are minimax. Therefore by
Theorem 2.8, Hi

Φ(M) is I-ETH-cominimax (in particular, Φ-cominimax) for all i < t.
This completes the inductive step.
(ii) In view of (i) and Lemma 2.9, HomR(R/I, Ht

Φ(M)) and Ext1
R(R/I, Ht

Φ(M)) are min-
imax. On the other hand, according to Theorem 2.6, N is I-ETH-cominimax. Now, the
exact sequence
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0 −→ N −→ Ht
Φ(M) −→ Ht

Φ(M)/N −→ 0
induces the following exact sequence,

HomR(R/I, Ht
Φ(M)) −→ HomR(R/I, Ht

Φ(M)/N) −→ Ext1
R(R/I, N) −→

Ext1
R(R/I, Ht

Φ(M)) −→ Ext1
R(R/I, Ht

Φ(M)/N) −→ Ext2
R(R/I, N).

Consequently

HomR(R/I, Ht
Φ(M)/N) and Ext1

R(R/I, Ht
Φ(M)/N)

are minimax, as required. �

The following corollaries answer to Hartshorne’s question in terms of cominimax mod-
ules.

Corollary 2.11. Let R be a Noetherian ring and I ∈ Φ an ideal of R. Let M be an I-
ETH-cominimax R-module such that the R-modules Hi

Φ(M) are FD≤1 (or weakly Laske-
rian) R-modules for all i. Then,

(i) the R-modules Hi
Φ(M) are I-ETH-cominimax (in particular, Φ-cominimax) for

all i.
(ii) for any i ≥ 0 and for any FD≤0 (or minimax) submodule N of Hi

Φ(M), the R-
module Hi

Φ(M)/N is I-ETH-cominimax (in particular, Φ-cominimax).

Proof. (i) Clear.
(ii) In view of (i) the R-module Hi

Φ(M) is I-ETH-cominimax for all i. Hence the R-
module HomR(R/I, N) is minimax, and so it follows from Lemma 2.6 that N is I-ETH-
cominimax. Now, the exact sequence

0 −→ N −→ Hi
Φ(M) −→ Hi

Φ(M)/N −→ 0,

and Lemma 2.4 implies that the R-module Hi
Φ(M)/N is I-ETH-cominimax. �

The following corollary is a generalization of [10, Corollary 2.7].

Corollary 2.12. Let R be a Noetherian ring and I ∈ Φ an ideal of R. Let M be an
I-ETH-cominimax R-module such that dim R/I ≤ 1 for all I ∈ Φ. Then,

(i) the R-modules Hi
Φ(M) are I-ETH-cominimax (in particular, Φ-cominimax) for

all i.
(ii) for any i ≥ 0 and for any FD≤0 (or minimax) submodule N of Hi

Φ(M), the R-
module Hi

Φ(M)/N is I-ETH-cominimax (in particular, Φ-cominimax).

Proof. (i) Since by [13, Lemma 2.1],

Hi
Φ(M) ∼= lim−→

I∈Φ
Hi

I(M),

it is easy to see that SuppR(Hi
Φ(M)) ⊆

∪
I∈Φ

SuppR(Hi
I(M)) and therefore

dimSupp Hi
Φ(M) ≤ sup{dimSupp Hi

I(M)|I ∈ Φ} ≤ 1,

thus Hi
Φ(M) is FD≤1 R-module and the assertion follows by Corollary 2.11 (i).

(ii) Proof is the same as 2.11 (ii). �

One of the main results of this section is to prove that for an arbitrary ideal I of a
Noetherian ring R, the category of W L (R, I)ethcom and FD1(R, I)ethcom modules are
Abelian category.
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Theorem 2.13. Let I be an ideal of a Noetherian ring R. Let W L (R, I)ethcom

(resp. FD1(R, I)ethcom) denote the category of I-ETH-cominimax weakly Laskerian
(resp. the category of I-ETH-cominimax FD≤1) R-modules. Then W L (R, I)ethcom (resp.
FD1(R, I)ethcom) is an Abelian category.

Proof. We prove theorem for the W L (R, I)ethcom case and by using the same proof, the
FD1(R, I)ethcom case follows.

Let M, N ∈ W L (R, I)ethcom and let f : M −→ N be an R-homomorphism. It is
enough to show that the R-modules Ker f and Coker f are I-ETH-cominimax.

To this end, the exact sequence
0 −→ Ker f −→ M −→ Im f −→ 0,

induces an exact sequence
0 −→ HomR(R/I, Ker f) −→ HomR(R/I, M) −→ HomR(R/I, Im f)

−→ Ext1
R(R/I, Ker f) −→ Ext1

R(R/I, M),
that implies the R-modules HomR(R/I, Ker f) and Ext1

R(R/I, Ker f) are minimax. Since
Ker f is a weakly Laskerian and so FD≤1 R-module, therefore it follows from Theorem
2.8 that Ker f is I-ETH-cominimax. Now, the assertion follows from the following exact
sequences

0 −→ Ker f −→ M −→ Im f −→ 0,

and
0 −→ Im f −→ N −→ Coker f −→ 0.

�

The following corollaries are generalization of [4, Corolaries 3.8 and 3.9] and [24, The-
orem 3.4].

Corollary 2.14. Let R be a Noetherian ring and I a proper ideal of R. Let M is a non-zero
I-ETH-cominimax and weakly Laskerian (resp. I-ETH-cominimax FD≤1 R-module) R-
module. Then, the R-modules Exti

R(N, M) and TorR
i (N, M) are I-ETH-cominimax and

weakly Laskerian (resp. I-ETH-cominimax FD≤1) R-modules, for all finitely generated
R-modules N and all integers i ≥ 0.

Proof. Since N is finitely generated it follows that N has a free resolution of finitely
generated free modules. Now the assertion follows using Theorem 2.13 and computing the
modules TorR

i (N, M) and Exti
R(N, M), by this free resolution. �

Corollary 2.15. Let Φ be a system of ideals of a Noetherian ring R, M a non-zero I-
ETH-cominimax R-module such that Hi

Φ(M) are FD≤1(or weakly Laskerian) R-modules
for all i ≥ 0. Then for each finite R-module N , the R-modules Extj

R(N, Hi
Φ(M)) and

TorR
j (N, Hi

Φ(M)) are Φ-cominimax and FD≤1(or weakly Laskerian) R-modules for all
i ≥ 0 and j ≥ 0.

Proof. Apply Corollaries 2.14 and 2.11. �

3. Cominimaxness of local cohomology defined by a pair of ideals
As a special case of general local cohomology and generalization of ordinary local coho-

mology modules, R. Takahashi, Y. Yoshino, and T. Yoshizawa [34], introduced local co-
homology modules with respect to a pair of ideals. The (I, J)-torsion submodule ΓI,J(M)
of M is a submodule of M consists of all elements x of M with Supp(Rx) ⊆ W (I, J), in
which

W (I, J) = { p ∈ Spec(R) | In ⊆ p + J for an integer n ≥ 1}.
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For an integer i, the i-th local cohomology functor Hi
I,J with respect to (I, J) is the i-th

right derived functor of ΓI,J . The R-module Hi
I,J(M) is called the i-th local cohomology

module of M with respect to (I, J). In the case J = 0, Hi
I,J(−) coincides with the ordinary

local cohomology functor Hi
I(−). Also, we are concerned with the following set of ideals

of R:
W̃ (I, J) = { a E R | In ⊆ a + J for an integer n ≥ 0}.

The definition of cominimax module with respect to an ideal ([8, Definition 2.1]) moti-
vates the following definition.

Definition 3.1. An R-module M is called (I, J)-cominimax if SuppR(M) ⊆ W (I, J) and
Exti

R(R/I, M) is a minimax R-module, for all i ≥ 0.

Remark 3.2. Let I and J be two ideals of R. Replacing Φ by W̃ (I, J), Hi
Φ(M) by

Hi
I,J(M) and Φ-cominimax module by (I, J)-cominimax module, the Theorem 2.10 and

Corollaries 2.11, 2.12 and 2.15 are true for local cohomology modules defined by a pair
of ideals. Because by [34, Definition 3.1 and Theorem 3.2], it is easy to see that the
local cohomology modules defined by a pair of ideals is a special case of local cohomology
modules with respect to a system of ideals.
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