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Regression parameters prediction in data set with
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Abstract
Popular regression techniques often suffer at the presence of data out-
liers. The different methods have proposed to make smaller the effect
of the outlier on the parameter estimates. In this study, an algorithm
has been addressed based on Adaptive network based fuzzy inference
system to define the unknown parameters of regression model where de-
pendent variable has outlier. So, three numerical examples are solved
to test the activity of the proposed algorithm in regression model esti-
mation. Also, the obtained results from the different methods, such as
linear programming (LP) and fuzzy weights with linear programming
(FWLP) are compared together. The results show that the proposed
method is not to be affected the outliers in the solving process.
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1. Introduction
Zadeh [40] proposed fuzzy logic and fuzzy inference systems (FIS) for the first time

in 1965 and the concept of fuzzy regression analysis was introduced by Tanaka et al
[37] in 1982. Tanaka et al. [34] regarded fuzzy data as a possibility distribution and the
deviations between the observed values and the estimated values were supposed to be due
to the fuzziness of the system structure. In general, fuzzy regression techniques can be
classified into two distinct areas: linear programming-based method that minimizes the
total spread of the output, is named possibility regression (see, e.g. [27, 28, 29, 30, 32, 34,
35, 36, 37, 38]) and fuzzy least squares method that minimizes the total square error of the
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output is called the fuzzy least square method (FLSM) (see, e.g. [1, 6, 11, 12, 15, 26, 31])).
In the fuzzy literature, several extensions of this method has been proposed [20, 29, 30],
occasionally in a non-parametric context [4, 13, 32, 39]. In recent years, the prediction of
the regression parameters has gained a great attention among the researchers of neural
networks. Fausett [14] has proposed the fundamental concepts of neural networks such
as architectures, algorithms, and applications. Also, Ishibuchi et al. [17] have introduced
a learning algorithm of fuzzy neural networks with triangular fuzzy weights. James and
Donald [19] studied fuzzy regression using neural networks. Fuzzy neural networks have
been applied for the fuzzy regression (see, e.g. [7, 8, 10, 18, 23, 25]). Jang [21] proposed
the adaptive networkbased fuzzy inference system (ANFIS) in 1993 and Cheng and Lee [3]
established the ANFIS model for fuzzy regression analysis using linear programming, and
studied on both fuzzy adaptive networks and the switching regression model in 1999. In a
study of Takagi and Sugeno [33], the method was presented for identifying a system using
its input-output data. Also in 2009 and 2014, Dalkilic and Apaydin [7, 8] used the ANFIS
model to analyze switching regression and estimate the fuzzy regression parameters, and
in 2016, Danesh et al. [9, 10] used the ANFIS model to predict fuzzy regression model.
Generally for real-world applications, data sets often contain multiple variables as well
as noise or outliers that are inconsistent with the other data. Outliers may occur for a
variety of reasons, such as environment changes or erroneous measurements. Different
methods have been proposed for reducing the influence of outliers (see, e.g. [2, 16, 24]).

So, this paper aimed to design the adaptive network fuzzy inference system model to
predict the fuzzy regression model where exist outliers. So a new algorithm is applied
based on adaptive neural fuzzy inference system structure. In this study, we use fuzzy
least squares method (FLSM) for consequence parameters prediction in ANFIS method
(FWLS) and show that if outliers exist in the data set, the proposed method can yield
good results.

2. Basic Concepts
2.1. Fuzzy regression models. Fuzzy regression methods are described based on the
linear fuzzy model with symmetric triangular fuzzy coefficient [34, 37]. The aim of fuzzy
regression is to minimize the fuzziness of the linear fuzzy model that includes all the
given data. Thereupon, to describe fuzzy regression some definitions are needed.

A fuzzy number Ã is a convex normalized fuzzy subset of the real line R with an upper
semi-continuous membership function of bounded support [40].

2.1. Definition. symmetric fuzzy number is shown by Ã = (α, c)L;
Where α and c are the center and spread of Ã and L(x) is a shape function of fuzzy

numbers such that:
i) L(x) = L(−x),
ii) L(0) = 1, L(1) = 0,
iii) L is strictly decreasing on [0,∞),
iv) L is invertible on [0, 1].
The set of all symmetric fuzzy numbers is denoted by FL(R). If L(x) = 1 − |x| then

the fuzzy number is a symmetric triangular fuzzy number.

2.2. Definition. Suppose Ã = (α, c)L is a symmetric fuzzy number and λ ∈ R, then
λÃ = (λα, |λ|, c)L.

In fuzzy regression, Deviation between observed values and estimated values are as-
sumed to be due to system fuzziness or fuzziness of regression coefficients in fuzzy re-
gression [37]. This assumption is shared by described fuzzy regression methods in the
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present study. To find a regression model, fuzzy regression is analyzed. A fuzzy regres-
sion model fits all observed fuzzy data within a specified fitting criterion. Different fuzzy
regression models are obtained depending on the fitting criterion used. The first linear
regression analysis with a fuzzy model was proposed by Tanaka et al. [37]. According
to this method, the regression coefficients are fuzzy numbers, which can be expressed
as interval numbers with membership values. For this reason, the estimated dependent
variable Ŷ is also a fuzzy number. A fuzzy regression analysis results in the following
regression model:̂̃

Y i = Ã0Xi0 + Ã1Ai1 + · · ·+ ÃpXip = ÃXi, i = 1, 2, . . . , n(2.1)

Where, Ã = (Ã0, Ã1, . . . , Ãp) is a vector of fuzzy parameters where Ãj = (αj , cj)L
symmetric fuzzy number, which consists of fuzzy center αj and fuzzy half-width cj .
Also, Ỹi = (yi, ei) is the observed value in this model.

According to this approach, the fuzzy coefficients Ãi are determined such that the
estimated fuzzy output ̂̃Y i has the minimum fuzzy width, while satisfying a target degree
of belief h. The term h is referred to as a measure of goodness of fit or a measure of
compatibility between data and a regression model. Each of the observed data sets
,which can be fuzzy ̂̃Y i or crisp datum Yi, must fall within the estimated ̂̃Y i at h level as
shown in Fig (1). To determine the fuzzy coefficients Ãj = (αj , cj)L, Tanaka et al. [37]
formulated the fuzzy regression objective as the following linear programming problem.

n∑
i=1

p∑
j=0

cj |xij |

s.t :

p∑
j=0

αjxij + |L−1(h)|
p∑

j=0

cj |xij | ≥ yi + |L−1(h)|ei, i = 1, 2, . . . , n(2.2)

p∑
j=0

αjxij + |L−1(h)|
p∑

j=0

cj |xij | ≤ yi − |L−1(h)|ei, i = 1, 2, . . . , n

αj ∈ R, cj ≥ 0, j = 0, 1, . . . , p

In Tanaka’s model, the constraints warranty the support of the estimated values from
the model (2.2) includes the support of the observed values.

2.2. outlier detection in symmetric triangular fuzzy numbers. Outliers occur
when human error is involved. By using general regression models, the predicted values
become too large when outliers exist in the data. In order to handle the outlier problem,
Chen (2001) in [2] proposed a method for fuzzy linear regression using triangular fuzzy
numbers. In this paper, the width between the spread of predicted and dependent values
have to be below a certain specified value K for the outlier detection. Should this
difference be larger than K, no feasible solution can be obtained. Thus, the following
equation must be added to the constraints function of regression model.

α|xi| − ei ≤ K, i = 0, 1, . . . , n(2.3)

In Eq. (2.3), if the value of K is too small, normal values may become abnormal. On
the other hand, if it is too big, abnormal values may become normal or, abnormal values
will go undetected.

Hung & Yang [16] proposed an omission approach for fuzzy regression model, in which
they changed the objective function of fuzzy outliers, to compensate for the flaw in Chen’s
method. An omission approach was applied by them to detect a single outlier in a set of
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Figure 1. ANFIS architecture.

data. A ratio by objective function with a deleted observation was defined. It was also
claimed that the larger the value of this ratio, the greater the impact of such observation.

Maleki et al. [24] proposed a new method in trapezoidal fuzzy data when the outlier
is detected. They defined a new parameters called "H" and replaced it to the "h" in main
fuzzy regression model. H is defined by spread of the observed values and replaced in
the constraints of the fuzzy regression model.

2.3. Adaptive neuro fuzzy inference system (ANFIS). Takagi-Sugeno type fuzzy
system [20, 21] is used by the ANFIS architecture. Precisely, one of the most popular
neural fuzzy systems is this type. A fuzzy inference system is comprised of three main
parts: fuzzy rules, membership functions and a reasoning mechanism. There are three
types of fuzzy inference systems: the Mamdani system, in which the fuzzy output has
to be defuzzified, the Takagi-Sugeno system, in which a real number as its output is
produced, and the Tsukamoto system, in which monotonous functions are utilized.

The ANFIS structure is shown in Fig. 1. For simplicity, it is considered a system that
has two inputs x1, x2 and one output y. In Fig. 1, a circle indicates a fix node without
parameters; where as a square indicates an adaptive node with parameters. A common
rule set with two fuzzy if-then rules is defined as follows:

Rule1 : IF x1 is A1 and x1 is B1 then f1 = p10 + p11x1 + p12x2(2.4)

Rule1 : IF x1 is A2 and x2 is B2 then f2 = p20 + p21x1 + p22x2(2.5)

where x1, x2 and y ∈ R are input and output variables, respectively. Ar and As are
fuzzy sets, µAr , µAs are appropriate membership function that are defined as follows:

µAr (x) = exp

[
−
(
x1 − τr

σr

)2
]
, r = 1, 2.

µAs(x) = exp

[
−
(
x2 − τs

σs

)2
]
, s = 1, 2.

and fj represents system output due to rule Rj where j = 1, 2. The typical ANFIS
consists of five layers which are explained below:

The five layers of system have one two-dimensional input and one output. In the first
layer, all the nodes are adaptive. They generate membership grades of the inputs. oi,j
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is the output of the jth node of the layer l. The node function is given by:
o1,i = µAr (x1), r = 1, 2(2.6)
o1,j = µAs(x2), s = 1, 2(2.7)

In the second layer, the nodes are also fixed which multiply the inputs base on incoming
output of the first layer and send the product as the output of this layer which can be
calculated as:

o2,j = wj = µAr (x1) · µAs(x2), r, s, j = 1, 2(2.8)
Where this layer output is the information premise section of the fuzzy if-then rule.

In the third layer, the nodes are also fixed nodes. It calculates the ratio of a rule’s
firing of all the rules. The output of this layer can be calculated as:

o3,j = wj =
wj

w1 + w2
, j = 1, 2(2.9)

In the fourth layer, the node is an adaptive one. The node function associated in the level
4 is a linear function in the ANFIS structure. The output of this layer can be represented
as below:

o4,j = wjfj = wj(p
j
0 + pj1x1 + pj2x2), j = 1, 2(2.10)

In this work, pji will be assumed to be a triangular fuzzy number for i = 0, 1, 2 and
j = 1, 2. Parameters in this layer are referred to as consequent parameters.

In the fifth layer, the single node carries out the sum of inputs of all the layers which
stand for the outcomes of learning rates. The overall output of the structure is expressed
as:

o5,j =

2∑
j=1

wjfj =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 = w1f1 + w2f2(2.11)

Substituting the fuzzy if-then rules in Eq. (2.11) gives the following:

o5,j = Ŷ = w1(p
1
0 + p21x1 + p22x2) + w2(p

2
0 + p21x1 + p22x2)

= w1p
1
0 + (w1x1)p

1
1 + (w1x2)p

1
2 + w2p

2
0 + (w2x1)p

2
1 + (w2x2)p

2
2.(2.12)

The form of this equation is the same as the following linear equation:
Y = p0 + p1x1 + p2x2.(2.13)

That pi is the fuzzy parameters for i = 0, 1, 2.

3. Methodology of the proposed method
In Eq. (2.12), assume that consequence parameter pij is a symmetric triangular fuzzy

number and is represented by pji = (aj
i , α

j
i ), i = 0, . . . , p, j = 1, . . . ,m. Also, Yk and

Ŷk are symmetric triangular fuzzy numbers and are represented by Yk = (cyk , βyk ) and
Ŷk = (ĉyk , β̂yk ), k = 1, . . . , n where n is the number of data points, cyk is center value
and βyk is spread value of Yk and ĉyk is center value and β̂yk is spread value of Ŷk. From
the above definitions, using fuzzy arithmetic and substituting pji into Eq. (2.12), the
output Ŷ , for two inputs x1 and x2, can be expressed as:

Ŷ =(a1
0, α

1
0)w1 + (a1

1, α
1
1)w1x1 + (a1

2, α
1
2)w1x2 + (a2

0, α
2
0)w2

+ (a2
1, α

2
1)w2x1 + (a2

2, α
2
2)w2x2

=

2∑
j=1

2∑
i=0

aj
iwjxi +

2∑
j=1

2∑
i=0

αj
iwjxi,(3.1)
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where wj is known.
Consider the following fuzzy regression model:

Yk = p0 + p1xk1 + p2xk2 + · · ·+ ppxkp = pxk, k = 1, . . . , n,(3.2)

where n is the number of data points, xk = (1, xk1, xk2, . . . , xkp) is vector of values of
the independent variables at the kth observations. Also, p = (p0, p1, . . . , pp) is vector of
unknown fuzzy parameters to be estimated and Yk is the kth observed value of the depen-
dent variables. P can be denoted in vector form as p = {a, α} where a = (aj

0, a
j
1, . . . , a

j
p)

and α = (αj
0, α

j
1, . . . , α

j
p),j = 1, . . . ,m, where aj

i is center value and αj
i is spread value

of pi, i = 0, . . . , p. So from the above definitions, using fuzzy arithmetic and with Eq.
(3.1), ĉyk and β̂yk it can be expressed as:

ĉyk =

m∑
j=1

p∑
i=0

aj
iwjxki,(3.3)

and

β̂yk =

m∑
j=1

p∑
i=0

αj
iwjxki.(3.4)

So

Ŷ =

m∑
j=1

p∑
i=0

aj
iwjxki +

m∑
j=1

p∑
i=0

αj
iwjxki.(3.5)

A hybrid algorithm is used in the ANFIS method. The hybrid algorithm is composed
of a forward pass and a backward pass. The least square method (forward pass) is used
to optimize the consequent parameters. Once the optimal consequent parameters are
found, the backward pass starts immediately. The gradient descent is used to optimize
the adjustment of the premise parameters. For more details, see [20, 21]. In the following,
the fuzzy least squares based on Diamond’s distance is used to optimize the consequent
parameters for univariate crisp input and symmetric fuzzy output.

In the fuzzy regression model (2.2), the error measurement is defined as:

ek = Yk{−}Ŷk,(3.6)

where Yk is the kth output, Ŷk is the network output of the kth input vector, xk =
(1, xk1, xk2, . . . , xkp), and {−} is an operator, whose definition depends on the used fuzzy
ranking method. The calculation of the distance or difference between two fuzzy numbers
determines the error measurement. To obtain the difference between fuzzy numbers,
various fuzzy ranking methods can be used [39]. To optimize consequence parameters,
this study uses the fuzzy least squares based on Diamond’s distance. It can be considered
that the observed values Yk = (lyk , cyk , ryk ) and the predicted values Ŷk = (l̂yk , ĉyk , r̂yk )
are asymmetric triangular fuzzy numbers for k = 1, . . . , n. where lyk , cyk and ryk are
lower, center, and upper limits of the observed fuzzy outputs. Also, l̂yk , ĉyk and r̂yk are
the estimated lower, center, and upper limits of the predicted fuzzy outputs. The fuzzy
least squares problem based on Diamond’s distance is defined as:

ek =

n∑
i=1

(Yk − Ŷk)
2 =

n∑
i=1

((lyk − l̂yk )2 + (cyk − ĉyk )2 + (ryk − r̂yk )2.(3.7)

Suppose Yk = (cyk , βyk ) and Ŷk = (ĉyk , β̂yk ) are two symmetric fuzzy numbers, where
cyk and βyk are center, and spread of the observed fuzzy outputs. Also, ĉyk and β̂yk are
the estimated center, and spread of the predicted fuzzy outputs and lyk = cyk − βyk ,
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ryk = cyk + βyk and l̂yk = ĉyk − β̂yk , r̂yk = ĉyk + β̂yk . By substituting lyk , ryk , l̂yk and
r̂yk in Eq. (3.7), the fuzzy least squares problem can be rewritten as:

ek =

n∑
k=1

(Yk − Ŷk)
2

=

n∑
k=1

(
(cyk − βyk )− (ĉyk − β̂yk )

)2
+ (cyk − ĉyk )2

+
(
(cyk + βyk )− (ĉyk + β̂yk )

)2
=

n∑
k=1

(
3(cyk − ĉyk )2 + 2(βyk )− β̂yk )2

)

=

n∑
k=1

3

(
cyk −

m∑
j=1

1∑
i=0

aj
iwkjxki

)2

+ 2

(
βyk −

m∑
j=1

1∑
i=0

αj
iwkjxki

)2
(3.8)

It is observed that the objective function in Eq. (3.8) is the summation of two parts
with two different groups of unknown parameters. The consequent parameters can be
determined by minimizing ek respect to the unknown parameters aj

i and αj
i . In order to

derive the error function ERROR respect to the unknown parameters, set the derivations
to zero and solve for the unknown parameters. By solving these two groups of linear
equations, the estimates of these parameters can be obtained for the univariate fuzzy
nonparametric regression model as follows:

(âj
i )

′ = (X ′X)−1X ′CY ,(3.9)

(α̂j
i )

′ = (X ′X)−1X ′αY ,(3.10)

where,

X =


w11w12 · · ·w1mx11w12x11 · · ·w1mx11

w21w22 · · ·w2mx21w22x21 · · ·w2mx21

...
wn1wn2 · · ·wnmxn1wn2xn1 · · ·wnmxn1

 ,

CY =


cy1

cy2

...
cyn

αY =


αy1

αy2

...
αyn


and Xk0 = 1, the symbol (′) is the mean transpose of a matrix. Also, one of the following
two constraints must be established:

m∑
j=1

p∑
i=0

aj
iwkjxki − (1− α)

m∑
j=1

p∑
i=0

αj
iwkjxki ≤ byk + (1− α)βyk ,(3.11)

or
m∑

j=1

p∑
i=0

aj
iwkjxki + (1− α)

m∑
j=1

p∑
i=0

αj
iwkjxki ≥ byk − (1− α)βyk ,

and
∑m

j=1

∑p
i=0 α

j
iwkj ≥ 0, i = 0, . . . , p, j = 1, . . . ,m, k = 1, . . . , n.

According to the error of back propagation, the gradient decent method updates the
premise parameters. In order to optimize the adjustment of the position and the shape
of the associated membership function, the premise parameters are trained so as to
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represent the density of input functions. This training does not focus on the spread of
the membership function. To calculate the back propagation error, only the first part of
the ERROR function, which is the center, is considered, and the influences of the spread
are ignored. The back propagation error for each layer can be calculated as the method
of Jang [20] and Cheng and Lee [5]. For training data, when ERROR is smaller than a
predefined small number and one of the relationships (3.11) is established, the training
of network terminates.

In this investigation, for evaluation of the accuracy of ANFIS model is defined a
quantity that is called goodness of fit (GOF). It measures the bias between observed,
Yk = (lyk , cyk , ryk ), and predicted values, Ŷk = (l̂yk , ĉyk , r̂yk ), for all Xks, based on
Diamond’s distance (2.2), where lyk , cyk and ryk are lower, center, and upper limits of
the observed fuzzy outputs. Also, l̂yk , ĉyk and r̂yk are the estimated lower, center, and
upper limits of fuzzy regression function. Error rate based on Diamond’s distance can
be defined as [3]:

GOF =
1

n

n∑
k=1

(
(lyk − l̂yk )2 + (cyk − ĉyk )2 + (ryk − r̂yk )2

)
(3.12)

where n is number of the observation’s pairs. Large value of this quantity indicates lack-
of-fit and too small value reflects over-fit for the observed fuzzy outputs. Because of the
error term in model (2.2), GOF value cannot reflect the closeness between the underly-
ing fuzzy nonparametric regression function f(x) and its estimate efficiently. Thus, for
measuring the bias between the underlying fuzzy regression function and its estimate, a
quantity that is called BIAS is defined. This quantity can be expressed as [4]:

BIAS =
1

n

n∑
k=1

d2
(
f(x), f̂(x)

)
=
1

n

n∑
k=1

(
(l(x)− l̂(x))2 + (c(x)− ĉ(x))2 + (r(x)− r̂(x))2

)
(3.13)

BIAS is not computable in practical applications because function f(x) is certainly un-
known. This quantity will be reported for examining the performance of two methods
in our simulations. So in the present study, the method of Kim and Bishu [22] will be
used for evaluation of the performance of ANFIS model. In this method, the absolute
difference between the membership observed values and estimated values is calculated
as:

Ek =

∫
s(Yk)∪s(Ŷk)

|Yk − Ŷk|dy(3.14)

where s(Yk) and s(Ŷk) are support of Yk and Ŷk, respectively. In other words, Ek is the
error in estimation. If Ek trend to zero, then the fitting is the best.

3.1. The algorithm for forecasting model. In order to predict model parameters,
the steps taken can be summarized as follows:

Step 1: The input and the output variables are defined.
Step 2: Value V is inputted.
Step 3: The initial values of the fuzzy weights are determined.
Step 4: The consequent parameters by Eq. (3.9) and (3.10) are identified.
Step 5: When GOF in Eq. (3.12) is smaller than a predefined small number and one

of the relationships (3.11) is established, the training of network terminates,
otherwise the values of the fuzzy weights are updated.

Step 6: The values of Ek, GOF for the evaluation of the method are determined.
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Figure 2. The observed values and the predicted values of FWLS and
FWLP methods for train data in Example 4.1.

Table 1. The estimated error values Ek for Example 4.1 (α = 0.5)

LP method FWLP method FWLS method
ERROR train 434.4931 6.6832 0.3140
ERROR test 496.6499 8.8678 1.6311

ek train 993.4188 121.8532 11.1796
ek test 266.3852 66.6992 3.3251

In this paper, the algorithm was executed with written program in MATLAB.

4. Numerical examples
4.1. Example. Consider the following function:

g(x) = 10 + 5 sin(0.25π(1− x2))

and let xk = 0.1k, k = 1, 2, . . . , 100, on [0, 10]. 100 pairs of sample data are generated
from g(x). Let Yk = (byk , βyk ) be a symmetric triangular fuzzy number such that{

byk = g(xk) + rand[−0.5, 0.5]
βyk = (1/3)g(xk) + rand[−0.25, 0.25]

k = 1, . . . , 100.

For outlier generation, two variables xk are randomly selected and Yk = (byk , βyk ) are
produced as follows:{

byk = g(xk) + rand[−4, 4]
βyk = (1/3)g(xk) + rand[−0.25, 0.25]

k = 1, 2.

At first, we divided data set to train and test data. Then we fitted the regression model
for this data set via the different methods for α = 0.5. We displayed the error values of
different methods in Table 1. In addition, the estimated values and the observed values
of FWLS and FWLP methods have been depicted in Fig. 2. We use Fig. 2 and Table 1
to compare the obtained results. It is seen, model related to the FWLS method provides
the best predictions. We can observe that the outlier is not influence on the estimated
values in proposed method. So in outlier cases, the FWLS method is a better candid
than the other methods.

4.2. Example. In this example, there are ten pair’s observations as shown in Table
4 which 8th observation of the dependent variable is outlier. We divided data set to
train and test data that test data has been shown with star in Tables 4 and 5. Suppose
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Figure 3. The observed values and the predicted values of FWLS and
FWLP methods for test data in Example 4.1.

Table 2. The obtained parameters of the method FWLS for Example 4.2.

k (τk, σk) (ak
0 , α

k
0) (ak

1 , α
k
1)

1 (-1.0396,1.0741) (-3.5495,1.5615) (4.3497,0.2924)
2 (9.2937,1.0413) (3.3024,2.7088) (1.9575,-0.0095)

Table 3. The obtained parameters of the method FWLP for Example 4.2.

k (τk, σk) (ak
0 , α

k
0) (ak

1 , α
k
1)

1 (-1.0396, 1.0741) (-3.4353,1.6465) (4.3143,0.3467)
2 (9.2937,1.0413) (2.5499,0.0838) (2.0935,0.5923)

Eq. (3.5). We fitted the regression model for this data set via the different methods for
α = 0.5, and the obtained parameters for FWLS and FWLP are shown in Tables 2 and
3. Also in the LP method, the obtained regression model is shown as follows:

y = (1.1353, 7.2855) + (2.4562, 0.1)x

We displayed the obtained predictions and the errors related to these predictions in
Table 4. In addition, the values of the estimated error X are shown in Table 5. Also, the
estimated values and the observed values of different methods for test data have been
showed in Fig. 4. Moreover, estimations have been obtained using the different methods
are used for comparison. We use Fig. 4, Tables 4 and 5 to compare the obtained
results. Like previous example, model related to the proposed method provides the best
predictions. We can observe that the outlier is not influence on the estimated values in
proposed method. So in outlier cases, the proposed method is a candid better than the
other methods.

4.3. Example. In this example, there are ten pair’s observations as shown in Table
8 which 7th observation of the dependent variable is outlier. Suppose Eq. (3.5). We
divided data set to train and test data that test data has been shown with star in Tables
8 and 9. We applied different methods to fit fuzzy regression model and, displayed the
obtained predictions and the errors related to these predictions in Table 8 and the values
of the estimated error Ek are shown in Table 9. We obtained the regression model and
estimations for this data set that obtained parameters of the method are shown in Tables
6 and 7. In the following, the obtained regression model using the LP method is shown:

y = (4.3895, 1.9348) + (5.5098, 2.4514).
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Table 4. The estimated fuzzy outputs by using different methods for
Example 4.2.

xj Yj = (bj , βj) f̂(xj) = (̂bj , β̂j) f̂(xj) = (̂bj , β̂j) f̂(xj) = (̂bj , β̂j)
LP method FWLP method proposed method

1 (0.8,1.8) (3.5916,7.3856) (0.8790,1.9932) (0.8002,1.8539)
*2 (6.4,2.2) (6.0478,7.4856) (5.1932,2.3398) (5.1499,2.1462)
3 (9.5,2.6) (8.5040,7.5857) (9.5075,2.6865) (9.4996,2.4386)
4 (13.5,2.6) (10.9602,7.6857) (13.4495,2.9587) (13.5002,2.7232)
5 (13.0,2.4) (13.4164,7.7858) (13.0208,3.0458) (13.0933,2.6617)
6 (15.2,2.1) (15.8726,7.8858) (15.1108,3.6379) (15.0473,2.6520)
*7 (17.0,2.0) (18.3288,7.9859) (17.2043,4.2303) (17.0048,2.6425)
8 (19.3,4.8) (20.7850,8.0859) (19.2978,4.8226) (18.9623,2.6330)
9 (20.1,1.9) (23.2412,8.1860) (21.3913,5.4150) (20.9198,2.6236)
10 (23.3,2.0) (25.6974,8.2860) (23.4847,6.0073) (22.8773,2.6141)

etrain —————— 71.1877 8.4870 1.8772
etest —————— 66.6035 7.2408 2.7600

Table 5. The estimated error values Ek for Example 4.2 (α = 0.5).

xj LP FWLP Proposed method
1 6.1324 0.2239 0.0539
*2 5.2963 2.0928 2.1406
3 5.0873 0.0871 0.1614
4 5.7269 0.3654 0.1232
5 5.4010 0.6464 0.2932
6 6.1041 2.2423 0.5893
*7 5.8187 1.5417 0.6425
8 3.7859 0.0228 2.2043
9 6.8774 3.7614 1.4910
10 6.6416 4.0116 0.0539
ek 56.8716 14.9954 7.6994

Figure 4. The observed values and the predicted values of the different
methods for test data in Example 4.2.
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Table 6. The obtained parameters of the method FWLS for Example 4.3.

k (τk, σk) (ak
0 , α

k
0) (ak

1 , α
k
1)

1 (1.3338,0.4542) (10.7319,2.4405) (-0.1466,-0.3956)
2 (9.5500,3.8042) (10.6522,0.2857) (4.3043,1.2857)

Table 7. The obtained parameters of the method FWLP for Example 4.3.

k (τk, σk) (ak
0 , α

k
0) (ak

1 , α
k
1)

1 (0.3881,1.3341) (8.8511,1.9827) (2.2152,0.0872)
2 (4.2786,1.0993) (0.3885,5.3245) (6.3649,1.4238)
3 (10.1165,0.7472) (-6.5345,3.5800) (6.0591,0.9354)

Table 8. The estimated fuzzy outputs using different methods for
Example 4.3.

xj Yj = (bj , βj) f̂(xj) = (̂bj , β̂j) f̂(xj) = (̂bj , β̂j) f̂(xj) = (̂bj , β̂j)
LP method FWLP method proposed method

1 (11,2) (9.8993,4.3862) (11.0109,2.1300) (11.0000,2.0000)
2 (13,2) (15.4091,6.8376) (13.2497,3.3297) (13.0000,2.0000)
*3 (21,4) (20.9188,9.2891) (18.5886,7.9460) (23.4956,4.1277)
4 (29,4) (26.4286,11.7405) (25.6386,10.7958) (27.8696,5.4286)
5 (29,6) (31.9384,14.1919) (32.1746,12.4119) (32.1739,6.7143)
*6 (34,6) (37.4482,16.6433) (18.5886,7.9460) (36.4783,8.0000)
7 (45,15) (42.9580,19.0948) (44.9087,15.2713) (40.7826,9.2857)
8 (44,8) (48.4678,21.5462) (43.3628,11.9223) (45.0870,10.5714)
9 (48,12) (53.9776,23.9976) (48.0000,12.0001) (49.3913,11.8571)
10 (54,12) (59.4874,26.4490) (54.0561,12.9336) (53.6957,13.1429)

etrain —————— 219.3639 34.5487 22.9162
etest —————— 159.1000 117.4260 22.5713

Figure 5. The observed values and the predicted values of the different
methods for test data in Example 4.3.

Also, the estimated values and the observed values of different methods have depicted in
Fig. 5. Previous example like, the proposed method is a candid better than the other
methods in outlier cases.
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Table 9. The estimated error values Ek for Example 4.3 (α = 0.5).

xj LP FWLP Proposed method
1 2.7042 0.1309 0
2 5.3806 1.3649 0
*3 5.2899 4.9328 4.2249
4 8.1747 7.6948 2.1875
5 8.8183 7.4363 5.5555
*6 11.2353 9.4667 4.5179
7 4.9908 0.3017 8.0945
8 14.3442 4.0054 2.9673
9 13.9832 1.0000e-04 2.7015
10 15.7498 0.9368 1.2202
ek 90.6710 36.2704 31.4693

Conclusions
In this paper, a novel combining fuzzy weights and fuzzy least square was applied

for regression model prediction where dependent variable has outlier and compared the
performance of the proposed algorithm with different methods, such as linear program-
ming (LP), linear programming and fuzzy weights (FWLP). As it was seen the proposed
method has increased the prediction accuracy where dependent variable has outlier. We
observed that the outlier was not influence on the estimated values in proposed methods.
So in outlier cases, the proposed method is a best candid than the other methods. As it
can be seen in numerical examples, error related to estimations obtained via the network
according to error criterion is lower than errors obtained via all the other methods.
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