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Abstract

In the present paper, we consider A-biminimal conformal immersions. We find the Euler-
Lagrange equation of A-biminimal immersions under conformal change of metrics. We
also consider A-biminimal immersions from a surface (M?, g) to a Riemannian manifold
(N 3, h) under homothetic change of metric and give an example.

Mathematics Subject Classification (2020). 53C40, 53C42

Keywords. A-biminimal immersion, A-biminimal conformal immersion, A-biminimal
homothetic immersion

1. Introduction

Harmonic maps have been analyzed widely over the last 50 years as a generalization
of essential topics such as geodesics, minimal surfaces and harmonic functions. More-
over, harmonic maps have involved significant applications in mathematics and theoret-
ical physics. Biharmonic maps are natural generalizations of harmonic maps, and they
include essential objects like harmonic functions, geodesics, minimal submanifolds, and
Riemannian submersions with minimal fibers as special cases [12].

A map ¢: (M, g) — (N, h) between Riemannian manifolds is called a harmonic map and
biharmonic map , if it is a critical point of the energy functional and bienergy functional

1
B(e) =5 | gl dv,

Exe) = 5 [ 1)1 dug,

for every compact domain €2 of M, respectively. The Euler-Lagrange equation for the
harmonic maps is given by

() = tr(Vde) = 0,
where 7(p) = tr(Vdy) is called the tension field of the map ¢ [2]. The Euler-Lagrange
equation of Fy(y) can be written as

ma(p) = tr(VFV? = VE)7() — tr(RY (dip, 7(p))dp) = 0, (1.1)
which is the bitension field of ¢ [6] and RY is the curvature tensor of N. Clearly, every

harmonic map is biharmonic.
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An isometric immersion ¢ is called A-biminimal ([4], [8]), if it is a critical point of
the functional Es(p) for variations normal to the image ¢ (M) C N, with fixed energy.
Equivalently, there exists a constant A € R such that ¢ is a critical point of the A-bienergy

Eya(p) = Ea(p) + AE(p), (1.2)

for any smooth variation of the map ¢; : |—¢,+¢[, @o = ¢ such that V = % li=o= 0 is
normal to ¢ (M).
The Euler-Lagrange equation for A-biminimal immersions is given by

[ ()] = [r(0)]" = Alr()] - =0, (1.3)

for some value of A € R , where [-]* denotes the normal component of [-] [8]. In addition,
a biharmonic immersion is A-biminimal such that A\ = 0 (it means that the immersion
is biminimal), but the converse is not always true. Moreover, if we take A = 0 into
equation (1.3), we obtain [m5(¢)]* = 0, which is not the biharmonic equation. A-biminimal
submanifolds are a natural extension of minimal submanifolds from the perspective of
variational calculus. In general, A-biminimal submanifolds are minimal, but the converse
is not true.

The fascinating relationship between harmonicity and conformality has a long history.
Let ¢ : M? — R3 be a conformal immersion. Weierstrass showed that ¢ is harmonic if and
only if ¢ (M) is a minimal submanifold in R®. Harmonic conformal immersions of surfaces
are exactly conformal minimal immersions of surfaces. A very nice generalization of the
theory on conformal minimal immersions to conformal biharmonic immersions was given
in [10]. Therefore, generalizing conformal minimal immersions to A-biminimal conformal
immersions would be an interesting problem for us. Moreover, since the tension field is
normal to the submanifold, to study on A-biminimality condition on the submanifold will
be one of the most effective deformations in the normal direction.

In [6], Jiang defined biharmonic maps between Riemannian manifolds. In [10], Ou
studied conformal biharmonic immersions. In [11], Ou obtained a classification of bihar-
monic conformal immersions of complete constant mean curvature surfaces into R? and
hyperbolic 3-spaces. In [8], Loubeau and Montaldo defined biminimal immersions and
investigated biminimal curves under conformal changes of the metric. In [4], Inoguchi
studied A-biminimal curves and surfaces in contact 3-manifolds. For other developments
about biminimal curves and biminimal submanifolds see [1,3,5,7,9,13, 14]. Motivated
by the above studies, in this paper, we consider the notion of a A-biminimal conformal
immersion. We investigate the Euler-Lagrange equation of A-biminimal immersions under
conformal and homothetic changes of the metrics. Finally, we find the necessary and suf-
ficient conditions for conformal immersions to be A-biminimal. We also give an example
of A-biminimal surfaces under a homothetic change of the metrics.

2. A-Biminimal immersions under conformal change of metrics

In this section, we consider A-biminimal immersions under conformal change of metrics.

Let ¢ : (M™,g) — (N™*1 h) be an isometric immersion. By B, &, A and H =H¢,
we denote the second fundamental form, the unit normal vector field, the shape operator
and the mean curvature vector field of ¢, respectively, where H is the mean curvature
function.

Firstly, we have the following theorem for the Euler-Lagrange equation for A-biminimal
immersions under conformal change of metrics.

Theorem 2.1. Let ¢ : (M™, g) — (N™ 1 h) be an isometric immersion. Then under the
conformal change of metrics g = F~2g, the transformation of [ x(p,9)|+ and [m2(p, )]+
is given by

male. 9 = F{[Ino. ) - 25lr(e. 0"
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—(m — 2)traceB(-,V.dy(gradln F)) — (m — 2)traceV+B(-,do(gradln F)

+2 (A F — (m — 4)|gradn F|*) [r(¢, )= = (m = 6) (V5,1 pl7 (4, 9])
+(m —2)(m — 6)B (gradIn F,dp(gradIn F))} ,

where grad and A denote the gradient and the Laplacian with respect to the metric g,
respectively.

)
1

Proof. Let {e;} with respect to g and {e; = Fe;} with respect to g be local geodesic
orthonormal frames. Using [10], we can write the normal part of the tension field under
the conformal change of a metric as

[r(,9)]" = F2[r(0,9)]" (2.1)

From [10], the bitension field under the conformal change of a metric is known that
7(¢,9) = F*{[ra(i2, 9)] + (m — 2)J¢ (dip(gradIn F)
2 (A F — (m - 4) gradIn FP) [r(g, )] = (m — 6)V%, 1, 570, )]
—2(m —2) (A In F'— (m —4) |gradln F|2) dp(gradln F)

+(m = 2)(m = 6)V, g, pdip(gradin F) (2.2)

where J (X) is the Jacobi operator of ¢. By the use of definition of Jacobi operator, the
Gauss equation and the Weingarten formula, we find

L
[J;f(dgp(grad In F))} = [—traceg (V“’V“’ - V@M> dp(gradln F)
N i
+tracegRY (dy, de(gradln F)) dgo}
= — Z {Ve, Ve, dp(gradin F) + B (e;, Ve, dp(gradin F))
i=1
_AB(e“VEZ_d@(gmdlnF))ei + VeliB (€i, Ve, dp(gradln F))}

+ i RN (dy (e;) , dp(gradin F)) dy (e;)
i=1

= —traceB(-, V.do(gradln F)) — traceVB(-, dp(gradIn F)). (2.3)
Moreover, using the Gauss equation, we have

1
{ngdlango(gradln F)} = B(gradIn F,dp(gradln F)) . (2.4)

Substituting the equations (2.3) and (2.4) into (2.2), we obtain the normal part of the
bitension field under the conformal change of a metric as

[Q(%?)]i = r* {[TQ(QO,Q)]L — (m = 2)traceB(-,V.dp(gradln F))
—(m — 2)traceV>B(-,dp(gradln F))
+2 (A InF — (m—4)|gradln F|2> [7(0, 9)]*
—~(m—6) (V2 g plr(09)])

+(m —2)(m — 6)B (gradIn F,dp(gradIn F))} . (2.5)
By the use of the equations (2.1) and (2.5) into (1.3), we obtain the desired result. O

Substituting m = 2 into Theorem 2.1, we have the following corollary:
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Corollary 2.2. Let p : (M?,g) — (N3,h) be an isometric immersion. Then under the
conformal change of metrics g = F~2g, the transformation of [r2x(p,9)|* and [m2(p, )]+
s given by

male. ) = F{ (o)l - Slreo)]

+ (28 F + 4|gradn F|*) [7(p, g)]* + 4 (medlnF[T(so,g)])L} :

where grad and A denote the gradient and the Laplacian with respect to the metric g,
respectively.

3. A-Biminimal conformal immersions

Now we give the following definition from [11] and [15]:

Definition 3.1. An isometric immersion ¢ : (M™,g) — (N™"1 k) is said to admit a
A-biminimal conformal immersion, if there exists a function u : (M™,g) — R* such that
the conformal immersion ¢ : (M™, u=2g) — (N™*L, h) with conformal factor p is a A-
biminimal immersion. In particular, if 4 = constant # 1, then the conformal immersion
is called a homothetic immersion.

Let ¢ : (M™,g) — (N™"1 h) be the associated isometric immersion, where g = p*h =
1g.
Theorem 3.2. The homothetic immersion ¢ : (M™,g) — (N™T1 h) is A\u?-biminimal
such that X\ # 0 if and only if ¢ : (M™, u%g) — (N™FL, h) is A-biminimal.

Proof. Let ¢ : (M™,g) — (N™"1 h) be a homothetic immersion with ¢*h = u?g. Let us
take F' = p~! and InF = —In p. From Theorem 2.1, we can write

ol It = 17 {Im2(, )" = N[ (0, 9)]*
+(m — 2)traceB(-, V.dp(gradln p))
+(m — 2)traceVB(-, de(gradln 1))
=2 (At (m— 4) [gradpf?) [r(¢,9)]*

1
+(m = 6) (V7 410, [7(2,9)])
+(m —2)(m — 6)B (gradln p, dp(gradln p))} . (3.1)

Then, assume that the homothetic immersion ¢ : (M™, g) — (N™T1, k) is Ay?-biminimal.
So we have

(27 (9, 9)] =0,
which means that ¢ : (M™,g) — (N™! h) is A-biminimal. This proves the theorem.
g

Substituting m = 2 into Theorem 3.2, we have the following corollary:

Corollary 3.3. The homothetic immersion ¢ : (M?,g) — (N3, h) is Au®-biminimal such
that X\ # 0 if and only if ¢ : (M?, u?g) — (N3, h) is A-biminimal.

Theorem 3.4. The conformal immersion ¢ : (M™,g) — (N™V1 h) is A-biminimal such
that X = 0 if and only if

(roa(. @I = p* {(m — 2)trace B(-, V.dp(gradln p))
+(m — 2)traceV+B(-, dp(gradn 1))
—2m (A Inp+ (m —4)|gradln ,u|2) <,u2H)
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1
+2m(m — )% |gradn pf* Bam(m — 6)u (V2,41 H)

L
—(m —2)(m — 6) (medlnudcp(gmdln ,u))
+(m —2)(m — 6)B (gradln p,dp(gradin p))} .

Proof. Assume that the conformal immersion ¢ : (M™,g) — (N™"! h) is A-biminimal
such that A = 0. From the equation (3.1), we have

[ale, 9" = (m = 2)traceB(, V.de(gradin )
+(m — 2)traceVB(-, dp(gradin 1))
=2 (Al g+ (m—4) [gradin p*) [, 9)]*
o L
+(m - 6) (vgradlnu[’r(so?g)])

+(m —2)(m — 6)B (gradln u,dp(gradln p)) . (3.2)

From [10], it is known that the tension field is given by
[7(¢.9)] = F*{[7(¢,9)] = (m — 2)dp(gradIn F)} .

W

Then, using the equations F = p~' and InF = —Inpu, the tension field and the normal
part of the tension field of the conformal immersion ¢ : (M™, g) — (N™*1 h) are
[7(,9)] = p? (mH) — (m — 2)dp(gradn ) (3.3)
and
[r(e.9)]" = 1* (mH), (34)

respectively. Putting the equations (3.3) and (3.4) into the equation (3.2), we obtain

(e DI = (m = 2)traceB(-, V.dp(gradn )
+(m — 2)traceVEB(-, de(gradln 1))
—2m (A Inp+ (m —4)|gradln ,u\2> (,uQH)
1
+(m = 6) (V5 g1 u[1? (M) = (m = 2)dgp(gradn )
+(m —2)(m —6)B (gradln u, dp(gradln p)) . (3.5)
Then, we calculate

[v;"adln,u[lu‘2 (mH) - (m - 2)d<P(g7“ad In ,U,)]] :

= [mvjmdlw (,LL2H) —(m— Q)ngdlnudcp(grad In ,u)}L

1
= 2myp? |gradin p> H+mp? (V“;mdlnuH)

i
—(m—2) (V?mdln#dcp(grad In ,u)) . (3.6)
Substituting equation (3.6) into (3.5), we have
Hrap(e,9))" = (m = 2)traceB(-, V.dp(gradIn 1))
+(m — 2)traceVB(-, dp(gradin p))
—2m (A Inp+ (m —4)|gradln ,u|2) (,uQH)

I

1
+2m(m — 6)? [gradn puf* Him(m — 6)? (V5,41 H)

1
—(m —2)(m —6) (medln#dgo(gmd In ,u))
+(m —2)(m — 6)B (gradIn u,dp(gradln p)) .

This proves the theorem. ]
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For m = 2 in Theorem 3.4, we have the following corollary:

Corollary 3.5. The conformal immersion ¢ : (M?,g) — (N3, h) is A-biminimal such
that A = 0 if and only if

€1
[72,A(90’§)]L = _4:“_2 {(A ln:u +2 |gradln,u\2) H+2 (vgradln,uH) } :

Theorem 3.6. The homothetic immersion ¢ : (M?,g) — (N3(c),h) is A\u?-biminimal
such that A # 0 if and only if

AH = H|B]” + pi* (2¢ = M) H =0,
where H = HE and N3 (c) is a three-dimensional space of constant sectional curvature c.

Proof. Let ¢ : (M?,g) — (N3,h) be the associated isometric immersion, where g =
©*h = p2g. From [8], ¢ : (M™,g) — (N™1 k) is Ag?-biminimal if and only if

o (0. 9" = m (AgH — H |BJ2 + HRic" (£,€) = \i?H ) €. (3.7)

It is known from [10] that the Laplacian and the second fundamental form under a homo-
thetic change of metrics § = p%g in a two dimensional manifold are

Agu=p?Au, |BZ=p"?|B*. (3.8)
Moreover, we have
RicN (£,6) = 2. (3.9)
By the use of equations (3.8) and (3.9) into equation (3.7), we find
[roa(e,@)" =2 (W 2AH — Hp 2 B + 2¢H — MiH ) €. (3.10)

From Corollary 3.3, the homothetic immersion ¢ : (M?,g) — (N3 (c),h) is Ap?-biminimal
such that A # 0 if and only if

[r2.x(,9)]" = 0. (3.11)
By the use of the equations (3.10) and (3.11), we get the result. O

From Theorem 3.6, we have the following corollaries:

Corollary 3.7. The homothetic immersion ¢ : (M?,g) — (N3 (c),h) with constant mean
curvature H # 0 is A\pu?-biminimal such that X\ # 0 if and only if

B = (20~ ?)
where ¢ > %)\;ﬁ.

Corollary 3.8. The homothetic immersion ¢ : (M?,g) — (E3, h) with constant mean
curvature H # 0 is A\u?-biminimal such that X\ # 0 if and only if

‘BP = _)‘/’L47
where A < 0.

Proposition 3.9. The conformal immersion ¢ : (M?,g) — (N?(c),h) is A-biminimal
such that A = 0 if and only if

AH — H|B|* +2 (cu2 +Alnp+2 \gradlnuF) H + 4g(gradln p, gradH) = 0,

where H = H¢ and N3 (c) is a three-dimensional space of constant sectional curvature c.
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Proof. Let ¢ : (M?,g) — (N3,h) be the associated isometric immersion, where g =
©*h = p2g. From [8], ¢ : (M™,g) — (N™"1, h) is A-biminimal such that A = 0 if and only
if

m2a(@, )" = m (AgH — H |BJ} + HRic" (¢,€)) €. (3.12)
Using the equations (3.8) and (3.9) into the equation (3.12), we obtain
roa(e,9)" =2 (W 2AH — Hu 2 B + (20) H) & (3.13)

From Corollary 3.5, the conformal immersion ¢ : (M 2, g) = (N 3 (e), h) is A-biminimal
such that A = 0 if and only if

1
[ron(o, )]t = —4u~? { (A p+2(gradinp*) H+ 2 (V5,00 -H) } . (3.14)

Then, we get

(V2 FH)L S\ (Hg))L = g(gradln p, gradH)E. (3.15)
Putting the equation (3.15) into (3.14), we have
[rax(p,9)]F = —4p~2 {(A Inp + 2|gradln /AQ) H + 2g(gradln p, gradH)} . (3.16)
From the equations (3.13) and (3.16), we get the result. O
From Proposition 3.9, we have the following corollary:

Corollary 3.10. The conformal immersion ¢ : (M?,g) — (N3 (c), h) with constant mean
curvature H # 0 is A-biminimal such that X = 0 if and only if

B> =2 (ch +Alnp+2|gradin u|2) .
Example. The immersion
©: (D C R? 129 = r2du® + dy2) — (IR{S, dp* = do® + o?du® + dyz)
(c2eTF —creyteTT)

with ¢ (u,v) = (r,u,v) for u? = 5 is the circular cylinder of radius r into
Euclidean space R3 [10]. It is easy to see that if we take u? = %2, A= —1and r # 1, then

the cylinder is a (/\,u2 = —%)—biminimal surface. Hence, Theorem 3.6 is satisfied.
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