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H1 = L2 (0,π;H) Uzayında İki Terimli Diferansiyel Operatörün Düzenli İzi 

Özlem BAKŞİ1 

ÖZET: Mevcut çalışmanın esas amacı Hilbert uzayında tanımlanmış bir kendine-eş diferansiyel 

operatör için bir iz formülü çıkarmaktır. 
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The Regularized Trace of Two Terms Differential Operator in the Space  

H1 = L2 (0,𝝅;𝑯). 

ABSTRACT: The main purpose of this present paper is to derive a trace formula for a selfadjoint 

differential operator which is defined in Hilbert space. 
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INTRODUCTION 

The study of regularized trace of differential operators was started in the 20th century with the work of 

Gelfand and Levitan (Gelfand et al., 1953). They dealt with the Sturm-Liouville type of differential 

equation: 

( )y q x y y   ,        (0) ( ) 0y y     

 and obtained the formula  
0

1
( ) (0) ( )

4
n n

n

q q n 




    ; here 
n

   are the eigenvalues of  this operator 

and 2

n
n   are the eigenvalues of the same operator with ( ) 0q x  . This research provided the basis 

for new and important theory.  

Many scientists focused on trace computation of various differential operators and obtained significant 

results. After the pioneering work by Gelfand and Levitan, Gelfand, Dikiy, Levitan, Gasymov, 

Sadovnichii (Dikiy, 1953; Gelfand et al., 1953; Dikiy, 1955; Gelfand, 1956; Gasymov, 1963; Levitan, 

1964; Sadovnichii, 1966) investigated the regularized trace formulas. The list of these works on the 

subject is given by Sadovnichii and Podol’skii (Sadovnichii et al., 2009). The trace formulas of the 

abstract self-adjoint operators with continuous spectrum were investigated by some authors (Krein, 

1953; Faddeev, 1957; Bayramoglu, 1986). Among the studies , regularized trace formulas for 

differential operators with operator coefficient play an important role  (Adiguzel et al., 2004; Adiguzel 

et al., 2011; Baksi et al., 2017). 

Let H  be a separable Hilbert space. Let L  be the operator in the space 1 2(0, ; )H L H  defined by 

differential expression: 

( )y y Qy    with boundary conditions (0) ( ) 0.y y                                                                (1) 

Assume that the operator ( )Q x  in the expression ( )y  satisfies the conditions: 

( 1)Q  For every [0, ]x  , ( )Q x  is a self-adjoint kernel operator from H to H , and ( )Q x  has second 

order continuous derivative with respect to the norm 1( )H  in [0, ] , 

( 2)Q  3 / 2Q   , 

( 3)Q  There is an orthonormal basis in the space H  such that  
1

( ) f

f

Q x 




  . 

Here, 1( ) :H H H   is the space of kernel operators. The norms in 1H  and H  are denoted by 
1

.

and . . Furthermore, the sum of eigenvalues of a kernel operator Q  is denoted by trQ  traceQ . The 

spectrum and resolvent of the operator L   are denoted by ( )L  and ( )L , respectively. 

Suppose that the operator 0L  formed by differential expression: 

0 ( )y y          with the boundary conditions (0) ( ) 0.y y                                                           (2) 

The spectrum of the operator 0L  is the set 

2

1

1

2
e

e





   
  

   

and every point of this set is an eigenvalue 

with infinite multiplicity. The orthonormal eigenvectors corresponding to eigenvalues 

2

1

2
e
 

 
 

 are in 

the form 

2

2 1
( ) cos . ( 1,2,...)

2
ef f

x e x f 


 
   

 
. 
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Our purpose in this paper is to find the trace equality  
4

2

2

0 1 0

1 (2 1)
( )

2 2
ef

e f

e
e trQ x dx c






 

 

     
      
    

    

 2 2
1

(0) ( ) 2 (0) 2 ( )
8

tr Q Q Q Q                                                      (3) 

for the operator L. Here,  
1ef f





 is the set of the eigenvalues of the operator ,L and belongs to the 

interval  
2 2

1 1
, ( 0,1,2,...)

2 2
e

I e Q e Q e
    

         
     

                                                                      (2) 

and  
2

2

2

0 0

1 1 1
( ) ( ) (0) ( ) .

2 2 2
c trQ x dx tr Q x dx trQ trQ

 


 

 
     

 
                                        

MATERIALS AND METHODS 

Let 0R
 and R  be resolvent operators of  0L  and L . One can prove that if ( )Q x  satisfies the 

condition ( 3),Q  then 0

1 1:QR H H   is a kernel operator for every 

2

1

2
e
 

  
 

   ( 0,1,2,...)e   . Let 

 
1ef f





 be the eigenvalues on eI  of the operator .L   

Theorem 2.1. If ( )Q x  holds the conditions ( 2)Q and ( 3),Q  the spectrum of the operator L  is a 

subset of the intervals eI  which are pairwise disjoint and  

(1) Every point different from 

2

1

2
e
 

 
 

on eI  is a discrete eigenvalue with finite multiplicity in ( )L , 

(2) 

2

1

2
e
 

 
 

 can be an eigenvalue with finite or infinite multiplicity in ( )L , 

(3)

2
1

lim
2

ef
f

e


 
  
 

    ( 0,1,2,...)e  .  

Moreover, one can show that the series

2

1

1

2
ef

f

e




  
   
   

  (e=0,1, 2, …) are absolutely convergent. 

Since 0R R   is a kernel operator in the space 1 1( ),H  the formula 

0

2

0 1

1 1
( )

1

2

e f ef

tr R R

e

 
 



 

 

 
 
   
   

   
  

                                                                                        (3) 



Özlem BAKŞİ 9(3): 1594-1605, 2019 

The Regularized Trace of Two Terms Differential Operator in the Space H1 = L2 (0,𝝅;𝑯) 

 

1597 
 

is true for every ( )L   (Levitan et al., 1991). If we multiply with 
2

2 i




 both sides of “Eq. 5.” and 

integrate on the circle 
2( 1)db d     , we get the following equality 

4

2 0 2

0 1

1 1
( )

2 2
d

d

ef

e fb

tr R R d e
i

 



  




 

  
     

   
  .                                                                           (4) 

By equality 0 0R R R QR       and “Eq. 6.”, we have                                                                            

4
1

2 2 0 0 2 0 0 1

0 1 1

1 ( 1) ( 1)
( ( ) ) ( ( ) )

2 2 2
d d

s Nd N

s N

ef

e f s b b

e tr R QR d tr R QR d
i i

   

 

    
 





    

    
     

  
                        (7) 

where N  is a positive integer. Let 
1

2 0 0( 1)
( )

2
d

s

s

ds

b

K tr R QR d
i

 



 







    ,                                                                                                      (5) 

( ) 0 1( 1)
( )

2
d

N

N N

d

b

K tr R QR d
i

 











    .                                                                                                (6) 

Then “Eq. 7.” becomes  
4

2 ( )

0 1 1

1

2

d N
N

ef ds d

e f s

e K K


  

  
     
   

  .                                                                                            (7) 

Since 0QR
 is a kernel operator for every 

2

1

2
e
 

  
 

 in the space 1 1( ),H  one can prove that 0QR
 is 

analytic with respect to norm in 1 1( )H  in the domain 

2

0

1

2
e

e





  
   

  
 and the formula 

 0
( 1)s

s

ds

bd

K tr QR d
is





 
 


    ,                                                                                                        (8) 

is satisfied. 

RESULTS AND DISCUSSION 

In the last section, a formula for second regularized trace of the operator L  will be found. By “Eq. 

11.” 

  0

1

1
d

bd

K tr R QR d
i

 



 
 

                                                                                                            (12) 

  2

0 1

1
2 ,

2 1

2

ef ef

e f bd

d
Q

i
e



 
 




 

  


 

  
 

                                                                                              (9) 

 2

0 1 0

4 1
cos ( ) ,

2

d

f f

e f

e x Q x dx


 




 

  
   

  
                                                                                         (10) 
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2 2

0 00 0

2 1 2 1
( ) ( )cos 2 1

2 2

d d

e e

e trQ x dx e trQ x e x dx
 

  

   
          

   
                          (11)

 2 ' '

0 0

1 1
(2 1) ( ) (0) ( )

2 2

d

e

d
e trQ x dx trQ trQ




 


       

 ''

0 0

1
( )cos 2 1

2

d

e

trQ x e x dx


 

    .                                                                                                  (12) 

 

We now evaluate 2 ,dK  by “Eq. 11.” 

    
2

0 2 0

2

0 1

1 1
( ) ,

2 2
d d

d ef ef

e fb b

K tr QR d QR d
i i

 

 

     
 

 

  

    .                                                      (13) 

Moreover, we know that 

1
2

0 1
( )( ) .

2
ef ef

QR Q e

  



  
     

  
  and 

 0 2 0 0( ) ( )
ef ef

QR QR QR
  

                                                                                                                 (14) 

1
2

0

1

0 1

1
( , )

2
ef rq rq

r q

e QR Q


   


 

 

    
      

    
                                                              (15) 

1
2

1

2

0 1

( , )1

2 1

2

ef rq rq

r q

Q Q
e

r

  





 

 

 
 

    
                    

 .                                                              (16) 

If we substitute “Eq. 20.” in “Eq. 17.” 

  
2 2 2

0 1 0 1

, ,1

2 1 1

2 2

d

ef rq rq ef

d

e f r qb

Q Q
K d

i
e r



   
 


 

   

   

 
 
 
      
         

       

                                                        (17) 

 
2

2 2

0 1 0 1

1
,

2 1 1

2 2

d

ef rq

e f r q b

d
Q

i
e r



 
 


 

   

    


     

        
     

                                              (18) 

         

2

2 2

2 2

0 1 0 1 0 1 1 1

1

2
, 2 ,

1 1

2 2

d d d

ef rq ef rq

e f r q e f r d q

e

Q Q

e r

   
    

        

 
 

 
 

   
     

   

   

       

2

2

2 2

0 1 1 1

1

2
2 ,

1 1

2 2

d

ef rq

e f r d q

e

Q

e r

 
  

    

 
 

 


   
     

   

                                                                         (19) 
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2

2

2 2

0 1 0 1 0 1 1 1

1
2

2
, 1 ,

1 1

2 2

d d

ef rq ef rq

e f r q e f r d q

e

Q Q

r e

   
     

        

  
  

    
    

      
    

    

 

2

2

2 2

0 1 1 1

1
2

2
1 ,

1 1

2 2

d

ef rq

e f r d q

e

Q

r e

 
  

    

  
  

   
    

      
    


                                                                      (20) 

 

2 2

22

2 2
1

0 1 0 1 1 1

1 1

2 2
,

1 1

2 2

d d

ef ef rq

e f e f r d q

r e

Q Q

r e

 
   

      

   
     

   
  

   
     

   

                                                (21) 

is found. Let 

 

2 2

2

2 2

0 1

1 1

2 2
( , ) , .

1 1

2 2

d

d ef rq

e r d

r e

f q Q

r e

  


  

   
     

   


   
     

   

                                                                               (22) 

Then we get 

2

2 1
0 1 1 1

( , )
d

d ef d

e f f q

K Q f q 
  

   

   .                                                                                                     (23) 

We now investigate ( , )d f q . Since 

2

2

2

0

1
( , ) ( ( ) , ) cos( )

ef rq f q
Q Q x e r xdx



   


                                                           

2

0 0

2
Re ( ( ) , ) cos( ) ( ( ) , ) cos( 1)

f q f q
Q x e r xdx Q x e r xdx

 

   


 
    

 
    

2

2

0

1
( ( ) , )cos( 1)

f q
Q x e r xdx



 


   ,                                                                                              (24) 

then d  is in the form: 

2 2

2

2 22
0 1 0

1 1

1 2 2
( ( ) , ) cos( )

1 1

2 2

d

d f q

e r d

r e

Q x e r xdx

r e
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2 2

2 22
0 1

1 1

2 2 2

1 1

2 2

d

e r d

r e

r e




  

   
     

   


   
     

   

                                                           

0 0

Re ( ( ) , ) cos( ) . ( ( ) , ) cos( 1)
f q f q

Q x e r xdx Q x e r xdx
 

   
 

    
 
     

2 2

2

2 22
0 1 0

1 1

1 2 2
( ( ) , ) cos( 1)

1 1

2 2

d

f q

e r d

r e

Q x e r xdx

r e



 




  

   
     

   
  

   
     

   

  .                                               (25) 

 

If we take 
2 2

2

2

2 21

0 1 0

1 1

2 2
( ( ) , )cos( )

1 1

2 2

d

d f q

e r d

r e

Q x e r xdx

r e



   




  

   
     

   
 

   
     

   

  ,                                                 (26) 

2 2

2 22 2
0 1

1 1

2 2 2

1 1

2 2

d

d

e r d

r e

r e






  

   
     

   


   
     

   

  

0 0

Re ( ( ) , )cos( ) ( ( ) , )cos( 1)
f q f q

Q x e r xdx Q x e r xdx
 

          
,                                                  (27) 

2 2

2

2 23 2
0 1 0

1 1

1 2 2
( ( ) , ) cos( 1)

1 1

2 2

d

d f q

e r d

r e

Q x e r xdx

r e



  




  

   
     

   
  

   
     

   

  ,                                              (28) 

and if we express 
d

  in terms of 
1 2
,

d d
   and 

3d
  in “Eq. 29.”, we have 

1 2 3
( , )

d d d d
f q      . 

Now, we calculate an asymptotic formula for the sum                                                                        

1

1 1

d

f q


 

 

 .                                                                                                                                           (29) 

For any integers 1d   and 1i  , let  ( , ): , ; ; ;
di

E r e r e N r e i e d r d       then one can write 

“Eq. 30.” such that 
2 2

2

2

2 21

1 , 0

1 1

2 2
( ( ) , ) cos( )

1 1

2 2

di

d f q

i e r E

r e

Q x e r xdx

r e



   




 

    
      

     
    

      
    

    

 

   
 

2 2

2

2 2

1 , 0

2 2 1
1 ( ) , cos

2 1 2 1di

f q

i e r E

e
Q x ixdx

r e



  




 

  
   

      
   .                                               (30) 
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Let us calculate the sum 

 

   

2

2 2

,

2 2 1
1

2 1 2 1die r E

e

r e

 
 

    
 .                                                                                                             (31) 

If we take 1i d    

 

   

2
1

2 2

, 0

2 1 2

2 2 4(2 2 1) 42 1 2 1di

i

e r E s

e d i i

d s ir e



 

 
  

    
 

,                                                            (32) 

and 

    

21 1 1

0 0 0

1 1

2 2 2 1 2 22 ( ) 1

i i i

s s s

i i
i i

d s i d dd d s i s

  

  

  
       

   .                                            (33) 

By using “Eq.36.” and “Eq.37.”, we rewrite the sum (35) for 1, 1, 2i d i d      

 

   

2

2 1

2 2
,

2 2 1
1 2 ( )

2 1 2 1die r E

e
d i O d

r e





 
    
    

 .                                                                      (34) 

Here, 
1( )O d 

 which satisfies inequality 
1 10 ( )O d d   ,  depends on d  and i . 

Similarly, for 1i d   , the sum (35) becomes 

 

   

2

2 2

,

2 2 1
1 ( )

2 1 2 1die r E

e
O d

r e

 
  

    
  2d                                                                                (35) 

is obtained, where ( )O d   which satisfies inequality ( ) 4O d d , depends on d  and i . 

Substituting “Eq.38.” and “Eq.39.” into “Eq. 33.”, we get 
2

1

2 2 1

1

1 0

( 2 ( )) ( ( ) , )cos
d

d f q

i

d i O d Q x ixdx


   


 



      

2 2

2 2

2 10 0

( ) ( ( ) , )cos ( 2) ( ( ) , )cos
f q f q

i d i

O d Q x ixdx d Q x ixdx
 

     
 

 

  

        

2 2
1

2 2 1 2

1 20 0

( ) ( ( ) , )cos ( ) ( ( ) , )cos
d

f q f q

i i d

i O d Q x ixdx O d Q x ixdx
 

     
 

  

  

    .                             (36) 

Since 
2 2

2

1 0 0 0

1 1 1
( ( ) , )cos ( ( ) , ) ( ( ) , )

2 2
f q f q f q

i

Q x ixdx Q x dx Q x dx
  

     
 





     ,  

then we substitute last equality in “Eq. 40.”: 

 
2

2

1 2

0 0

2 2
( ) , ( ( ) , )

2 2
d f q f q

d d
Q x dx Q x dx

 

    
 

 
  

2
1

2 2 1

1 0

0( ) ( ( ) , ) cos
d

f q

i

i d Q x ixdx


  


 



    

2
1

2 2

1 0

0( ) ( ( ) , ) cos
d

f q

i

i d Q x ixdx


  






                                                                                           (37) 

is obtained. Substituting “Eq. 41.” into “Eq. 33.”, 
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2

2

1 2
1 1 1 1 1 10 0

2 2
( ) , ( ) ,

2 2
d f q f q

f q f q f q

d d
Q x dx Q x dx

 

    
 

     

     

 
      

 
2

1
2 1

1 1 1 0

( ) ( ) , cos
d

f q

f q i

i O d Q x ixdx


 
  



  

    

 
2

2
1 1 2 0

1
( ) ( ) , cos

f q

f q i d

O d Q x ixdx


 


  

   

   .                                                                   (38) 

Moreover, 

     
2

1
2 1 1

1 1 0

( ) , cos
d

f q

q i

i O d Q x ixdx O d


 
 

 

 

  ,                                                                           (39) 

and 

 
2

1

1 1 2 0

( ) ( ) , cos ( )
f q

f q i d

O d Q x ixdx O d


 
  



   

  ,                                                                            (40) 

are obtained. If we substitute “Eq. 43.” and “Eq. 44.” into “Eq. 42.”, we have 
2

2 1

1 2
1 1 0 0

2 2
( ) ( ) ( )

2 2
d

f q

d d
trQ x dx tr Q x dx O d

 


 

 


 

  
    

 
   .                                                        (41) 

Since ( )Q x  satisfies conditions ( 1) ( 3)Q Q , then 

1

1 1

dk

f q

cd
 



 

  . ( 2,3)k                                                                                                                 (42) 

By using “Eq. 27.”, “Eq. 45.” and “Eq. 46.” 
2

2
2 1

2 2
0 1 0 0

2 2
( ) ( ) ( )

2 2

d

d ef

e f

d d
K Q trQ x dx tr Q x dx O d

 


 




 

  
    

 
                                             (43) 

is obtained. Now, we calculate the sum on the right side of  “Eq. 47.”: 

 
2

2 2

0 1 0 1 0

2 1
cos ( ) ,

2

d d

ef f f

e f e f

Q e x Q x dx


  


 

   

 
  

 
   

 2 2

0 1 10 0

1 1
(1 cos(2 1) ) ( ) , ( ( ) , )

d

f f f f

e f f

d
e x Q x dx Q x dx

 

   
 

 

  


       

2 2 2

0 0 0

1 1 1
( )cos(2 1) ( ) ( )cos(2 1)

d d d
trQ x e xdx trQ x dx trQ x e xdx

  

  

  
                                (44) 

If we substitute “Eq. 48.” in “Eq. 47.” 
2

2 2 1

2 2

0 0 0

1 2
( ) ( ) cos(2 1) ( ) ( )

2 2
d

d d d
K trQ x dx trQ x e xdx tr Q x dx O d

  

  

  
     

 
                         (49) 

On the other hand, one can show there exists 0c   such that  

1 1

0

( )H
QR c

 
                                                                                                                                    (45) 

and 

0 1,R cd



1R cd



  for 
2( 1)

d
b d    .                                                                                (46) 
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From “Eq.9.”, “Eq.11.”, “Eq.50.” and “Eq.51.”, we have 

1 1

0 0 0

( )

1 1
( ) ( ) ( )

d d d

s s sd

ds H

b b b

b
K tr QR d tr QR d QR d

i i s
   

  

    
  

  

       

1 1

0 0 1 1 1 5

( )
( )

d d

s s sd d

H

b b

b cb
QR QR d d d cs d

s s
 

 

 
 

   

 

    ,                                              (47) 

and 

 
1 1

2

( ) 2 0 1 0 1

( )

1
( ) ( )

2 2
d d

N N Nd

d H

b b

b
K tr R QR d R QR d

    

 

  
 

 

 

      

 
1 1 1 1

2 0 1 2 1 0 0 5

( ) ( )
( ) . .

d d

N
N N

d dH H

b b

b R QR d cb d QR QR d cd
    

 

   

 

                                            (48) 

 

 

 

 

From “Eq. 52.” and “Eq. 53.” 

lim 0
dsd

K


      for  6s                                                                                                                         (49) 

and 
( )lim 0N

dd
K


   for   6N                                                                                                                         (55) 

are obtained. 

Theorem 3.1.  If ( )Q x  satisfies the conditions ( 1) ( 3)Q Q , then 

 
4 2

2 2 2

0 1 0

1 (2 1) 1
( ) (0) ( ) 2 (0) 2 ( )

2 2 8
ef

e f

e
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Proof: By “Eq.10.”, “Eq.16.”, and “Eq.49.”, we can write for N=6 

 
4

2 2

0 1 0 00

1 1 1
(2 1) ( ) (0) ( )

2 2 2

d d d

ef

e f e e

e e trQ x dx trQ trQ


 
 



   

  
        

  
    

 

2

2

2
0 0 0 0

1 2
( )cos(2 1) ( ) ( )

2 2 2

d

e

d d
trQ x e xdx trQ x dx tr Q x dx

  

  

  
     

 
     

 
6

2 1 (6)

0 30

1
( )cos(2 1)

d

ds d

e s

trQ x e xdx O d K K






 

                                                                         (56) 

is obtained. From “Eq. 56.”  
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Moreover, we can show that  

lim 0
dsd

K


         ( 3,4,5)s  .                                                                                                                 (58)  

By using “Eq.54.”, “Eq.55.”, “Eq.56.” and “Eq.58.”, as d    
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is found. The theorem is proved. The last equality is called ‘’Second Regularized Trace Formula for 

Self- Adjoint Differential Operator’’. 

CONCLUSION 

In this work, we consider the self-adjoint operator with bounded operator coefficient in the 

infinite dimensional Hilbert space. In early studies on this subject, the coefficient of a self-adjoint 

operator has been considered as a scalar function. However, it is more important to have the operator 

coefficient for a self-adjoint operator in these type studies. 
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