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Soil moisture is an influential parameter in land surface hydrology and precise soil moisture 
data that can help researcher to realize the climate changes and land-atmosphere 
interactions. A initial struggle for the utilize of soil moisture data from satellite sensors is 
their reliability. It is important to appraise the dependability of those data before they can 
be regularly used at a global or local scale. In this study, the satellite soil moisture data was 
evaluated from the Soil Moisture Active/Passive (SMAP) over Simineh-Zarrineh Catchment 
in Bokan region, NW of Iran. A total of 287 soil samples as ground-based observations in the 
time period of 03 April to 03 December 2017 were taken for SMAP data validation. Results 
showed that the satellite data and in situ observation has a good correlation, with a mean 
correlation (r) value of 0.63 in total. This correlation level showed that, commonly, the 
SMAP soil moisture products over Simineh-Zarrineh Catchment (Bokan) have great quality, 
and it would be valuable for versatile utilization, including monitoring of land surface, 
weather prediction, modeling of hydrological process, soil loess monitoring, and climate 
studies. The results reveal that the remotely sensed data demonstrate the good correlation 
with in situ observation across the dry land with mean correlation (r) values of 0.67 
throughout the time period. Particularly, SMAP soil moisture reveal a constant structure for 
obtain the spatial distribution of surface soil moisture. Additional researches are necessary 
for well realizing the SMAP data. 
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Introduction 
Soil moisture is a main control on many hydrological phenomena, particularly runoff formation, evaporation 
of soil and transpiration of plant. Soil moisture is one of the most difficult variables to prospect, because of 
its interaction with parameters as an example soil types, topography and vegetation (Wilson et al., 2004). 
The utilize satellite data has become a potent tool to increase our knowledge of the impress of soil moisture 
in the hydrological phenomena in some regions, e.g., land-atmosphere phenomena (Miralles et al., 2012; 
Taylor et al., 2012); weather and runoff prediction (Brocca et al., 2010; Bisselink et al., 2011); landslides 
(Brocca et al., 2012); agricultural drought monitoring (Sánchez et al., 2018) and precipitation products 
(Chen et al., 2012).   

In the last two decades, several researches have illustrated that soil moisture can be recaptured by satellite 
missions, the most important ones are the Soil Moisture Ocean Salinity (SMOS) (Kerr et al., 2010) and Soil 
Moisture Active/Passive (SMAP) (Entekhabi et al., 2014). Lately, NASA's Soil Moisture Active/Passive 
(SMAP) satellite mission was inaugurated on January 31, 2015. The goal of the operation is monitoring of 
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soil moisture and landscape freeze/thaw state at global scale. The SMAP measurements will, therefore, 
donate to enhanced predictions of water, energy and carbon movement between the land and atmosphere 
(Entekhabi et al., 2010). Nevertheless, as an outcome of the several procedures used for various satellite 
data, the quality and continuity of passive microwave soil moisture data changes in spatially and temporally 
(Owe et al., 2001; Parinussa et al., 2011; Dorigo et al., 2016). The appraisal of remotely sensed data is 
essential to guide their accurate apply and to enhance our comprehension of their advantages and 
disadvantages under various situation over the world and at various times. 

In the circumstance of the SMAP mission, the requirement is an accuracy of 0.04 cm3.cm-3 for volumetric soil 
moisture (Entekhabi et al., 2014). Moreover mission demands standard, validation prepares the users with 
quality confidence, which in theory should comprise higher assurance and acceptation, resulting in further 
to extensive utilize of the mission products. This in turn prepares encourage for the mission and its 
substitutes. Eventually, from the scientific viewpoint remote sensing in special, there will be approximately 
uncertainty in the data because of lack of clarity in defining contributing area and depth for the different 
satellite operation sensors and frequencies. Validations help us to find a solution for these subjects and 
enhance algorithms through a careful appraisal of algorithm efficiency and anomalies. 

Some researchers have appraised soil moisture data based on passive microwave sensors versus in situ 
observation across various areas (Brocca et al., 2011; Albergel et al., 2012; Parinussa et al., 2015; Wu et al., 
2016).  Former studies have also concentrated on the comparison of some soil moisture data (Kerr et al., 
2012; Albergel et al., 2012; Dorigoet al., 2015). Leroux et al. (2014) performed comparisons between the 
SMOS, ASCAT, and ECMWF (European Centre for Medium-Range Weather Forecasts) soil moisture data and 
the outcomes show that SMOS retrievals are adjacent to the ground measurements with a low average root 
mean square error of 0.061cm3.cm-3. Al-Yaari et al. (2014) conducted a comparison among the SMOS and 
AMSR-E data used by extended period of time and shown that in terms of correlation values, the SMOS data 
was discovered to better capture the soil moisture temporal dynamics in generously vegetated biomes while 
good outcomes for AMSR-E were obtained over arid and semi-arid biomes. Zeng et al. (2015) analyzed 
comparison the AMSRE, AMSR2 and ASCAT data applying annual and seasonal succession, and the outcomes 
show that the AMSR-E and AMSR2 data were underestimated generally. Zeng et al. (2016) performed a 
introductory assessment of the SMAP radiometer data versus in situ observations gathered from various 
networks that contain disparate climatic and land surface situations, and the outcomes demonstrate that the 
SMAP data is in excellent concurrence with the in situ observations, despite the fact that it show dry or wet 
bias at various areas. 

Because of the lack of long time period SMAP soil moisture; there is an absence of sufficient investigation 
compared to other soil moisture data. The SMAP data has been appraised in comparison with the 
uncertainty of downscaled brightness temperature obtained from airborne and ground remarks 
concurrently (Leroux et al., 2014; Das et al., 2016).  

Due to the lack of systematic ground based monitoring of soil moisture and irregular topographies in the 
region such as studies would be essential and should be done. SMAP data can be used to understanding 
hydrological processes in the region because of good temporal resolution. In this research, it would be 
efforts to comparison SMAP data at daily time scales over the Simineh-Zarrineh catchment in Bokan city, NW 
of IRAN used by in situ observation from soil samples for 03 April to 03 December 2017. It would be the 
evaluation of SMAP data by ground based soil moisture in various land uses of semi-arid region to achieve 
the overall outlook of the SMAP soil moisture data accuracy and prepare a more practical outline for the 
applicability and accuracy of SMAP for various implementation.  

Material and Methods 
Study area 

The Simineh-Zarrineh catchment with an area of 17563 km2 is placed in the mountainous area of northwest 
of Iran and covered West Azarbaijan, East Azarbaijan and Kurdistan provinces with 56, 16 and 28 
percentage of the catchment area respectively. (Urmia Lake Restoration National Committee, 2015). The 
Simineh-Zarrineh catchment is located (latitude 35⁰42′14″ to 37⁰44′31″ N, longitude 45⁰31′32″ to 
47⁰22′21″ E) in the southern and southeastern parts of Urmia Lake and regarding the size it is the largest 
sub-basin of Urmia Lake basin (Figure 1). The lowest and highest elevation above sea level in the area is 
1254 and 3389 meter respectively. Dominant crop in dry lands are barely, wheat and in irrigated 
agricultural land are sugar beet, alfalfa and apple. 
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Figure 1. The 2018 Land Use Map of Simineh_Zarrineh Catchment (Bokan), in-situ soil moisture observations sites and rivers. 

The rivers of Zarrinehrud and Siminehrud are perennial streams in this catchment with a highest discharge 
of about 3 billion cubic meters annually in the period 1995–2014 are regarded as water full rivers in the 
country. Zarrinehrud and Siminehrud river basins supply about 52% of environmental flow of Urmia Lake in 
each year. The length of Zarrinehrud and Siminehrud river is about 240 and 200 km and the area of the 
basin is 11642 and 5921 km2 respectively. (Ahmadaali et al., 2018). The local climate is characterized by a 
dry steppe, hot summers, cold winters, low precipitation, high evaporation and low humidity. The annual 
average temperature and annual average precipitation are 12.1 C⁰ and 423 mm respectively.  

Datasets    

SMAP satellite was launched on January 2015 by the National Aeronautics and Space Administration (NASA) 
(Entekhabi et al., 2010). SMAP supplies soil moisture data that envelopment the upside 5 cm of the soil 
column with an preciseness of 0.04 cm3.cm-3 and a spatial resolution of 3, 9, 36 km, and envelopments  the 
earth every three days (Entekhabi et al., 2010; Leroux et al., 2016; Das et al., 2011; Reichle et al., 2016). The 
SMAP criterion science data are demonstrated in the Table 1. on the whole, the SMAP task will create 15 
distributable data representing four levels of data processing.  

Table 1. Product Information of SMAP Mission 
No. Product Description Resolution 
1 L1A_Radiometer Radiometer Data in Time-Order - 
2 L1A_radar Radar Data in Time-Order - 
3 L1_TB Radiometer TB in Time-Order (36×47 km) 
4 L1B_S0_LoRes Low-Resolution Radar бB in Time-Order (5×30 km) 
5 L1C_S0_HiRes High-Resolution Radar бB in Half_Orbit 1 km (1-3 km) 
6 L1C_TB Radiometer TB in Half-Orbit 36 km 
7 L2_SM_A Soil Moisture(Radar) 3km 
8 L2_SM_P Soil Moisture(Radiometer) 36km 
9 L2_SM_AP Soil Moisture(Radar+Radiometer) 9km 
10 L3_FT_A Freeze/Thaw State(Radar) 3km 
11 L3_SM_A Soil Moisture (Radar) 3km 
12 L3_SM_P Soil Moisture (Radiometer) 36km 
13 L3_SM_AP Soil Moisture (Radar+Radiometer) 9km 
14 L4_SM Soil Moisture (Surface and Root Zone) 9km 
15 L4_C Carbon Net Ecosystem Exchange (NEE) 9km 
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Level 1 product contains instrument-related data and appears in granules that are based on half orbits of the 
SMAP satellite. Level 2 products are geophysical retrievals of soil moisture on a fixed Earth grid based on 
Level 1 products and ancillary information; the Level 2 products are output on a half-orbit basis. Level 3 
products are daily composites of Level 2 surface soil moisture and freeze/thaw state data. These level 
products are daily global composites of the Level 2 geophysical retrievals for an entire UTC (Coordinated 
Universal Time) day. Level 4 products are model-derived value-added data products of surface and root 
zone soil moisture and carbon net ecosystem exchange that support key SMAP applications and more 
directly address the driving science questions. These level products contain output from geophysical models 
utilizing SMAP data (https://smap.jpl.nasa.gov/data/). In addition, the SMAP soil moisture data supplies 
measurements and analysis update data including pertinent geophysical fields reported as 3-hourly time 
averages, allocated over a 9-km grid (Reichle et al., 2015). In this research Level 4 products was used for 
validation and verification. All of SMAP data is downloadable from https://nsidc.org 

In Situ Soil Moisture and Land Use Data 

Sampling strategy based on regular sampling grid and in accordance with the pixel size of the satellite. In 
situ soil moisture samples in depth of 0 to 5 cm were collected from 287 soil sample points at six time 
periods in this paper (Figure 1). It has been attempt to select number of point based on the percentage of 
area covered by each land uses (Table 2). At each monitoring point, soil samples of topsoil (0–5 cm) were 
collected using a core sampler with 5-cm diameter and 12 cm height on six occasions from 03 April to 03 
December 2017. Soil samples were taken in accordance with satellite data acquisition time. But when the 
surface was covered with snow, sampling was not done. The minimum and maximum intervals of soil 
samples point were 10.7 and 7.2 km respectively. After collecting, samples were put in plastic bag with tight 
fitting lids. Soil moisture was measured using mass method by the oven in the lab. After weighing, samples 
for 24 to 48 hours were dried in an oven at 105 ° C and then volumetric soil moisture percentage had been 
determined. 

Data acquired in time period of 03 April to 03 December 2017. The soil moisture observation points 
acquired data for six days according to time table of SMAP mission. During the sampling process it has also 
been tried to the spatial distribution of the samples are located in all land uses. 

The land use map is classified in accord with the 2018 Landsat 8 satellite data with a spatial resolution of 30 
m in July (Figure 1). It was utilized to analyze the efficiency of SMAP data for various land use types over the 
Simineh-Zarrineh catchment (Bokan). The Land use map 2018 covering soil samples and rivers location is 
displayed in Figure 1. The number of soil samples distributed in various spatial areas and land use types is 
displayed in Table 2. Total of 287 soil samples were chosen for daily analysis.  

Table 2. The number of soil sample sites situated in various land use over the Simineh_Zarrineh Catchment (Bokan). 

Land Use Percentage of Area(%) Number of Soil Samples 
Water body 4.65 0 
Pasture 35.65 106 
Irrigated agricultural land 8.43 41 
Barren land 19.56 57 
Dry land 28.22 83 
Residential land 3.51 0 

Methods 

Previous researches have follow various approaches to compare remotely sensed soil moisture with in situ 
measurements (Entekhabi et al., 2010; Wu et al., 2016; Crow et al., 2012; Wang et al., 2016). In this study, the 
qualities of SMAP data were appraised by comparing them to the in situ soil moisture measurement from 
ground points. Four statistical indicators were used, containing the mean difference (MD), the root mean 
square difference (RMSD), the unbiased root mean square error (ubRMSE) and the correlation coefficient 
(R).  

The accuracy of SMAP data are assessed regarding the MD, the RMSD, and the R. The MD represents the bias, 
namely the systematic difference between satellite soil moisture retrievals and in situ soil moisture 
observation. The MD was determined by the following equation (1): 

   
∑  (  ( )      ( ))
 
   

 
 

(1) 

The RMSD is a frequently used measure of the differences between SMAP data and in situ observation. RMSD 
is the square root of the average of squared errors. The RMSD was expressed by following equation (2): 
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Where; Qs represents as a remotely sensed soil moisture (cm3.cm-3), Qm is the in situ soil moisture 
observation (cm3.cm-3) and N expressed by total number of samples, and i represents a specific sample.  

So that get an enhanced authentic prediction of RMSD, the bias can be absolutely eliminate by determining 
the ubRMSE that illustrates random error. The ubRMSE is computed by the following equation (3) 
(Entekhabi et al., 2014). 

        √(    )  (  )  (3) 

The r reveal the proportionate of preciseness among SMAP data and in situ soil moisture observation. The 
correlation coefficient(r) expressed by following equation (4): 

   
∑ (  ( )    )(  ( )    )
 
   

(   )    
 

(4) 

Where; бs and бm are the standard deviation of satellite and in situ data (cm3.cm-3), respectively and μs is the 
mean of SMAP soil moisture throughout the whole appraisal time period (cm3.cm-3), and μm is the mean of in 
situ soil moisture observation (cm3.cm-3). Normalized Difference Vegetation Index (NDVI) is the extensive 
used vegetation index to recognize healthy vegetation from others or from non-vegetated areas. NDVI was 
calculated following equation (5): 

     (
     

     
) (5) 

Where; NIR is Near Infra-Red band(band 5 for both Landsat 8 and ETM+ sensor) and R is Red band (band 4 
in case of Landsat 8 and ETM+ sensor). 

Results  
SMAP data was appraised by comparing with in situ observation with four statistical criteria during 03 April 
to 03 December 2017 were used to analyze and validation in various land use types. The outcomes of MD, 
RMSD, ubRMSE and R were computed for SMAP product with in situ observation. As seen in Figure 2, the MD 
for SMAP soil moisture had positive values of 0.011, 0.009, 0.023, 0.012 cm3.cm-3 in 08 May, 03 July, 13 
September and 03 November respectively, despite in another times, MD had negative values of 0.007 cm3.cm-

3 and 0.021 cm3.cm-3 in 03 April and 03 December, respectively. The SMAP soil moisture demonstrates good 
performance with RMSD values ranging from 0.18 cm3.cm-3 to 0.33 cm3.cm-3 and ubRMSE value from 0.17 
cm3.cm-3 to 0.33 cm3.cm-3. Figure 2 demonstrates that, SMAP data compared to the in situ measurement is 
well correlated, with r equal 0.77 and 0.72in 03 July and 03 November respectively and great correlated with 
r equal 0.62 in 03 April respectively also good correlated with r equal 0.56, 0.57 and 0.52 in 08 May, 13 
September and 03 December respectively. The SMAP soil moisture demonstrated the good correlation with 
in situ measurement in 03 July. 
 

 
 

Figure 2. Evolution of four statistics results for SMAP daily data of Simineh-Zarrineh Catchment (Bokan). 

As shown in Figure 3, the correlation coefficients for the daily data, as appraised by the different time period, 
the SMAP data is mostly have great performance. SMAP soil moisture displays distinguish variation. The 
correlation between SMAP and in situ data were shown in Figure 3. Correlation values between the data sets 
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are great along most of the time period in variation of biomes and climate circumstances in 03 July and 03 
November with averaged values of r=0.77 and r=0.72 respectively. In 03 April, 03 September, 08 May and 03 
December the correlation between SMAP and in situ data was good with r values of 0.61, 0.57, 0.56 and 0.52, 
respectively.  So that SMAP soil moisture data had been great performed, as indicated by higher r values 
(Figure 2), in the 03 July and November also SMAP soil moisture had the lowest correlation with in situ data 
in the 03 December relative to the other times. 

 

Figure 3. Correlation between SMAP daily data and in situ data in different land use  of Simineh-Zarrineh Catchment 
(Bokan). 1:1 dot line and fitted solid line. 

The accuracy of SMAP data is influenced by the kind of land use. The MD, RMSD, ubRMSE and R were 
computed for the SMAP data with various land use (Figure 4).  

For the SMAP soil moisture data, the good efficiency was achieved in 03 July for the dry lands, where the MD, 
RMSD and ubRMSE values were 0.08, 0.18 and 0.17 respectively. Low range of soil moisture variation in 
pasture partially donates to the low RMSD and ubRMSE, as showed in the correlation coefficients (Figure 4). 
The average value of correlation coefficients for the dry land and irrigated agricultural land were 0.67 and 
0.54 (p > 0.05), respectively. Compared with other land uses, the dry land showed the best r values for SMAP 
soil moisture data ( 0.67 cm3.cm-3). 

SMAP soil moisture data obtained in barren land showed negative MD in 03 April and 03 December, a partly 
high RMSD (0.31 cm3.cm-3) and a good r value (0.75) in comparison with in situ data. The minimum MD and 
the good average value of r outcomes were achieved in dry land for SMAP soil moisture data in 03 July 
(Figure 4). Daily SMAP data demonstrated the lowest r value for irrigated agricultural land, with an average 
r value of 0.54 in 03 April to 03 December.   The efficiency of the SMAP data retrieved from different land use 
of Simine-Zarrineh catchment was analyzed. Daily averaged SMAP data were in comparison with in situ data 
by correlation coefficient (Table 3). 

Negative MD values in the 03 April for barren land and irrigated agricultural land and in the 03 December 
for all land use types had been seen in daily average SMAP soil moisture, which means that the data are 
underestimates (Figure 4a,f). Low positive MD values in SMAP soil moisture data for whole land use types 
had been seen in 03 July (Figure 4d). The highest MD values connect to SMAP soil moisture were achieved in 
the 08 May and for Pasture (Figure 4b).  The good results for SMAP soil moisture in the 13 September for dry 
land obtained in RMSD and ubRMSE (Figure 4c). The SMAP soil moisture showed the lowest RMSD (0.33 

a 
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cm3.cm-3) and ubRMSE (0.32 cm3.cm-3) in the 03 April and 03 November for irrigated agricultural land 
(Figure 4a,e). Small MD values occurred in 03 July and 03 November for all land uses, showing that more 
precise soil moisture predict were achieved for SMAP soil moisture (Figure 4d,e). 

 
Figure 4. Results of cross validation for SMAP soil moisture daily data with different Land use types of Simineh-

Zarrineh Catchment (Bokan). 

Table 3. Mean correlation and standard deviation for SMAP daily data versus in situ data in different land use of Simineh-
Zarrineh Catchment (Bokan). 

 Land use type 03 April 08 May 03 July 13 September 03 November 03 December 
Average 
correlation 
(r) 

Barren land 0.64 0.57 0.75 0.55 0.71 0.67 
Dry land 0.69 0.63 0.81 0.61 0.76 0.61 
Irrigated agricultural land 0.54 0.52 0.58 0.51 0.59 0.51 
Pasture 0.59 0.47 0.66 0.57  0.63 0.59 

Standard deviation 
 

Barren land 0.25 0.19 0.21 0.23 0.18 0.29 
Dry land 0.22 0.17 0.12 0.2 0.15 0.26 
Irrigated agricultural land 0.26 0.23 0.27 0.29 0.25 0.33 
Pasture 0.29 0.21 0.23 0.24 0.22 0.31 

With regard to land uses, dry land, barren land, pasture and irrigated agricultural land the average r value 
were 0.76, 0.61, 0.57 and 0.54 respectively (Figure 5). The best average R value for dry land, Pasture, Barren 
land and irrigated agricultural land in this time period were in 03 July, 03 November, 03 July and 03 
November respectively (Figure 5).  SMAP soil moisture had the good results regarding r values (r>0.70) in 
the 03 July for dry land (Figure 5).    

 
Figure 5: Results of correlation among SMAP data and in situ data for various land use types and different times of 

Simineh-Zarrineh Catchment (Bokan). 
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Discussion 
The vegetation diversity, soil and climate features are the critical parameters that affect the outcomes. 
Moreover, there is significant spatial variety in various land use types and temporal and dynamical 
modification in their features, which lead to various grades of efficiency in spatial-temporal assessment. The 
weak outcomes of this appraisal would be described by some causes. First, uncertainties result from several 
complicated parameters that influence the radiative transfer model (Wu et al., 2016). Second, there exist 
dissimilarity in the vertical depth checked out by the satellite SMAP soil moisture and the in situ data. The 
soil water content of the surface layer (5 cm) detected by SMAP soil moisture will be different from the 
deeper layer which observed by the soil sampling (5 cm). The soil water content in the surface layer that 
detected by satellite tends to react further quickly to atmospheric process than the deeper soil layer. 

The SMAP protocol utilize an Ensemble Kalman Filter (EnKF) to be revealed SMAP data with soil moisture 
prediction from the NASA Catchment land surface model (Reichle et al.,2016). Various recovery procedure 
and brightness temperature measurement was utilized by SMAP (Das et al., 2016; Das et al., 2011), which 
contributes to the differences evaluation results. The immense nonuniformity in each pixel comparative to 
the in situ observation negatively affected the accuracy of the appraisal (Jackson et al., 2010). The 
parameters discussed above may also use to the SMAP soil moisture. The SMAP soil moisture ordinary 
demonstrated well concurrence with the reference data and successfully captured the spatial and temporal 
changes showed in Figures 2–5 and Tables 3. As an example, SMAP soil moisture performed good in the 
areas covered by dry land, because of low fluctuation of vegetation in this time period (Dorigo et al., 2010). 
The apposite, SMAP soil moisture showed poor correlations among the reference data in irrigated 
agricultural land (Figures 4 and 5), since that fluctuation of vegetation in its area is very high. These impacts 
would be originated to the high range of changes in soil moisture in these areas, which approximately fit to 
the anticipated retrieval accuracy of the satellite data (Al-Yaari et al., 2014). Meanwhile SMAP soil moisture 
also showed low correlations with the in situ data in Pasture areas in 08 May. As shown in Figure 1, about 
35.65 percentage of this study area covered with its.  

The outcomes approved that vegetation performs a great role in the appraisal efficiency of the SMAP 
product. It could be seen from Figure 6 the NDVI were large through the year for Irrigated agricultural land. 
The correlation among the SMAP soil moisture calculated r with in situ and NDVI is relative numerous with a 
high value of 0.53 (Figure 7), which revealed the effect of vegetation to soil moisture data. The quality of 
remotely sensed data reduces with increasing vegetation severity in dry land, Pasture and Irrigated 
agricultural land (Figure 7). These results were accordant with former researches (Brocca et al., 2013a,b,c). 
While Barren land areas did not exhibit same correlation structure with other land use types, this can be 
partially described by the very low vegetation in Barren land (Figure 7). 

 
Figure 6. The temporal variation of mean NDVI for various land uses. 

Investigating the temporal trends further nearly, SMAP soil moisture oriented to underestimate soil 
moisture in 03 April and 03 December and presents properly throughout the dry season (e.g., from 08 May 
to 03 September) than throughout the rest of the year. The causes can be linked to some aspects. First of all, 
low frequency of precipitation in summer than other time periods, that partially showed the good 
performance of SMAP data in summer. Meantime, the April to September in addition has plentiful vegetation, 
which more intensifies the incompatibility with in situ soil moisture. In this research, with NDVI of various 
land use types from April  to December 2017 (Figures 6) and the correlation among SAMP soil moisture 
appraised r versus in situ and NDVI (Figure 7), impact of vegetation for soil moisture data can be measurable 
described. 
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Figure 7. Correlation coefficient (r) between NDVI and SMAP soil moisture evaluation results with in situ (r). 

Moreover, several aspects of the spatiotemporal data would be underlined. From Figure 4, it would be 
understand that the dry land outperforms the other land use throughout almost the whole time period. As 
exhibit from Figure 7, bigger NDVI in irrigated agricultural land donated to the poor performance. In spite 
the fact that in dry land the NDVI exhibit great effect on the appraisal of SMAP soil moisture data, in other 
words several parameters as an example large spatial intricacy of topography and surface characteristic may 
principally affect the appraisal outcomes. Nevertheless, the SMAP soil moisture show reverse outcomes for 
correlation from 03 April and 03 December in barren land as shown in Figure 4. This outcome would be 
because of a number of parameters, comprising greater vegetation coverage or variation in precipitation. 
Regarding the complete divergence among satellite and in situ soil moisture data, SMAP soil moisture 
exhibited relatively low mean RMSD and ubRMSE (Figure 2). In Figure 4, the dry land and pasture shows 
lower RMSD for the SMAP data. Meanwhile, the dry land exhibits relatively smaller RMSD and ubRMSE over 
the time period. It is mostly shown from Figure 4 that the dry land is principally situated in area with low 
NDVI variation over the year (Figure 6). The small range and change of soil moisture in these land uses 
partially donated to the small RMSD and ubRMSE. For validation of remotely sensed data, the greatest 
interesting subject is the representativeness of the in situ observations; both in situ sensor errors and the 
taken sampling of the true field mean soil moisture on the basis of a finite number of point samples can 
reason bias and magnitude errors in the predictions (Entekhabi et al., 2014). Despite the fact that SMAP data 
exhibit well concurrence with in situ data in r, for instance, dry land executed good with daily mean 
measurements for SMAP data, moderate executes were found for irrigated agricultural land for SMAP data, 
however the ubRMSE value of SMAP data in different land use and time periods can’t meet the design 
criteria. Anyway, systematic deviations among remotely sensed and in situ data are frequently discovered 
although the temporal dynamics are highly similar (Loew and Schlenz, 2011). In this research, in situ data 
near water body were eliminated. Therefore, differences may seem somewhat. It has been conclude that 
SMAP soil moisture products over Simineh- Zarrineh catchment (Bokan) are practical for different utilization 
such as predicting rainfall, monitoring of climate change and hydrological modeling, that based on good 
remarked universal soil moisture datasets from remotely sensed. 

Conclusion 
This research prepared an inclusive assessment of the SMAP data across the Simineh- Zarrineh catchment 
(Bokan) using in situ data of 287 sampling point distributed through this catchment as ground control. The 
results indicate the SMAP soil moisture data appear relatively good agreement with in situ data placed in 
various land uses and arranged in a time periods. This conclusion can be supported well by the four 
statistical criteria (MD, RMSD, ubRMSE and R). Our analysis evaluation mentions that the efficiency of the 
SMAP soil moisture changes rely on their spatial distribution, time periods distribution and land use types. 
Regarding that spatial series analysis, SMAP data in the land use covered by dry land exhibit well 
concurrence with in situ data. Poor correlation coefficient in 03 December and a good correlation coefficient 
in 03 July have been shown. Generally results demonstrate best performances of the product to retrieve 
surface soil moisture as well as short term variability. Correlation values among the data sets are very 
satisfactory across most of the inspected sites situated in contrasted various land use types with mean 
values of 0.68, 0.64, 0.58 and 0.54 for dry land, barren land, pasture and irrigated agricultural land 
respectively. It is important to express that although the appraised SMAP soil moisture products utilized in 
this research were discovered to be very dependable in accord with the spatial and temporal analysis. 
Concentrated on the effect of spatial-temporal characteristics, the land use types with pasture, irrigated 
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agricultural land, barren land and dry land were significantly influenced by seasonal variation. Generally, the 
conducted validation assessment permitted definition of the dependability of SMAP data through a strong 
and standardized compared by ground measurements for assessment of spatiotemporal series on daily time 
scales across the Simineh- Zarrineh catchment (Bokan). In summary, the accuracy and reliability of the 
SMAP data predicts changes rely on land uses. These outcomes are in concurrence with our anticipation that 
SMAP data are mostly of best quality over low vegetation covered regions. This subject would be addressed 
in future researches to enhance the accuracy of SMAP data predicts. 
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