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Abstract

Following the idea of T.A. Burton, of progressive contractions, presented in some examples (T.A. Burton, A
note on existence and uniqueness for integral equations with sum of two operators: progressive contractions,
Fixed Point Theory, 20 (2019), No. 1, 107-113) and the forward step method (I.A. Rus, Abstract models of
step method which imply the convergence of successive approximations, Fixed Point Theory, 9 (2008), No. 1,
293-307), in this paper we give some variants of contraction principle in the case of operators with Volterra
property. The basic ingredient in the theory of step by step contraction is G-contraction (I.A. Rus, Cyclic
representations and fixed points, Ann. T. Popoviciu Seminar of Functional Eq. Approxim. Convexity, 3
(2005), 171-178). The relevance of step by step contraction principle is illustrated by applications in the
theory of differential and integral equations.
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1. Introduction

Following an idea of T.A. Burton ([7], [8], [9], . . . ) of progressive contractions, and the forward step
method ([21]), in this paper we give some variants of contraction principle in the case of operators with
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Volterra property. The basic ingredient in our variant, step by step contraction principle, is G-contraction
([20]). Some applications to differential and integral equations are also given. In connection with our abstract
results, a conjecture is formulated.

2. Preliminaries

2.1. G-contractions
Let (X, d) be a metric space and G ⊂ X × X be a nonempty subset. An operator f : X → X is a

G-contraction if there exists l ∈]0, 1[ such that,

d(f(x), f(y)) ≤ ld(x, y),∀(x, y) ∈ G.

Here are some examples of subsets G ⊂ X ×X:

(1) G := G(f), the graphic of the operator f . In this case, a G-contraction is a graphic contraction ([17],
[24], . . . ).

(2) Let Ai ⊂ X, i = 1, p, be nonempty closed subsets such that:

(i) X =

p⋃
i=1

Ai ;

(ii) f(Ai) ⊂ Ai+1, i = 1, p, (Ap+1 = A1).

For, G :=

p⋃
i=1

(Ai×Ai+1), a G-contraction is a cyclic contraction of Kirk-Srinivasan-Veeramani (see the

references in [20]).

(3) Let a, b, c ∈ R, a < c < b and X := C[a, b] with d(x, y) := max
t∈[a,b]

|x(t) − y(t)|. For K,H ∈ C([a, b] ×

[a, b]× R,R), we consider the operator, f : C[a, b]→ C[a, b], defined by,

f(x)(t) :=

∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, x(s))ds, t ∈ [a, b].

We suppose that there exists LH > 0 such that

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|, ∀ t, s ∈ [a, b], ∀ u, v ∈ R.

If, LH(b− c) < 1 and if we take

G := {(x, y) ∈ C[a, b]× C[a, b] | x
∣∣
[a,c]

= y
∣∣
[a,c]
},

then f is a G-contraction.

For other examples of G-contractions see [20] and [24], pp. 282-284.

2.2. Weakly Picard operators

Let (X,→) be an L-space ((X, d), d→; (X, τ),
τ→; (X, ‖·‖), ‖·‖→,⇀; . . .). An operator f : X → X is weakly

Picard operator (WPO) if the sequence, (fn(x))n∈N, converges for all x ∈ X and the limit (which generally
depend on x) is a fixed point of f .

If an operator f is WPO and the fixed point set of f , Ff = {x∗}, then by definition f is Picard operator
(PO).

For a WPO, f : X → X, we define the operator f∞ : X → X, by f∞(x) := lim
n→∞

fn(x).
We remark that, f∞(X) = Ff , i.e., f∞ is a set retraction of X on Ff .
For the case of ordered L-spaces, we have some properties of WPO and PO.

Abstract Gronwall Lemma. Let (X,→,≤) be an ordered L-space and f : X → X be an operator. We
suppose that:
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(1) f is increasing;

(2) f is WPO.

Then:

(i) x ≤ f(x) ⇒ x ≤ f∞(x);

(ii) x ≥ f(x) ⇒ x ≥ f∞(x).

Abstract Comparison Lemma. Let (X,→,≤) be an ordered L-space and f, g, h : X → X be such that:

(1) f ≤ g ≤ h;

(2) the operators f, g, h are WPO;

(3) the operator g is increasing.

Then:
x ≤ y ≤ z ⇒ f∞(x) ≤ g∞(y) ≤ h∞(z).

Regarding the theory of WPO and PO see [18], [19], [22], [23], [26], [17], [24], [2], . . .

2.3. Fiber Contraction Principle
In order to present our results, we need the following theorems (see [22], [25], [26], [27], . . . ).

Fiber Contraction Theorem. Let (X,→) be an L-space, (Y, ρ) be a metric space, g : X → X, h :
X × Y → Y and f : X × Y → X × Y , f(x, y) := (g(x), h(x, y)). We suppose that:

(1) (Y, ρ) is a complete metric space;

(2) g is WPO;

(3) h(x, ·) : Y → Y is l-contraction, ∀ x ∈ X;

(4) h : X × Y → Y is continuous.

Then, f is WPO. Moreover, if g is a PO, then f is a PO.

Generalized Fiber Contraction Theorem. Let (X,→) be an L-space, (Xi, di), i = 1,m, m ≥ 1 be
metric spaces. Let, fi : X0 × . . .×Xi → Xi, i = 0,m, be some operators. We suppose that:

(1) (Xi, di), i = 1,m, are complete metric spaces;

(2) f0 is a WPO;

(3) fi(x0, . . . , xi−1, ·) : Xi → Xi, i = 1,m, are li-contractions;

(4) fi, i = 1,m, are continuous.

Then, the operator f : X0 × . . .×Xm → X0 × . . .×Xm, defined by,

f(x0, . . . , xm) := (f0(x0), f1(x0, x1), . . . , fm(x0, . . . , xm))

is a WPO.
If f0 is a PO, then f is a PO.
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3. Operators with Volterra property with respect to a subinterval

Let (B,+,R, |·|) be a Banach space, a, b, c ∈ R, a < c < b. In what follows, we consider on C([a, b],B),
C([a, c],B) norms of uniform convergence (max-norm, ‖·‖, Bielecki norm, ‖·‖τ ). In, C([a, b],B)×C([a, b],B),
we consider a subset defined by,

G := {(x, y) | x, y ∈ C([a, b],B), x
∣∣
[a,c]

= y
∣∣
[a,c]
},

and in, C([a, b],B), for each x ∈ C([a, c],B) we consider the subset,

Xx := {y ∈ C([a, b],B) | y
∣∣
[a,c]

= x}.

Definition 3.1. An operator, V : C([a, b],B) → C([a, b],B), has the Volterra property with respect to the
subinterval, [a, c], if the following implication holds,

x, y ∈ C([a, b],B), x
∣∣
[a,c]

= y
∣∣
[a,c]
⇒ V (x)

∣∣
[a,c]

= V (y)
∣∣
[a,c]

.

Definition 3.2. An operator, V : C([a, b],B)→ C([a, b],B), has the Volterra property if it has the Volterra
property with respect to each subinterval, [a, t], for a < t < b.

For example, let K,H ∈ C([a, b]× [a, b]× B,B) and V : C([a, b],B)→ C([a, b],B) be defined by,

V (x)(t) :=

∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, x(s))ds, t ∈ [a, b].

This operator has the Volterra property with respect to the subinterval [a, c], but V has not the Volterra
property.

If, V : C([a, b],B) → C([a, b],B), is an operator with Volterra property with respect to [a, c], then the
operator V induces an operator, V1, on C([a, c],B), defined by

V1(x) := V (x̃)
∣∣
[a,c]

, where x̃ ∈ C([a, b],B) with, x̃
∣∣
[a,c]

= x.

Remark 3.3. If V has the Volterra property with respect to [a, c] and V is a G-contraction (see section 2.1.),
then the operator

V
∣∣
Xx

: Xx → XV1(x),

is a contraction for all x ∈ C([a, c],B). If x∗ ∈ FV1, then, V (Xx∗) ⊂ Xx∗ .

The first abstract result of our paper is the following.

Theorem 3.4. In terms of the above notations, we suppose that:

(1) V has the Volterra property with respect to [a, c];

(2) V1 is a contraction;

(3) V is a G-contraction.

Then:

(i) FV = {x∗};

(ii) x∗
∣∣
[a,c]

= V∞1 (x), ∀ x ∈ C([a, c],B);

(iii) x∗ = V∞(x), ∀ x ∈ X
x∗
∣∣
[a,c]

.
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Proof. From (1) we have that, FV1 = {x∗1}, x∗1 ∈ C([a, c],B). From (3) and Remark 3.3, V
∣∣
Xx∗1

: Xx∗1
→ Xx∗1

,

is a contraction, i.e., it has a unique fixed point, x∗, and x∗
∣∣
[a,c]

= x∗1. From these we have (i), (ii) and
(iii).

Conjecture 3.5. In the conditions of Theorem 3.4, the operator V is PO, i.e., x∗ = V∞(x), ∀ x ∈
C([a, b],B).

For a better understanding of Theorem 3.4 and Conjecture 3.5, in what follows, we present some examples.

Example 3.6. Let a, b, c be as above and B := R. For K,H ∈ C([a, b] × [a, b] × R,R) we consider the
following functional integral equation,

x(t) =

∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, max

θ∈[a,s]
x(θ))ds, t ∈ [a, b]. (3.1)

We are looking for the solution of this equation in C[a, b]. In addition, we suppose that:

(2′) there exists LK > 0 such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|, ∀ t ∈ [a, b], ∀ s ∈ [a, c], ∀ u, v ∈ R;

(3′) there exists LH > 0 such that,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|, ∀ t, s ∈ [a, b], ∀ u, v ∈ R.

In this case:

V (x)(t) = the second part of (3.1);
V1(x)(t) = the second part of (3.1), for t ∈ [a, c].

It is clear that V has the Volterra property with respect to the subinterval [a, c].
We consider on C[a, c] and C[a, b] max-norms and if, (LK + LH)(c − a) < 1, the operator V1 is a

contraction and if, LH(b− c) < 1, the operator V is a G-contraction.
So, by Theorem 3.4, in the above conditions, equation (3.1) has in C[a, b] a unique solution, x∗. Moreover,

for t ∈ [a, c], x∗(t) = lim
n→∞

xn(t), for each x0 ∈ C[a, c], where {xn}n∈N is defined by,

xn+1(t) =

∫ c

a
K(t, s, xn(s))ds+

∫ t

a
H(t, s, max

θ∈[a,s]
xn(θ))ds,

and for t ∈ [a, b], x∗(t) = lim
n→∞

yn(t), where {yn}n∈N, is defined by

y0 ∈ C[a, b], with y0
∣∣
[a,c]

= x∗
∣∣
[a,c]

, and

yn+1(t) =

∫ c

a
K(t, s, x∗(s))ds+

∫ t

a
H(t, s, max

θ∈[a,s]
yn(θ))ds.

Remark 3.7. In the case of operator V , in this example, Conjecture 3.5 is a theorem. Indeed, let X0 :=
C[a, c], X1 := C[c, b] and C[a, b] be endowed with max-norms. We take, f0 := V1 and f1(x, y) : C[a, c] ×
C[c, b]→ C[c, b] be defined by

f1(x, y)(t) :=

∫ c

a
K(t, s, x(s))ds+

∫ c

a
H(t, s, max

θ∈[a,s]
x(θ))ds+

+

∫ t

c
H(t, s,max( max

θ∈[a,c]
x(θ), max

θ∈[c,s]
y(θ)))ds.
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We remark that, f0 is a PO, and f1(x, ·) : C[c, b] → C[c, b] is LH(b − c)-contraction. By Fiber Contraction
Theorem, in the conditions, (LK + LH)(c− a) < 1 and LH(b− c) < 1, the operator f is a Picard operator.
Let,

x0 ∈ C[a, c], xn+1 = f0(xn), n ∈ N,

and
y0 ∈ C[c, b], yn+1 = f1(xn, yn), n ∈ N.

Then, xn → x∗
∣∣
[a,c]

as n→∞, yn → x∗
∣∣
[c,b]

as n→∞.
We denote,

un(t) =

{
xn(t), t ∈ [a, c],

yn(t), t ∈ [c, b].

Then, un ∈ C[a, b], for n ∈ N∗, and, un+1 = V (un) with un → x∗ as n→∞, i.e., V is a PO.
This result is very important because we can apply for V , the Abstract Gronwall Lemma. So we have:

Theorem 3.8. Let us consider the equation (3.1) in the following conditions: (LK + LH)(c − a) < 1,
LH(b− c) < 1 and K(t, s, ·), H(t, s, ·) : R→ R are increasing functions, for all t, s ∈ [a, b]. Let us denote by
x∗ the unique solution of (3.1). Then the following implications hold:

(i) x ∈ C[a, b], x(t) ≤
∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, max

θ∈[a,s]
x(θ))ds, t ∈ [a, b], ⇒ x ≤ x∗;

(ii) x ∈ C[a, b], x(t) ≥
∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, max

θ∈[a,s]
x(θ))ds, t ∈ [a, b], ⇒ x ≥ x∗.

Also, from the Abstract Comparison Lemma we have a comparison result for equation (3.1).

Remark 3.9. For the functional integral equations with maxima, see [1], [11], [16], [22], [13], . . .

Example 3.10. Let a, b, c ∈ R, a < b < c, and (B,+,R, |·|) be a Banach space. For K,H ∈ C([a, b]× [a, b]×
B,B) we consider the following integral equation,

x(t) =

∫ c

a
K(t, s, x(s))ds+

∫ t

a
H(t, s, x(s))ds, t ∈ [a, b]. (3.2)

We are looking for solutions of these equations in C([a, b],B). To do this, in addition, we suppose that:

(2′′) there exists LK > 0 such that,

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|, ∀ t ∈ [a, b], ∀ s ∈ [a, c], ∀ u, v ∈ B ;

(3′′) there exists LH > 0 such that,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|, ∀ t, s ∈ [a, b], ∀ u, v ∈ B .

In the case of equation (3.2) we have:

V (x)(t) = the second part of (3.2);
V1(x)(t) = the second part of (3.2), for t ∈ [a, c].

First, we remark that V has the Volterra property with respect to the subinterval [a, c].
If we consider on (C[a, c],B) and C[a, b] max-norms, then if, (LK + LH)(c − a) < 1, the operator

V1 is a contraction (i.e., PO) and if, LH(b − c) < 1, the operator V is a G-contraction. By Theorem
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3.4, in these conditions, equation (3.2) has in C([a, b],B) a unique solution, x∗. Moreover, for t ∈ [a, c],
x∗(t) = lim

n→∞
xn(t), where x0 ∈ C[a, c],

xn+1(t) =

∫ c

a
K(t, s, xn(s))ds+

∫ t

a
H(t, s, xn(s))ds, n ∈ N

and for t ∈ [a, b], x∗(t) = lim
n→∞

yn(t), where y0 ∈ C([a, b],B), with y0
∣∣
[a,c]

= x∗, and

yn+1(t) =

∫ c

a
K(t, s, x∗(s))ds+

∫ t

a
H(t, s, yn(s))ds, n ∈ N.

Remark 3.11. In a similar way, as in the case of Example 3.6, the Conjecture 3.5 is a theorem for the
operator V in Example 3.10.

Remark 3.12. We can work, in the case of Example 3.10 with max-norm on C([a, c],B) and with a Bielecki
norm on C[c, b], i.e., on C([a, b],B) with the norm, ‖x‖ = max

(
max
t∈[a,c]

|x(t)|, max
t∈[c,b]

e−τ(t−c)|x(t)|
)
.

If B := Rm, then we can work with vectorial max-norms and with vectorial Bielecki norms.

Remark 3.13. For example of integral operator like V in Example 3.10, which appear in differential equa-
tions, see: [5], [14], [4], [3] and the references in [3].

4. Operators with Volterra property

Let, V : C([a, b],B) → C([a, b],B), be an operator with Volterra property. Let m ∈ N, m ≥ 2, t0 := a,
t1 := t0 + b−a

m , . . . , tk := t0 + k(b−a)
m , . . . , tm := b. We denote by Vk : C([t0, tk],B) → C([t0, tk],B),

k = 1,m− 1, the operators induced by V on [t0, tk] (see the definition of V1 in section 3). We also consider
the following sets,

Gk := {(x, y) | x, y ∈ C([t0, tk+1],B), x
∣∣
[t0,tk]

= y
∣∣
[t0,tk]

}, k = 1,m− 1.

For, xk ∈ C([t0, tk],B), k = 1,m− 1, we denote,

Xxk := {y ∈ C([t0, tk+1],B) | y
∣∣
[t0,tk]

= xk}.

The second basic result of this paper is the following.

Theorem 4.1 (Theorem of step by step contraction). We suppose that:

(1) V has the Volterra property;

(2) V1 is a contraction;

(3) Vk is a Gk−1-contraction, for k = 2,m.

Then:

(i) FV = {x∗};

(ii)

x∗
∣∣
[t0,t1]

= V∞1 (x), ∀ x ∈ C([t0, t1],B),

x∗
∣∣
[t0,t2]

= V∞2 (x), ∀ x ∈ X
x∗
∣∣
[t0,t1]

,

...
x∗
∣∣
[t0,tm−1]

= V∞m−1(x), ∀ x ∈ Xx∗
∣∣
[t0,tm−2]

.
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(iii) x∗ = V∞(x), ∀ x ∈ X
x∗
∣∣
[t0,tm−1]

.

Proof. It follows from successive (step by step !) application of Theorem 3.4, for the pairs, (Vk+1, Vk),
k = 1,m− 1, with Vk+1 as V and Vk as V1.

Conjecture 4.2. In the condition of Theorem 4.1 the operator V is PO, with respect to uniform convergence
on C([a, b],B).

Example 4.3. For K ∈ C([a, b] × [a, b] × R) we consider the following functional integral equation with
maxima,

x(t) =

∫ t

a
K(t, s, max

θ∈[a,s]
x(θ))ds, t ∈ [a, b] (4.1)

By step by step contraction principle we shall prove that, if there exists LK > 0 such that,

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|, ∀ t, s ∈ [a, b], ∀ u, v ∈ R,

then the equation (4.1) has in C[a, b] a unique solution.
Indeed, let m ∈ N∗ be such that, LK(b−a)

m < 1. Let, V : C[a, b]→ C[a, b] be defined by,

V (x)(t) := the second part of (4.1).

First, we remark that V has the Volterra property. In this case:

V1 : C[t0, t1]→ C[t0, t1], V1(x)(t) =

∫ t1

t0

K(t, s, max
θ∈[t0,s]

x(θ))ds, t ∈ [t0, t1].

A Lipschitz constant for V1 is, LK(b−a)
m . So, V1 is a contraction with respect to max-norm.

In a similar way, V2 is a G1-contraction, Vk is a Gk−1-contraction and V is Gm−1-contraction.
So, we are in the conditions of Theorem 4.1. From this theorem we have that:
The equation (4.1) has in C[a, b] a unique solution, x∗. Moreover,

• for t ∈ [t0, t1], x∗(t) = lim
n→∞

xn(t), where x0 ∈ C[t0, t1], xn+1(t) =

∫ t

t0

K(t, s, max
θ∈[t0,s]

xn(θ))ds;

• for t ∈ [t0, t2], x∗(t) = lim
n→∞

xn(t), where x0 ∈ C[t0, t2] with x0
∣∣
[t0,t1]

= x∗
∣∣
[t0,t1]

, and xn+1(t) =∫ t

t0

K(t, s, max
θ∈[t0,s]

xn(θ))ds, n ∈ N;

...
• for t ∈ [t0, tm], x∗(t) = lim

n→∞
xn(t), where x0 ∈ C[t0, tm] with x0

∣∣
[t0,tm−1]

= x∗
∣∣
[t0,tm−1]

, and xn+1(t) =∫ t

t0

K(t, s, max
θ∈[t0,s]

xn(θ))ds.

Remark 4.4. In a similar way as in the Example 3.6, by Generalized fiber contraction theorem, we have
that, for V in Example 4.3, the Conjecture 4.2 is a theorem.

Example 4.5. For f ∈ C([a, b]× R), we consider the following Cauchy problem

x′(t) = f(t, max
θ∈[a,t]

x(θ)), t ∈ [a, b]

x(a) = 0
(4.2)

This problem with x ∈ C1[a, b] is equivalent with the following functional integral equation with maxima, in
C[a, b],

x(t) =

∫ t

a
f(s, max

θ∈[a,s]
x(θ))ds, (4.3)
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From the result, in Example 4.3, we have that, if there exists Lf > 0 such that,

|f(t, u)− f(t, v)| ≤ Lf |u− v|, ∀ t ∈ [a, b], ∀ u, v ∈ R,

then the equation (4.3) has in C[a, b] a unique solution, i.e., the Cauchy problem (4.2) has in C1[a, b] a
unique solution.

Remark 4.6. For functional differential equations see: [1], [6], [11], [12], [16], [22], . . .

Remark 4.7. For operators with Volterra property see: [10], [21], [15] and the references therein.

5. Step by step generalized contraction principles

There is a large class of generalized contraction principle (see, for example, [24], [2], [17]). As an example
in what follows, we consider the case of ϕ-contractions.

Let (X, d) be a metric space, G ⊂ X ×X a nonempty subset and f : X → X be an operator.

Definition 5.1. Let ϕ : R+ → R+ be a comparison function. By definition, f is a (G,ϕ)-contraction if,

d(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ G.

In the terms of notations in section 4, in a similar way as in the case of Theorem 4.1, we have:

Theorem 5.2 (Theorem of step by step ϕ-contraction). We suppose that:

(1) V has the Volterra property;

(2) V1 is a ϕ-contraction;

(3) Vk is a (Gk−1, ϕ)-contraction, for k = 2,m.

Then:

(i) FV = {x∗};

(ii)

x∗
∣∣
[t0,t1]

= V∞1 (x), ∀ x ∈ C([t0, t1],B),

x∗
∣∣
[t0,t2]

= V∞2 (x), ∀ x ∈ X
x∗
∣∣
[t0,t1]

,

...
x∗
∣∣
[t0,tm−1]

= V∞m−1(x), ∀ x ∈ Xx∗
∣∣
[t0,tm−2]

.

(iii) x∗ = V∞(x), ∀ x ∈ X
x∗
∣∣
[t0,tm−1]

.

Problem 5.3. For which generalized contractions we have step by step corresponding result ? If such gen-
eralized contractions are found, then the problem is to give relevant applications of such result.
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