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INTRODUCTION

The study of regularized trace of differential operators was started in the 20" century with the work of
Gelfand and Levitan (Gelfand et al., 1953). They dealt with the Sturm-Liouville type of differential

equation:

=y'+aq(x)y=ny,  Y(0)=y(x)=0

and obtained the formula i(ﬂn -A)= %[q(O) +q(n)] ; here u  are the eigenvalues of this operator
n=0

and 4 =n’ are the eigenvalues of the same operator with q(x) =0. This research provided the basis

for new and important theory.

Many scientists focused on trace computation of various differential operators and obtained significant
results. After the pioneering work by Gelfand and Levitan, Gelfand, Dikiy, Levitan, Gasymov,
Sadovnichii (Dikiy, 1953; Gelfand et al., 1953; Dikiy, 1955; Gelfand, 1956; Gasymov, 1963; Levitan,
1964; Sadovnichii, 1966) investigated the regularized trace formulas. The list of these works on the
subject is given by Sadovnichii and Podol’skii (Sadovnichii et al., 2009). The trace formulas of the
abstract self-adjoint operators with continuous spectrum were investigated by some authors (Krein,
1953; Faddeev, 1957; Bayramoglu, 1986). Among the studies , regularized trace formulas for
differential operators with operator coefficient play an important role (Adiguzel et al., 2004; Adiguzel
etal., 2011; Baksi et al., 2017).

Let H be a separable Hilbert space. Let L be the operator in the space H, =L ,(0,7;H) defined by
differential expression:

((y) =-y"+Qy with boundary conditions y'(0) = y(x) =0. 1)
Assume that the operator Q(x) in the expression /(y) satisfies the conditions:

(Q1) Forevery x€[0,7], Q(x) is a self-adjoint kernel operator from Hto H, and Q(x) has second

order continuous derivative with respect to the norm o,(H) in [0, 7],

@2 [Q]<3/2,

(Q3) There is an orthonormal basis in the space H such that ZH Q(X) ¢, H <0,
f=1

Here, o,(H):H — H is the space of kernel operators. The norms in H, and H are denoted by |.|,

and | .| . Furthermore, the sum of eigenvalues of a kernel operator Q is denoted by trQ =trace Q. The
spectrum and resolvent of the operator L are denoted by o (L) and po(L), respectively.

Suppose that the operator L, formed by differential expression:

Lo(y)=-y" with the boundary conditions y'(0) = y(z) =0. (2)

@
The spectrum of the operator L, is the set {(e+%j } and every point of this set is an eigenvalue
e=1

L i . . . Y
with infinite multiplicity. The orthonormal eigenvectors corresponding to eigenvalues (e+§) are in

the form (x):\/zcos(e+%j @, (f=12..).
VA
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Our purpose in this paper is to find the trace equality

SR ro

e=0 f=1

=%tr[Q”(O)—Q”(ﬂ)—2Q2(0)+2Q2(7f)] ©)

for the operator L. Here, {2

ef

}0::1 is the set of the eigenvalues of the operator L, and belongs to the

interval

| (e+3] -1l (e+3) slel] e-01z. @

UQ(x)dx} —%[trQ’(O)HrQ’(ﬂ)].

and c = L
21 s,
MATERIALS AND METHODS
Let R? andR, be resolvent operators of L, and L. One can prove that if Q(x) satisfies the
. . 1Y
condition (Q3), then QRY : H, — H, is a kernel operator for every A ¢Ee+5j (e=0,12,..) . Let

{xlef}w be the eigenvalues on |, of the operator L.
f

Theorem 2.1. If Q(x) holds the conditions (Q2)and (Q3), the spectrum of the operator L is a
subset of the intervals |, which are pairwise disjoint and

2
(1) Every point different from (e+%j on I, is a discrete eigenvalue with finite multiplicity in o(L),
1 2
(2 (e+5j can be an eigenvalue with finite or infinite multiplicity in o (L),
1 2
3) fIim Aot = (e+§j (e=0,12,..).

f=1

2
Moreover, one can show that the series Z{ﬂ,ﬁ —(e+%j } (e=0,1, 2, ...) are absolutely convergent.

Since R, —R? is a kernel operator in the space o;,(H,), the formula

0 0 1 1
tr(R/1 - Rj) = Z - 2 3
S| 7, (e+1j By
2
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2

is true for every 4 € p(L) (Levitan et al., 1991). If we multiply with 2/1— both sides of “Eq. 5.” and
zi

integrate on the circle || =b, =(d +1)* , we get the following equality

iﬂ [ 2r(R,~R))dA= i;ﬁ T /12] )
By e;uballty R,—R!=-R,QR} e;nd “Eq. 6.”, we have
ZZKH%) } Z( o) jw,ﬁr(R (QR')")d A+ ( | j 24r(R°(QR)*)d 2 )
where N is a positive integer. Let i
de:(—zti:” I 2tr[RQRY) A, 5)
KM = (D 1) j tr[R,(QR))"* JdA . (6)
|2/=bg

Then “Eq. 7.” becomes

iil:ﬂ“ezf _(e'i'%j }:ins + KéN) . (7)

e=0 f=1

. . 1Y . :
Since QRY is a kernel operator for every A ¢(e+5j in the space o,(H,), one can prove that QR) is

analytic with respect to norm in o;(H,) in the domain [J —{[e+%j } and the formula

_ ) N
K= j atr[(QR) a4, )
is satisfied.

RESULTS AND DISCUSSION

In the last section, a formula for second regularized trace of the operator L will be found. By “Eq.
11.”

1 0
K, = _Hljbd atr (R (QR?))dA (12)
2d A
_Z;Z(Ql/lef")yef)z IJ. (9)

\bd/l ( 1j2
2

:izz.[cosz He+%) x}(Q(x)(p,,(pf)dx (10)

JT =0 4 %
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2 d
Z;Z;( j ItrQ(X)dX+—Z(e+ J J.trQ(x)cos[ (2e+1)x Jdx (11)
_ zizd[;(Ze+1)2 j trQ(x)dx —Z[trQ'(O) +1rQ ()]
—%ZItrQ"(x)cos[(ZeH)x]dx : (12)

We now evaluate K;,, by “Eq. 11.”

- I Mr[(QRY)’ d}L—— j /IZZ( QR) v, v, )d/l . (13)

7Z'Hbd =0 f=1

Moreover, we know that (QR?)(y,) :Qy/ef.(—/1+(e+%j } and

(QR’)*(w,) =QR!(QR v, ) (14)
=((e+%] —ﬁj QRf[ii(Ql//wwm)l t//rqj (15)
:[(“%j_*} >y Qe v) Q. | (16)

(3]

If we substitute “Eq. 20.” in “Eq. 17.”

R R :
R R R )
o bt sra ()

LRl Sl e vy
2553 Savm)| =3 @9
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- I(Qv..v.,)

= ;ZHQWef 12 - Z

is found. Let

| w(wgn(ﬁ;
AUDED WY :
2

d+1( 1)2 (

r+=| —e+
2

Then we get

DY AN WA

We now investigate 5, (f,q). Since

2

,,) COs(e —r)xdx

(o7

+ % ReU (Q(X)e,,p,)cos(e— r)xdxjf (Q(X)e,,p,)cos(e+r +1)xdx}
T 0 0

+i2 T(Q(x)gof ,@,)cos(e+r+1)xdx| ,
7" 1%

then B, is in the form:

oo
r+=| +le+=1|,,
potyyiie

[ @), 0,)cos(e~r)xdx

72'2 e=0 dl( l)z ( 1)2 0
r+=| —le+=
2 2

2

(20)

(21)

(22)

(23)

(24)
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1Y 1Y
e[ d e
+ 2 2
ﬂzgr;1( 1] ( 1)
r+=| —le+=
2 2

X ReU (Q(X)¢,,p,)cos(e - r)xdx.j (Q(X)e,,p,)cos(e+r +1)xdx}

PPHECHT

- > - (X)¢,, @,)cos(e+r +1)xdx (25)
T eOrd+1( 1] _( 1) 0
r+ e+
2 2
If we take
o) (3
N N e R s
Bo=rY 2 2 0,)c0s(e - r)xdx , (26)
E=o,=d+1(r+1j [e+1J
2 2
1Y 1Y
S (I‘+2J +(e+2j
ﬂ_?z( 1)2 ( 1)2
r+=| —|e+=
2 2
y Re[} (Q(X)9, .,) cos(e—r)xdx] (Q(X)p,  p,) cos(e + +1)xdx} , @7)
1Y 1Y
Lo (r+2j +(e+2) 2
== (X)¢,,¢,)cos(e+r +1)xdx] , (28)

72'2 e=0 r=d+1 12
r+= e+
SRCE

and if we express g, in terms of £, B,, and B, in “Eq. 29.”, we have B,(f,q)=p8,+p8,+8.. .
Now, we calculate an asymptotic formula for the sum

> B, . (29)

f=1 g=1

Formwinmgwsdzﬂ_MMizl,mtEm:{oyﬂ:neehhr—e:i;esd;r>d} then one can write
“Eq. 30.” such that

(1) ()

) r+E e+E
:72'72 7
Pumm 2, Z( 1) ( 1)
r+-= e+=

2 2

(

e 2 2e+1
=7 1+ >
i=1 [ereEd( (2r +1) (26 l J

+ 2
2 (X)@, ,@,)cos(e —r)xdx

} (30)

1600
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Let us calculate the sum

2(2e+1)
ZE: (H (2r+1)° —(2e+1)° J '

If wetake i<d+1

(2e+1)’ d 2-i &
2 ==t +
ereta (2r+1) —(2e+1) 2 2 %

iN

[
4(2d —2s+1)+4i

Il
o

and

i—1 -1 1 -ll |2
Z2(2o| 25+i+1) Z 2(d+(d-s)+(i- )+1)<'§‘%:E

By using “Eq.36.” and “Eq.37.”, we rewrite the sum (35) for i<d+1,i>1, d>2

2(2e+1)° o
1 =d+2+i%0(d™?) .
Z;‘d[ +(2r+1)2—(2e+1)2J 2o

Here, O(d™) which satisfies inequality 0<O(d™)<d™, dependson d and i.

Similarly, for i>d +1 , the sum (35) becomes

ZLH 2(2e+1) ZJ:O(d) (d>2)

e,rekEg; (2[‘ +1) —(26+1)

is obtained, where O(d) which satisfies inequality|O(d)| <4d, dependson d and i.

Substituting “Eq.38.” and “Eq.39.” into “Eq. 33.”, we get

J(Q(X)(pf ,@,) cos ixdx

d+1

= ﬂ_ZZ(d +2+i%0(d™))

+7 z O(d) (X)o,,¢,)cos IXdX . ®,)Ccos |xdx
+7z’22|20(d ) ¢,) cos |xdx +77 Z O(d) ¢,) cosixdy| .
Since

I(Q(x)qof,coq)cosixdx =%I|(Q(x)<of,coq)rdx—%H(Q(x)cof,(pq)dx

=
Y/
then we substitute last equality in “Eq. 40.”:

B = Q)¢ 0,) dx—%f‘f(cz(x)wf,%)dx

d+2J-

+7z‘2dii20(d‘1)

d+1

+7r‘22| 0(d) 'f(Q(x)(pf,(pq)cosmdx

is obtained. Substituting “Eq. 41.” into “Eq. 33.”,

(31)

(32)

(33)

(34)

(35)

(36)

2

[@Q)0,,0,) cosixax

37)
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2

2 d+2 2 & d+2 & &t
o= 22 Q0.0 ) : [(QMe,.¢,)d
f=1 g=1 =1 g=1 7Z' f=1 g=1 |9
0 oo d+1 T 2
+ i’O(d™) .[ Q(x)(pf,(pq c03|xdx
f=1 g=1 i=1 0

#2233 () [ (R 0, oosix 39)
Moreover, o 0
5 $0(s)[(Qun.0 Joosixa =0(a) | @
ar_1d_ 0
535 0)[f(Q0n, o Jeosi| =0 (40)

are obtained. If we substitute “Eq. 43.” and “Eq. 44.” into “Eq. 42.”, we have

27
= d h ItrQ (x)dx+—trUQ(x)dxj +0(d™) . (42)
f=1 :1

Since Q(x) satisfies conditions (Q1) —(Q3), then

;;ﬂdk

By using “Eq. 27.”, “Eq. 45.” and “Eq. 46.”

iiHQW i d+2 j trQ? (x)dx+—tr( [ Q(x)dxj +0(d™) @3)

e=0 f=1

M
Mg

<cd™ . (k=2,3) (42)

is obtained. Now, we calculate the sum on the right side of “Eq. 47.”:

Zd:iHQy/ef Zz_[cos (e+ j (Q* (0, @, )dx

e=0 f=1 e=0 f=1 g

1 d +1%
+=2 j (1+cos(2e +1)X) (Q*(X)g, ., Jdx == Z(Q ()@, @,)dx
L, j trQ* (x) cos(2e + 1) xax = I+ j trQ* (xdx+ 3+ j trQ? (x) cos(2e +1) xdx (44)
T
If we substitute “Eq. 48.” in “Eq. 47.”
K,, = iiter (x)dx + d—Jrlj'ter (x) cos(2e +1)xdx + d—+22tr UQ(x)dx] +0(d™) (49)
273 T 2 .
On the other hand, one can show there exists ¢ >0 such that
[ QR <€ (45)
and
IR | <cd?, | R, |<cd ™ for |4 =h, = (d+1)°. (46)
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From “Eq.9.”, “Eq.11.”, “Eq.50.” and “Eq.51.”, we have

K, |= jﬂtr(QR)dﬂ <—j .
72' 1M1
|2]=bq |2]=bg V\ by
b j |QR;? (QR))™| d/1<Cb J-d“d/1<csld“ : (47)
S o1 (Hy)
b A=t
and
|K<“>|_ j/ﬁr[R (QR))"*]dA|< b, j||R (QR)" ., dA
2] =bg |2]=bq
<b; [ [RJ@R)"...., g, dA <cd™™, (48)
[2]=ba
From “Eq. 52.” and “Eq. 53.”
limK,=0 for s>6 (49)
and
limK™ =0 for N=>6 (55)

are obtained.

Theorem 3.1. If Q(x) satisfies the conditions (Q1) — (Q3), then

i{i{ﬂj—(e%)] (26;1) J rQ( )dx—c} ~tr[Q"(0)-Q"(7)-2Q"(0)+2Q*(7)] .

e=0 | f=1

Here, C = iiter (x)dx +§tr HQ(x)dx} —%[trQ'(O) +trQ'(z)].

Proof: By “Eq.10.”, “Eq.16.”, and “Eq.49.”, we can write for N=6

Z{ ( 1” Z(2e+1) jtrQ(x)dx-—Z[trQ'(O)+trQ'(;z)]

e=0

1S ds d+2, (7 :
__Z'!trQ (x)cos(2e+1)xdx+—'0[ trQ (x)dx+2—7[2tr[!Q(x)dxj

2 S 2
+= thrQ (x)cos(2e +1)xdx+0O(d )+ ZGJK(,SJrK;G) (56)

is obtained. From “Eq. 56.”

B{gl-{oo3] | 5 oo
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1 &G
Z—ZI(ZtrQ )—trQ”(x))cos(2e +1)xdx
TT "e=0 0

6 o, 1 [t . .,
+; KdS+Kd<>+§trUQ(x)dx} —Z!trQ (x)dx+0O(d™), (57)

15 1 [x o1, ,
where czg!trQ (x)dx+§trUQ(x)dx} —Z[trQ (0) +trQ’ ()] -

Moreover, we can show that

Idlm K,=0 (s=3,4,5). (58)
By using “Eq.54.”, “Eq.55.”, “Eq.56.” and “Eq.58.”, as d —
i{i{/ﬁ —(e+%j } (2e+1) JtrQ(x)dx c}
l " " 2 2 l 0 2 1 f 2
=§tr[Q (72')—Q (0)+2Q%*(0)—2Q (ﬂ)]+2—7[2tr(!Q(x)de —Z_!‘trQ (x)dx (59)

is found. The theorem is proved. The last equality is called ‘’Second Regularized Trace Formula for

Self- Adjoint Differential Operator’’.
CONCLUSION

In this work, we consider the self-adjoint operator with bounded operator coefficient in the
infinite dimensional Hilbert space. In early studies on this subject, the coefficient of a self-adjoint
operator has been considered as a scalar function. However, it is more important to have the operator
coefficient for a self-adjoint operator in these type studies.
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