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ABSTRACT. In this paper, we introduce the generalized exponential sampling series of bivariate functions and es-
tablish some pointwise and uniform convergence results, also in a quantitative form. Moreover, we study the pointwise
asymptotic behaviour of the series. One of the basic tools is the Mellin–Taylor formula for bivariate functions, here
introduced. A practical application to seismic waves is also outlined.
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1. INTRODUCTION

The classical exponential sampling series of a function f : R+ → C, in one dimensional case,
represents a tool of relevant interest for optical phenomena, for example the light scattering
and Fraunhofer diffraction, see e.g. [17, 11, 18] and [23].

It is defined by

(Ec,T f)(x) :=

∞∑
k=−∞

f(ek/T )linc/T (e−kxT ), T > 0, x ∈ R+.

The linc−function for c ∈ R, linc : R+ → R, is defined, for x ∈ R+ \ {1}, by

linc(x) =
x−c

2πi

xπi − x−πi

log x
= x−csinc(log x) =

x−c

2π

∫ π

−π
x−itdt,

with the continuous extension linc(1) := 1.
Here, the "sinc" function, as usual, is defined by

sinc(u) :=
sin(πu)

πu
, u 6= 0, sinc(0) = 1.

The exponential sampling theorem for Mellin band-limited functions states that

(Ec,T f)(x) = f(x)

at every point x, and the series is absolutely and uniformly convergent on every compact inter-
val of R+. A rigorous treatment of this theorem by a mathematical point of view was given in
[14, 3, 10]. This theorem represents a Mellin version of the classical Shannon sampling theorem
of Fourier analysis ([20, 27]).
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Note that, the exponential sampling theorem was framed in the field of the Mellin transform
theory, which was first introduced in [22] and then developed in a systematic way in [13].

Now, as it happens for the Fourier band-limited functions, the assumption that f is Mellin
band-limited is very restrictive, due to the Mellin–Paley–Wiener theorem (see [4], [5]). There-
fore, in a recent paper [7] it was studied a generalization of the one dimensional exponential
sampling theorem where the linc function is replaced by an arbitrary function ϕ satisfying
suitable assumptions in an analogous way as for the generalized sampling series of Fourier
analysis (see [15, 16, 6, 21, 2, 1]). In this way, we obtained an approximate reconstruction of a
not necessarily Mellin band-limited function f.

The aim of this paper is to introduce a multivariate version of the generalized exponential
sampling theorem in order to obtain new interesting applications to the study of the seismic
waves. In this respect, for a sake of simplicity, we limit ourselves to consider the two dimen-
sional case, being the general case carried on analogously.

Our main theoretical results concern the pointwise and uniform convergence and the study
of the pointwise order of approximation through a bivariate asymptotic Voronovskaja formula.
Basic tools are a two dimensional Mellin–Taylor formula, established in Section 3 both in the
local and global version, and a notion of logarithmic modulus of continuity here introduced as
a generalization of one dimensional case (see [8, 9]).

In Section 6, we give two important examples of bivariate kernel functions satisfying the
required assumptions, namely the bivariate Mellin splines and the Mellin–Fejer kernels.

The last section is devoted to the study of the magnitude of an earthquake through the
behaviour of the seismic waves.

We wish to dedicate this paper to the memory of our very close friend and colleague Pro-
fessor Domenico Candeloro who passed away in May. He was a fine mathematician who com-
bined his deep mathematical culture with a great modesty, a trait of his character that makes
him an unforgettable person.

2. PRELIMINARIES

Let us denote by N2, N2
0 and Z2 the sets of vectors k = (k1, k2) with k1, k2 positive integers,

nonnegative integers and integers respectively and we set [|k|] := k1 + k2. Moreover, by R2 we
will denote the two dimensional Euclidean space comprising all vectors (x1, x2) with x1, x2 ∈
R.

Given x = (x1, x2),y = (y1, y2) ∈ R2 we will say that x > y if and only if xi > yi for i = 1, 2
and we will denote by 1 := (1, 1), 0 := (0, 0) and by R2

+ the space of all vectors x > 0.
Given x,y ∈ R2 and α ∈ R we put as usual: x+ y := (x1 + y1, x2 + y2) and αx := (αx1, αx2).

We will employ the following notations: xy := (x1y1, x2y2),
x

y
:= (

x1
y1
,
x2
y2

) (for y1, y2 6= 0),

[x] := (|x1|, |x2|), αx := (αx1 , αx2) with α > 0, and xy :=
2∏
i=1

xyii , log(x) := (log x1, log x2) with

x > 0.
We set ‖x‖ :=

√
x21 + x22, and the Euclidean distance d(x, y) := ‖x− y‖.

For w = (w1, w2) ∈ R2
+, by w→∞we mean w := min{w1, w2} → +∞.

Let J be an interval, bounded or not. We will denote by C(J) the space of all continuous and
bounded functions on J, by Cc(J) the space of all continuous functions with compact support.
Moreover, for m ∈ N, by C(m)(J) we denote the subspace of C(J) comprising all functions f
with the derivatives up to the order m in C(J).

Now, we introduce the following notion of continuity. We will say that a function f : J → C
is log-uniformly continuous on J if for every ε > 0 there exists δ(ε) > 0 such that |f(x)−f(y)| <
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ε, whenever x,y ∈ R2
+ with ‖ log(x) − log(y)‖ ≤ δ(ε). We will denote by C(J) the space of all

log-uniformly continuous and bounded functions on J.
Note that for compact intervals J ⊂ R2

+ the notion of log-uniform continuity is equivalent
to the classical uniform continuity.

Finally, we will say that a function f : J → C belongs to C(m)(J) locally at a point x ∈ J
if there is a neighbourhood I of x such that f is (m − 1)-times differentiable on I and the
derivative f (m)(x) exists.

3. TWO-DIMENSIONAL MELLIN–TAYLOR FORMULAE

We begin with the notion of partial derivatives of a function f : R2
+ → C in the Mellin frame.

The first partial Mellin derivative of f with respect to the variable xi, i = 1, 2 at the point
x = (x1, x2) is given by

Θxif(x) := xi
∂f(x)

∂xi
.

For a given k = (k1, k2) ∈ N2
0 we define the partial Mellin derivatives of order r = [|k|] =

k1 + k2 at the point x as

(3.1) Θr

x
k1
1 x

k2
2

f(x) := Θk1
x1

(Θk2
x2
f)(x).

We will put Θ1
xi
f(x) := Θxi

f(x) e Θ0
xi
f(x) := f(x).

Note that for example,

Θ2
xi

= Θxi
(Θxi

f)(x) = xi
∂f(x)

∂xi
+ x2i

∂2f(x)

∂x2i
.

In order to extend the one-dimensional Mellin–Taylor formulae introduced in [8] to the bi-
variate case we will use the following notation. For a given x = (x1, x2) and t = (t1, t2) we
set

(Θx1
log t1 + Θx2

log t2)mf(x1, x2)(3.2)

:=
m∑
k=0

(
m

k

)
Θm−k
x1

(Θk
x2
f)(x1, x2) logm−k t1 logk t2

with m ∈ N and f ∈ C(m)(R2
+) locally in (x1, x2).

For example for m = 2 we obtain

(Θx1
log t1 + Θx2

log t2)2f(x1, x2) =

Θ2
x1
f(x1, x2) log2 t1 + 2Θx1

(Θx2
f)(x1, x2) log t1 log t2 + Θ2

x2
f(x1, x2) log2 t2.

We have the following proposition.

Proposition 3.1. Let f : R2
+ → C be a function in C(m)(R2

+) with m ∈ N. Then for x = (x1, x2) ∈
R2

+ and t = (t1, t2) ∈ R2
+, we have

f(t1x1, t2x2) =f(x1, x2) + (Θx1
log t1 + Θx2

log t2)f(x1, x2)+

1

2!
(Θx1 log t1 + Θx2 log t2)2f(x1, x2) + . . .+

1

(m− 1)!
(Θx1

log t1 + Θx2
log t2)m−1f(x1, x2) +Rm(t1, t2),
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with Lagrange remainder

Rm(t1, t2) =
1

m!
(Θx1 log t1 + Θx2 log t2)mf(θ, η),

where (θ, η) is a suitable point in the segment Lt1,t2 with end points (x1, x2), (t1x1, t2x2).

Proof. We prove the case m = 2. For the general case one can apply (3.2).
Let us take the function F (t) = f(t1

log tx1, t2
log tx2) with t ∈ [1, e]. Applying the one dimen-

sional Mellin–Taylor formula with Lagrange remainder, we obtain

F (t) = F (1) + ΘF (1) log t+
Θ2F (t̃)

2
log2 t

with t̃ ∈]1, e[. We have

ΘF (t) =
∂f

∂x1
(t1

log tx1, t2
log tx2)x1t1

log t log t1 +
∂f

∂x2
(t1

log tx1, t2
log tx2)x2t2

log t log t2

and for t = 1 we obtain

ΘF (1) = Θx1f(x1, x2) log t1 + Θx2f(x1, x2) log t2 = (Θx1 log t1 + Θx2 log t2)f(x1, x2).

Analogously for Θ2F (t) = tF ′(t) + t2F ′′(t), we have

Θ2F (t) =
∂2f

∂x21
(t1

log tx1, t2
log tx2)x21t1

2 log t log2 t1 +
∂2f

∂x22
(t1

log tx1, t2
log tx2)x22t2

2 log t log2 t2+

2
∂2f

∂y∂x1
(t1

log tx1, t2
log tx2)x1x2(t1t2)

log t
log t1 log t2+

∂f

∂x1
(t1

log tx1, t2
log tx2)x1t1

log t log2 t1 +
∂f

∂x2
(t1

log tx1, t2
log tx2)x2t2

log t log2 t2

and for t = t̃

Θ2F (t̃)

2
=

1

2

{(∂2f
∂x21

(θ, η)θ2 +
∂f

∂x1
(θ, η)θ

)
log2 t1 +

(∂2f
∂x22

(θ, η)η2 +
∂f

∂x2
(θ, η)η

)
log2 t2

+ 2
∂2f

∂x1∂x2
(θ, η)θη log t1 log t2

}
,

with (θ, η) = (tlog t̃1 x1, t
log t̃
2 x2) ∈ Lt1,t2 .

Now, using the definition of the partial Mellin derivative, we have the formulae

∂2f

∂x21
(θ, η)θ2 = [Θ2

x1
f(θ, η)−Θx1

f(θ, η)],

∂2f

∂x22
(θ, η)η2 = [Θ2

x2
f(θ, η)−Θx2

f(θ, η)],

∂2f

∂x1∂x2
(θ, η)θη = Θx1

(Θx2
f)(θ, η),

then
Θ2F (t̃)

2
=

1

2
(Θx1 log t1 + Θx2 log t2)2f(θ, η).

So the assertion follows. �

By Proposition 3.1, we can deduce a local version of the Mellin–Taylor formula, namely a
formula with the Peano remainder. It is based on the following proposition
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Proposition 3.2. Under the same assumptions and notations of Proposition 3.1 there holds

lim
(t1,t2)→(1,1)

(Θx1 log t1 + Θx2 log t2)mf(θ, η)− (Θx1 log t1 + Θx2 log t2)mf(x1, x2)

(log2 t1 + log2 t2)m/2
= 0.

Proof. We consider the case m = 2, the general case is carried on in a similar way. Setting

I :=
∣∣(Θx1 log t1 + Θx2 log t2)2f(θ, η)− (Θx1 log t1 + Θx2 log t2)2f(x1, x2)

∣∣,
we have

I ≤ |Θ2
x1
f(θ, η)−Θ2

x1
f(x1, x2)| log2 t1

+ 2|Θx1
(Θx2

f)(θ, η)−Θx1
(Θx2

f)(x1, x2)|| log t1 log t2|
+ |Θ2

x2
f(θ, η)−Θ2

x2
f(x1, x2)| log2 t2,

and hence
I

log2 t1 + log2 t2
≤|Θ2

x1
f(θ, η)−Θ2

x1
f(x1, x2)|+ |Θx1

(Θx2
f)(θ, η)−Θx1

(Θx2
f)(x1, x2)|+

|Θ2
x2
f(θ, η)−Θ2

x2
f(x1, x2)|.

Taking into account that (θ, η) ∈ Lt1,t2 the assertion follows from the assumption f ∈ C(2)(R2
+).
�

By Proposition 3.2, we can write the local form of the Mellin–Taylor formula as

f(t1x, t2y) =f(x1, x2) + (Θx1
log t1 + Θx2

log t2)f(x1, x2)+

1

2!
(Θx1

log t1 + Θx2
log t2)2f(x1, x2) + . . .+

1

m!
(Θx1

log t1 + Θx2
log t2)mf(x1, x2) +Rm(t1, t2),

with the Peano remainder

Rm(t1, t2) = H(t1, t2)(log2 t1 + log2 t2)m/2,

where H(t1, t2) is a bounded function such that lim(t1,t2)→(1,1)H(t1, t2) = 0.

Remark 3.1. Note that setting t = (t1, t2), x = (x1, x2) we can write

Rm(t) = H(t)‖ log(tx)− log x‖m.
Moreover, it is not difficult to see that the local version of the Mellin–Taylor formula can be
proved under the more general assumptions f ∈ C(m)(R2

+) locally at the point x.

4. BIVARIATE GENERALIZED SAMPLING OPERATOR

Let ϕ : R2
+ → R be a continuous function such that

(ϕ.1)
∑
k∈Z2

ϕ(e−kx) =
∑

(k1,k2)∈Z2

ϕ(e−k1x1, e
−k2x2) = 1 for every x = (x1, x2) ∈ R2

+;

(ϕ.2) there holds
M0(ϕ) := sup

x∈R2
+

∑
k∈Z2

|ϕ(e−kx)| < +∞;

(ϕ.3) lim
r→+∞

∑
‖k−log(x)‖≥r

|ϕ(e−kx)| = 0, uniformly with respect to x.
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Let Φ be the class of all functions ϕ satisfying the above assumptions.
Let j = (j1, j2) ∈ N2

0 and let ν = [|j|]. For x ∈ R2
+, we define the moments of order j of ϕ ∈ Φ

as

mν
j (ϕ, x) :=

∑
k∈Z2

ϕ(e−kx) logj(ekx−1) =
∑
k∈Z2

ϕ(e−kx)(k− log(x))j

=
∑

(k1,k2)∈Z2

ϕ(e−k1x1, e
−k2x2)(k1 − log x1)j1(k2 − log x2)j2 .

The absolute moments of order j of ϕ ∈ Φ are defined as

Mν
j (ϕ, x) :=

∑
k∈Z2

|ϕ(e−kx)|[log(ekx−1)]j =
∑
k∈Z2

|ϕ(e−kx)|[k− log(x)]j

=
∑

(k1,k2)∈Z2

|ϕ(e−k1x1, e
−k2x2)||k1 − log x1|j1 |k2 − log x2|j2 .

Finally, we set Mν
j (ϕ) := sup

x∈R2
+

Mν
j (ϕ, x).

Let ϕ ∈ Φ. For any w > 0, w = (w1, w2) and f : R2
+ → C, we define the generalized exponen-

tial series as

(4.3) (Eϕw f)(x) :=
∑
k∈Z2

f(e
k
w )ϕ(e−kxw) =

∑
(k1,k2)∈Z2

f(e
k1
w1 , e

k2
w2 )ϕ(e−k1xw1

1 , e−k2xw2
2 )

for x = (x1, x2) ∈ R2
+ and for any function f ∈ domEϕw , being domEϕw the set of all functions

f for which the series is absolutely convergent on every x. Using the conditions of the class Φ,
it is easy to see that the above operator is well defined as an absolutely convergent series, for
any bounded function f. In particular C(R2

+) ⊂ domEϕw , for any w > 0.

We begin with the following pointwise convergence theorem.

Theorem 4.1. Let f ∈ C(R2
+) and ϕ ∈ Φ. Then

(4.4) lim
w→∞

∑
k∈Z2

f(e
k
w )ϕ(e−kxw) = f(x), for x ∈ R2

+.

Proof. Since ϕ ∈ Φ, we have∣∣∣ ∑
k∈Z2

f(e
k
w )ϕ(e−kxw)− f(x)

∣∣∣ ≤ ∑
k∈Z2

|f(e
k
w )− f(x)||ϕ(e−kxw)|.

For a fixed ε > 0, by the continuity of f at x, there exists δ = δ(ε) > 0 such that if ‖ log(x) −
log(e

k
w )‖ = ‖ log(x)− k

w
‖ < δ, then |f(x)− f(e

k
w )| < ε. We write∑

k∈Z2

|f(e
k
w )− f(x)||ϕ(e−kxw)|

=

{ ∑
‖ k
w
−log(x)‖<δ

+
∑

‖ k
w
−log(x)‖≥δ

}
|f(e

k
w )− f(x)||ϕ(e−kxw)| =: I1 + I2.
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Now by assumption (ϕ.2), we have immediately I1 ≤M0(ϕ) ε. As to I2 by the boundedness
of f and (ϕ.3), taking into account that

‖k
w
− log(x)‖ ≤ ‖k− log(xw)‖

w
,

we have, for sufficiently large w,

I2 =
∑

‖ k
w
−log(x)‖≥δ

|f(e
k
w )− f(x)||ϕ(e−kxw)| ≤ 2‖f‖∞

∑
‖k−log(xw)‖≥δw

|ϕ(e−kxw)| < 2‖f‖∞ε,

and so the assertion follows. �

Using essentially the same reasoning employed in the previous theorem, we can prove the
following uniform convergence result.

Theorem 4.2. Let f ∈ C(R2
+) and ϕ ∈ Φ,then

(4.5) lim
w→∞

∥∥ ∑
k∈Z2

f(e
k
w )ϕ(e−kxw)− f(x)

∥∥
∞ = 0.

5. ESTIMATION OF THE ERROR OF APPROXIMATION

We premise the following notion. The logarithmic modulus of continuity of f ∈ C(R2
+) is

defined, for δ > 0, by

ω(f, δ) := sup{|f(x)− f(y)| : x, y ∈ R2
+, ‖ log(x)− log(y)‖ ≤ δ}.

This modulus satisfies all the properties of the one dimensional logarithmic modulus of con-
tinuity (see [9]). In particular, it is a monotone increasing function of δ > 0 and the following
inequality holds, for λ > 0

ω(f, λδ) ≤ (1 + λ)ω(f, δ).(5.6)

We have the following theorem.

Theorem 5.3. If f ∈ C(R2
+), ϕ ∈ Φ, and

D := sup
x∈R2

+

∑
k∈Z2

|ϕ(e−kx)|‖k− log x‖ < +∞,

then for w > 0 and δ > 0, we have∣∣∣ ∑
k∈Z2

f(e
k
w )ϕ(e−kxw)− f(x)

∣∣∣ ≤M0(ϕ)ω(f, δ) +D
ω(f, δ)

δw
.

Proof. Using that ϕ ∈ Φ, (5.6) and the inequality

‖k
w
− log(x)‖ ≤ ‖k− log(xw)‖

w
,

we have

|Eϕw f(x)− f(x)| ≤ ω(f, δ)
( ∑

k∈Z2

|ϕ(e−kxw)|+
∑
k∈Z2

|ϕ(e−kxw)| ‖k− log(xw)‖
δw

)
≤ ω(f, δ)M0(ϕ) +

ω(f, δ)

δw
D

and so the assertion follows. �
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As a corollary we can prove

Corollary 5.1. Under the assumptions of Teorem 5.3 there holds

(5.7)
∣∣∣ ∑
k∈Z2

f(e
k
w )ϕ(e−kxw)− f(x)

∣∣∣ ≤ C(ϕ)ω
(
f,

1

w

)
.

Proof. Applying Theorem 5.3 with δ =
1

w
, we obtain

|Eϕw f(x)− f(x)| ≤ ω
(
f,

1

w

)
M0(ϕ) + ω

(
f,

1

w

)
D.

Setting C(ϕ) = M0(ϕ) +D we have the assertion. �

Now, we obtain estimations of the order of approximation under some local regularity as-
sumptions on the function f. In order to do that we will need further assumptions on the kernel
function ϕ, i.e., there exists ` ∈ N such that for every j ∈ N2

0, [|j|] ≤ `

(ϕ.4) m[|j|]
j (ϕ, x) =: m

[|j|]
j (ϕ) is independent of x;

(ϕ.5) M [|j|]
j (ϕ) < +∞ and

lim
r→+∞

∑
‖k−log(x)‖>r

|ϕ(e−kx)| ‖(k− log(x))‖` = 0,

uniformly with respect to x.

Remark 5.2. Since for any j = (j1, j2) ∈ N2
0 and any vector v = (v1, v2) ∈ R2

+ we have [v]j ≤
‖v‖j, we deduce immediately that assumption (ϕ.5) implies that

lim
r→+∞

∑
‖k−log(x)‖>r

|ϕ(e−kx)| [k− log(x)][|j|] = 0,

uniformly with respect to x, for every j with [|j|] ≤ `.

We denote by Φ` the set of functions ϕ satisfying conditions (ϕ.1), (ϕ.4), (ϕ.5).

We have the following result, in which we assume ` = 2.

Theorem 5.4. Let f : R2
+ → C be a function such that f ∈ C(2)(R2

+) locally at the point x =
(x1, x2) ∈ R2

+. If ϕ ∈ Φ2, then for w = (w1, w2) > 0,

(Eϕ(w1,w2)
f)(x1, x2)− f(x1, x2) =

2∑
ν=1

∑
[|h|]=ν

(Θνf(x1, x2
ν!

mν
h(ϕ)

wh

)
+ o(w−2).
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Proof. Since ϕ ∈ Φ2, applying the Mellin–Taylor formula of the second order with local remain-
der, we can write

(Eϕ(w1,w2)
f)(x1, x2)− f(x1, x2) =

∑
(k1,k2)∈Z2

ϕ(e−k1xw1
1 , e−k2xw2

2 )

(
(Θx1

log(
e

k1
w1

x1
)+

Θx2 log(
e

k2
w2

x2
))f(x1, x2) +

1

2
(Θx1 log(

e
k1
w1

x1
) + Θx2 log(

e
k2
w2

x2
))2f(x1, x2)+

H(
e

k1
w1

x1
,
e

k2
w2

x2
)(log2(

e
k1
w1

x1
) + log2(

e
k2
w2

x2
))

)
=

1

w1
Θx1

f(x1, x2)m1
(1,0)(ϕ) +

1

w2
Θx2

f(x1, x2)m1
(0,1)(ϕ) +

1

2

1

w2
1

Θ2
x1
f(x, y)m2

(2,0)(ϕ)+

1

2

1

w2
2

Θ2
x2
f(x1, x2)m2

(0,2)(ϕ) +
1

w1

1

w2
Θx1

(Θx2
f)(x1, x2)m2

(1,1)(ϕ)+

∑
(k1,k2)∈Z2

ϕ(e−k1xw1
1 , e−k2xw2

2 )H
(e k1

w1

x1
,
e

k2
w2

x2

)(
log2

(e k1
w1

x1

)
+ log2

(e k2
w2

x2

))

=

2∑
ν=1

∑
|h|=ν

(Θνf(x1, x2)

ν!

mν
h(ϕ)

wh

)
+

∑
(k1,k2)∈Z2

ϕ(e−k1xw1
1 , e−k2xw2

2 )H
(e k1

w1

x1
,
e

k2
w2

x2

)(
log2

(e k1
w1

x1

)
+ log2

(e k2
w2

x2

))
.

Here, H(t1, t2) tends to zero, for (t1, t2)→ (1, 1). Thus, for a given, ε > 0 there is δ > 0 such
that

H
(ek1/w1

x1
,
ek2/w2

x2

)
< ε,

whenever ‖ log(ek/w)− log(x)‖ < δ.
Setting

R :=
∑

(k1,k2)∈Z2

ϕ(e−k1xw1
1 , e−k2xw2

2 )H
(e k1

w1

x1
,
e

k2
w2

x2

)(
log2

(e k1
w1

x1

)
+ log2

(e k2
w2

x2

))
,

taking into account that

‖k
w
− log(x)‖ ≤ ‖k− log(xw)‖

w

as in Theorem 4.1, we obtain

w2|R| ≤
∑

(k1,k2)∈Z2

|ϕ(e−k1xw1
1 , e−k2xw2

2 )|
∣∣∣H(e k1

w1

x1
,
e

k2
w2

x2

)∣∣∣‖k− log(xw)‖2

≤

 ∑
‖ k
w
−log(x)‖<δ

+
∑

‖k−log(xw)‖≥δw

 |ϕ(e−k1xw1
1 , e−k2xw2

2 )|
∣∣∣H(e k1

w1

x1
,
e

k2
w2

x2

)∣∣∣‖k− log(xw)‖2

=: S1 + S2.
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As to S1, denoting M2(ϕ) := max[|j|]=2M
2
j (ϕ), we have easily S1 ≤ 3M2(ϕ)ε, while for S2, by

(ϕ.5) and the boundedness of H, we obtain S2 ≤ ‖H‖∞ ε. Thus the proof is complete. �

6. SOME EXAMPLES

In [7] the one-dimensional generalized exponential sampling series was introduced, in which
the generating (one-dimensional) kernel φ : R+ → R satisfies the assumptions:

(φ.1)
∑
k∈Z

φ(e−kx) = 1 for every x ∈ R+,

(φ.2) sup
x∈R+

∑
k∈Z
|φ(e−kx)| < +∞;

(φ.3) lim
r→+∞

∑
|k−log(x)|>r

|φ(e−kx)| = 0, uniformly with respect to x.

We will denote by Ψ the set comprising all functions φ : R+ → R satisfying (φ.1), (φ.2) and
(φ.3). Using a product of two such functions, we can construct examples of two-dimensional
kernel ϕ ∈ Φ. In this respect we have the following proposition.

Proposition 6.3. If φ1, φ2 ∈ Ψ are bounded, then Γ(x1, x2) := φ1(x1)φ2(x2) ∈ Φ.

Proof. Assumptions (ϕ.1) and (ϕ.2) are immediate, applying (φ.1) and (φ.2). As to (ϕ.3), note
that if ‖(k1− log(x1), k2− log(x2))‖ > r, then r < ‖(k1− log(x1), k2− log(x2))‖ ≤ |k1− log(x1)|+
|k2 − log(x2)|. Therefore,

lim
r→+∞

∑
||(k1−log(x1),k2−log(y))||>r

|ϕ1(e−k1x)ϕ2(e−k2x2)|

≤ lim
r→+∞

∑
|k1−log(x1)|+|k2−log(x2)|>r

|ϕ1(e−k1x)ϕ2(e−k2x2)|.

For a fixed x = (x1, x2) ∈ R2
+ and r > 0, we set

A := {(k1, k2) : |k1 − log(x1)|+ |k2 − log(x2)| > r};

B1 := {(k1, k2) : |k1 − log(x1)| > r

2
}, B2 := {(k1, k2) : |k2 − log(x2)| > r

2
}

and B := B1 ∪B2. Since A ⊂ B, we have

lim
r→+∞

∑
(k1,k2)∈A

|ϕ1(e−k1x1)ϕ2(e−k2x2)| ≤ lim
r→+∞

∑
(k1,k2)∈B

|ϕ1(e−k1x1)ϕ2(e−k2x2)|

≤ lim
r→+∞

∑
(k1,k2)∈B1

|ϕ1(e−k1x1)ϕ2(e−k2x2)|+ lim
r→+∞

∑
(k1,k2)∈B2

|ϕ1(e−k1x1)ϕ2(e−k2x2)|.

By the boundedness of the functions φ1 and φ2 and by (φ.3), we obtain easily (ϕ.3). �

Making use of Proposition 6.3, we costruct some box-type kernel, using the product of two
classical one-dimensional kernels.

Example 6.1. Denoting by r+ the positive part of a number r ∈ R, for n ∈ N, we define the
(one-dimensional) Mellin spline of order n, as (see [7, 10]

(6.8) Bn(x) :=
1

(n− 1)!

n∑
j=0

(−1)j
(
n

j

)
(
n

2
+ log x− j)n−1+ , (x ∈ R+).
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These kernel functions are the Mellin version of the classical central B-splines see [25]. The
functions Bn are compactly supported, and satisfy all the assumptions of the class Ψ (see [7]).
Using these functions we can define, for n,m ∈ N,

(6.9) Bn,m(x1, x2) := Bn(x1)Bm(x2).

By Proposition 6.3, the kernel Bn,m ∈ Φ. In particular, for n = m = 2, we obtain

B2,2(x1, x2) =



(1 + log x1)(1 + log x2), e−1 < x1, x2 < 1

(1− log x1)(1 + log x2), 1 < x1 < e, e−1 < x2 < 1

(1 + log x1)(1− log x2), e−1 < x1 < 1, 1 < x2 < e

(1− log x1)(1− log x2), 1 < x1, x2 < e

0, otherwise.

Example 6.2. Another interesting example, is given by the product of two one-dimensional
Mellin–Fejer kernels, which are defined for any ρ > 0, c ∈ R and x ∈ R+ by (see [7, 10])

(6.10) F cρ (x) :=


x−c

2π
ρ sinc2(

ρ

π
log
√
x), x 6= 1

ρ

2π
, x = 1

.

We have F cρ ∈ Ψ and using again Proposition 6.3, we see that the kernel

(6.11) F c1,c2ρ1,ρ2 (x1, x2) = F c1ρ1 (x1)F c2ρ2 (x2) (x1, x2) ∈ R2
+,

with ρ1, ρ2 > 0, c1, c2 ∈ R, belongs to the class Φ.

Remark 6.3. As remarked in [7], the one-dimensional Mellin–Fejer kernel does not satisfy the
(one-dimensional) moment condition

M̃1(φ) := sup
x∈R+

∞∑
k=−∞

|ϕ(e−kx)| |k − log x| < +∞.

Therefore, in [7, 10] a suitable modification of the kernel was studied, introducing the so-called
Mellin–Jackson kernels, which satisfy the above condition. Thus, one can obtain other interest-
ing examples, by considering the product of two Mellin–Jackson kernels.

7. SEISMIC WAVES AND EXPONENTIAL SAMPLING

Due to their nature and their way of propagation, seismic waves can be modeled using
exponential functions. Seismic waves, due to the continuous and natural movements of the
terrestrial plates, originate from a point at a certain depth into the ground, this point called
hypocenter, and develop for several kilometers, being attenuated thanks to the elastic proper-
ties of the medium they cross. The projection of the hypocenter on the heart surface is called
epicenter and it is the point of maximum amplitude of the seismic wave. For a given direction
θ ∈ [−π, π] in the horizontal plane, the definition of amplitude A(R, θ) of a seismic wave, used
in this work, is the variation, measured in mm, registered by a standard Wood-Anderson seis-
mograph at a certain distance R from the epicenter. Connected with the definition of A(R, θ) is
the formalization of the Local Magnitude LM(R, θ) [12], needed to measure the intensity of an
earthquake according to the Richter scale [19, 24]:

(7.12) LM(R, θ) := log10A(R, θ)− log10A0(R, θ),
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where log10A0(R, θ) is a calibration function such that, for R = 100Km and in whatever direc-
tion θ, log10A0(100, θ) = 3. We assume the model to be symmetric with respect to the epicenter
that is located in the center of the axis ((0,0) coordinates).

The model derived in [12], based on the dataset provided by ISNet (Irpinia Seismic Net-
work), has been used to test how the mathematical theory approximates real data. ISNet is a
network of 27 stations located in the South of Italy, along the Apennines chain [26]. In the ISNet
dataset the epicenter distanceR has been substituted with the hypocenter distance, committing
an error of less than 1%, approximation possible thanks to the reduced depth (<20 Km) of the
hypocenter in the ISNet data. To approximate the real data the following model has been used:

(7.13) LM(R, θ) = log10A(R, θ)− α log10R− kR− β

where α = −1.79, β = 0.58, k = 0. The values of the parameters have been achieved consid-
ering a minimization criteria, according to the elastic structural parameters characterizing the
area monitored by the ISNet network. In the light of the previous considerations, the model
assumes the form (see [12] for all the details):

(7.14) LM(R, θ) = log10A(R, θ) + 1.79 log10R− 0.58

from which, in case of invertibility, we can write the inverse formulation:

A(R, θ, LM) = 10(LM(R, θ)− 1.79 log10R+ 0.58),

or equivalently in cartesian coordinates:

A(R1, R2, LM) = 10(LM(R1, R2)− 1.79 log10 arctan(R1/R2) + 0.58),

where R1 and R2 are, respectively, the horizontal and vertical cartesian axis such that R =
arctan(R1/R2), R1 = R cos(θ), R2 = R sin(θ). Fixed a value for LM(R1, R2), it is possible to
calculate A(R1, R2) and to approximate it with an exponential sampling operator, defined as:

(7.15) (Eϕ(w1,w2)
A)(R1, R2) =

∑
(k1,k2)∈Z2

A(e
k1
w1 , e

k2
w2 )ϕ(e−k1R1

w1 , e−k2R2
w2),

with R1, R2 integers.

Finally, a quantification of the reconstruction absolute mean error AME has been provided
introducing the following error estimator

AME :=
1

N1N2

N1∑
R1=0

N2∑
R2=0

|(Eϕ(w1,w2)
A)(R1, R2)−A(R1, R2)|.

In the previous expression N1 and N2 are the number of points in the two main cartesian
axis directions, N1 × N2 being the total number of the samples in the grid and R1 ∈ [0, N1],
R2 ∈ [0, N2].

Chosen LM = 2.7 in the ISNet dataset, we achieve, for bivariate Mellin–Fejer kernels, the
numerical values shown in table 1, where only a single row of the approximating matrix is
reported for practical reasons. Other rows of the same matrix exhibit the same trend. Us-
ing Mellin Splines kernels, we achieve better approximation results (see table 2). In any case,
increasing w1, w2, N1, N2 we observe as AME decreases, whatever kernel being used in the
approximation formula.
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A N=15, w=5 N=30, w=10 N=60, w=20
918.4869 2016.2750 1420.2633 1182.1876
907.7103 1545.3763 1213.2350 1064.3751
890.3316 1319.0114 1090.6358 990.5768
867.1510 1169.1624 998.5332 932.5291
839.1579 1046.1715 926.9082 880.6653
807.4335 945.1902 861.7557 832.4209
773.0601 862.8483 803.7728 786.1427
737.0491 794.8578 752.2213 741.7739
700.2923 737.3727 704.8035 698.9664
663.5358 687.5171 660.3791 658.5373
627.3745 643.3295 618.9350 619.9301
592.2586 603.5319 580.7086 583.3547
558.5099 567.3041 545.7103 549.1905
526.3414 534.1130 513.6886 517.2242
495.8780 503.5975 484.2704 487.1994
467.1756 475.4960 457.0936 459.1393
440.2385 449.6028 431.8738 433.1069
415.0331 425.7436 408.4140 408.9969
391.4999 403.7617 386.5841 386.5923
369.5621 383.5117 366.2922 365.7069

TABLE 1. In the first column of the table the values of the 15th row of the real
data for LM = 2.7. In the following columns, from left to right, the recon-
structed data with bivariate Mellin–Fejer kernels with N = N1 = N2, w =
w1 = w2 respectively equal to 15, 30, 60 and 5, 10, 20.
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A N=15, w=5 N=30, w=10 N=60, w=20
918.4869 919.7995 919.1974 918.8313
907.7103 908.9871 908.3652 908.0278
890.3316 891.5131 890.9341 890.6223
867.1510 867.3503 867.5869 867.3689
839.1579 838.9015 839.5563 839.3507
807.4335 806.7726 807.6950 807.5622
773.0601 772.5943 772.9821 773.1665
737.0491 736.8876 737.0027 737.0632
700.2923 699.0600 700.4001 700.3419
663.5358 663.8368 663.6755 663.5998
627.3745 626.2857 627.4080 627.3887
592.2586 592.0042 592.1529 592.2225
558.5099 557.9946 558.3477 558.4872
526.3414 525.8575 526.2417 526.3176
495.8780 495.8853 495.8670 495.8693
467.1756 467.2693 467.1553 467.1692
440.2385 440.3887 440.2862 440.2415
415.0331 415.0450 415.0472 415.0398
391.4999 392.0046 391.6462 391.5060
369.5621 370.4046 369.5769 369.5696

TABLE 2. In the first column of the table the values of the 15th row of the real
data for LM = 2.7. In the following columns, from left to right, the recon-
structed data with the bivariate Mellin-Splines B2,2 with N = N1 = N2, w =
w1 = w2 respectively equal to 15, 30, 60 and 5, 10, 20.
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