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1. Introduction and Definitions

For two transcendental entire functions f (z) and g(z) it is well known by a result of Clunie [3] that limr→∞
T (r, f◦g)
T (r, f ) =∞ and limr→∞

T (r, f◦g)
T (r,g) =

∞. Many authors [5,6,7,10,12] made close investigation on composition of two entire functions with finite order and obtained many
interesting results. In [11], Jin Tu et.al investigated the composition of entire functions with finite iterated order and proved various results
on comparative growths of log[p+q] T (r, f ◦ g) (p,q) ∈ N with log[p] T (r, f ) and log[q] T (r,g). The aim of this paper is to investigate the
composition of three entire functions with finite iterated order and extend some results of Jin Tu et.al [11] for composition of three entire
functions. We first introduce the notions of iterated order [5].

Definition 1.1. The iterated i order ρi( f ) of an entire function f is defined by

ρi( f ) = limsup
r→∞

log[i+1]M(r, f )
logr

= limsup
r→∞

log[i]T (r, f )
logr

, (i ∈ N).

Similarly, the iterated i lower order µi( f ) of an entire function f is defined by

µi( f ) = liminf
r→∞

log[i+1]M(r, f )
logr

= liminf
r→∞

log[i]T (r, f )
logr

, (i ∈ N),

where

log[1](r) = log(r), log[i+1](r) = log(log[i](r)) i ∈ N, for all sufficiently large r.

Definition 1.2. The finiteness degree of the order of an entire function f (z) is defined by

i( f ) =


0 for f polynomial,
min{ j ∈ N : ρ j( f )< ∞} for f transcendental for which some j ∈ N with ρ j( f )< ∞ exists,
∞ for f with ρ j( f ) = ∞ for all j ∈ N.

Throughout we assume f , g, h etc. are non-constant entire functions of finite iterated order and c1,c2,c3 etc. are suitable constants.
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2. Known lemmas

In this section we present three lemmas which will be needed in the sequel.

Lemma 2.1. [8] Let f (z) and g(z) be two entire functions. If M(r,g)> 2+ε

ε
|g(0)| for any ε > 0 , then

T (r, f ◦g)< (1+ ε)T (M(r,g), f ).

In particular if g(0) = 0, then
T (r, f ◦g)≤ T (M(r,g), f )

for all r > 0.

Lemma 2.2. [3] Let f (z) and g(z) be two entire functions with g(0) = 0. Let α satisfy 0 < α < 1 and let c(α) =
(1−α)2

4α
. Then for r > 0

M(M(r,g), f )≥M(r, f ◦g)≥M(c(α)M(αr,g), f ).

Furthermore if α = 1
2 , for sufficiently large r

M(r, f ◦g)≥M(
1
8

M(
1
2

r,g), f ).

Lemma 2.3. [9] Let f (z) and g(z) be two entire functions. Then for all large values of r

T (r, f ◦g)≥ 1
3

logM(
1
9

M(
r
4
,g), f ).

3. Main theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f , g, h be three entire functions of finite iterated order with i( f ) = p, i(g) = q, i(h) = s and if µp( f )> 0, µq(g)> 0 then
i( f ◦g◦h) = p+q+ s and ρ[p+q+s]( f ◦g◦h) = ρs(h).

Proof. We have for sufficiently large r and for any given ε > 0

T (r, f )≤ exp[p−1]
{

rρp( f )+ε
}
, M(r,g)≤ exp[q]

{
rρq(g)+ε

}
and M(r,h)≤ exp[s]

{
rρs(h)+ε

}
.

Using Lemma 2.1, we have for sufficiently large r

T (r, f ◦g◦h) ≤ (1+o(1))T (M(r,h), f ◦g)

≤ (1+o(1))T (M(M(r,h),g), f )

≤ (1+o(1))exp[p−1]
{
[M(M(r,h),g)]ρp( f )+ε

}
≤ (1+o(1))exp[p]

{
c1exp[q−1]

{
[M(r,h)]ρq(g)+ε

}}
≤ (1+o(1))exp[p]

{
c1exp[q]

{
c2exp[s−1]

{
rρs(h)+ε

}}}
≤ exp[p+q+s−1]

{
rρs(h)+2ε

}
. (3.1)

Now by (3.1) we have

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)
logr

≤ ρs(h). (3.2)

Again i(h) = s, so we have

limsup
r→∞

log[s+1] M(r,h)
logr

= ρs(h).

If ρs(h)> 0, there exists a sequence {rn}→ ∞ such that for any ε (0 < ε < ρs(h)) and for sufficiently large rn, we have

M(rn,h)≥ exp[s]
{

rρs(h)−ε
n

}
. (3.3)

We denote {rn} a sequence tending to infinity not necessarily the same at each occurrence. Since µp( f )> 0, µq(g)> 0, then from Lemma
2.2 and Lemma 2.3 we have

T (rn, f ◦g◦h) ≥ 1
3

logM(
1
9

M(
1
8

M(
rn

8
,h),g) f )

≥ 1
3

exp[p−1]
{
[
1
9

M(
1
8

M(
rn

8
,h),g)]µp( f )−ε

}
≥ 1

3
exp[p]

{
c3exp[q−1]

{
[M(

rn

8
,h)]µq(g)−ε

}}
. (3.4)

≥ 1
3

exp[p]
{

c3exp[q]
{

c4exp[s−1]
{

rρs(h)−ε
n

}}}
using (3.3)

≥ exp[p+q+s−1]
{

rρs(h)−2ε
n

}
. (3.5)
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So,

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)
logr

≥ ρs(h). (3.6)

Therefore from (3.2) and (3.6) we have

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)
logr

= ρs(h).

Thus i( f ◦g◦h) = p+q+ s and ρ[p+q+s]( f ◦g◦h) = ρs(h) for ρs(h)> 0.
If ρs(h) = 0, then by definition we have

limsup
r→∞

log[s] M(r,h)
logr

= ∞.

Hence there exists a sequence {rn}→ ∞ such that for any arbitrary A > 0, we have

log[s] M(rn,h)
logrn

≥ A i.e.,M(rn,h)≥ exp[s−1]
{

rA
n

}
. (3.7)

So from (3.4) and (3.7) we have

T (rn, f ◦g◦h)≥ 1
3

exp[p]
{

c5exp[q]
{

c6 logM(
rn

4
,h)
}}

≥ 1
3

exp[p]
{

c5exp[q]
{

c6exp[s−2]
{
(

rn

4
)A
}}}

≥ 1
3

exp[p+q+s−2]
{
(

rn

4
)A−ε

}
.

So,
log[p+q+s−1] T (rn, f ◦g◦h)

logrn
≥ (A− ε).

Hence limr→∞
log[p+q+s−1] T (r, f◦g◦h)

logr ≥ A. Since A is arbitrary large, then we get

limsup
r→∞

log[p+q+s−1] T (r, f ◦g◦h)
logr

= ∞.

Therefore i( f ◦g◦h) = p+q+ s and ρ[p+q+s]( f ◦g◦h) = ρs(h).

Theorem 3.2. Let f , g, h be three entire functions of finite iterated order such that 0 < ρp( f )< ∞, 0 < µq(g)≤ ρq(g)< ∞ and 0 < µs(h)≤
ρs(h)< ∞, then i( f ◦g◦h) = p+q+ s and µs(h)≤ ρ[p+q+s]( f ◦g◦h)≤ ρs(h).

Proof. Since ρp( f )> 0, there exists a sequence {Rn} tending to infinity such that for any ε (0 < ε < ρp( f )) and sufficiently large Rn, we
have

M(Rn, f )≥ exp[p]
{

Rn
ρp( f )−ε

}
. (3.8)

Since M(r,h) is an increasing continuous function, then there exists a sequence {rn} tending to infinity satisfying Rn =
1
8 M( 1

16 M( rn
2 ,h),g)

such that for sufficiently large rn and by Lemma 2.2, we have

M(rn, f ◦g◦h) ≥ M(
1
8

M(
1

16
M(

rn

2
,h),g), f )

≥ exp[p]
{

Rn
ρp( f )−ε

}
using (3.8)

≥ exp[p][
{

1
8

M(
1
16

M(
rn

2
,h),g)

}ρp( f )−ε

]

≥ exp[p+1]

{
c1exp[q−1]

{
1
16

M(
rn

2
,h)
}µq(g)−ε

}
≥ exp[p+1]

{
c1exp[q]

{
c2exp[s−1](

rn

2
)µs(h)−ε

}}
≥ exp[p+q+s]

{
rn

µs(h)−2ε
}
. (3.9)

So,
log[p+q+s+1] M(rn, f ◦g◦h)

logrn
≥ µs(h)−2ε

i.e.,

ρ[p+q+s]( f ◦g◦h)≥ µs(h). (3.10)
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Again for sufficiently large r, we have from Lemma 2.2

M(r, f ◦g◦h) ≤ M(M(M(r,h),g), f )

≤ exp[p][{M(M(r,h),g)}ρp( f )+ε ]

≤ exp[p+1][c3exp[q−1] {M(r,h)}ρq(g)+ε ]

≤ exp[p+1][c3exp[q]
{

c4exp[s−1]
{

rρs(h)+ε
}}

]

≤ exp[p+q+s]
{

rρs(h)+2ε
}
. (3.11)

So,
log[p+q+s+1] M(r, f ◦g◦h)

logr
≤ ρs(h)+2ε

i.e.,

ρ[p+q+s]( f ◦g◦h)≤ ρs(h). (3.12)

Therefore from (3.10) and (3.12) we get
µs(h)≤ ρ[p+q+s]( f ◦g◦h)≤ ρs(h).

This completes the proof of the Theorem 3.2.

Theorem 3.3. Let f , g, h be three entire functions of iterated order with i( f ) = p, i(g) = q, i(h) = s and ρs(h) < µp( f ) ≤ ρp( f ), then

limr→∞
log[q+s] T (r, f◦g◦h)

T (r, f ) = 0 and limr→∞
log[q+s+1] M(r, f◦g◦h)

logM(r, f ) = 0.

Proof. By definition, for sufficiently large r, we have

exp[p−1]
{

rµp( f )−ε
}
≤ T (r, f )≤ exp[p−1]

{
rρp( f )+ε

}
, M(r,h)≤ exp[s]

{
rρs(h)+ε

}
. (3.13)

By (3.1), we have

T (r, f ◦g◦h)≤ exp[p+q+s−1]
{

rρs(h)+2ε
}
.

Hence for sufficiently large r and for any given ε, we have from (3.13)

log[q+s] T (r, f ◦g◦h)
T (r, f )

≤
exp[p−1]

{
rρs(h)+2ε

}
exp[p−1]

{
rµp( f )−ε

} → 0

i.e.,

lim
r→∞

log[q+s] T (r, f ◦g◦h)
T (r, f )

= 0.

Similarly for sufficiently large r, we have

exp[p−1]
{

rµp( f )−ε
}
≤ logM(r, f )≤ exp[p−1]

{
rρp( f )+ε

}
, M(r,h)≤ exp[s]

{
rρs(h)+ε

}
. (3.14)

Again by (3.11), we have

M(r, f ◦g◦h)≤ exp[p+q+s]
{

rρs(h)+2ε
}
.

Hence from (3.14), we get

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

≤
exp[p−1]

{
rρs(h)+2ε

}
exp[p−1]

{
rµp( f )−ε

} → 0

i.e.,

lim
r→∞

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

= 0.

Example 3.1. The condition ρs(h)< µp( f ) in Theorem 3.3 is necessary. To see this we consider the following example.
Let f (z) = exp(z), g(z) = exp[2](z), h(z) = exp[3](z) and p = 1, q = 2, s = 3. Then we have

ρ3(h)=limsupr→∞

log[4] M(r,h)
logr = limr→∞

logr
logr = 1 and µ1( f ) = liminfr→∞

log[2] M(r, f )
logr = 1.

But limr→∞
log[6] M(r, f◦g◦h)

logM(r, f ) = limr→∞
r
r = 1 6= 0.

Theorem 3.4. Let f , g, h be three entire functions of finite iterated order with i( f ) = p, i(g) = q, i(h) = s and µs(h)< µp( f )≤ ρp( f ) then

liminfr→∞
log[q+s] T (r, f◦g◦h)

T (r, f ) = 0 and liminfr→∞
log[q+s+1] M(r, f◦g◦h)

logM(r, f ) = 0.
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Proof. By definition for sufficiently large r we have

exp[p−1]
{

rµp( f )−ε
}
≤ T (r, f )≤ exp[p−1]

{
rρp( f )+ε

}
, M(r,h)≤ exp[s]

{
rρs(h)+ε

}
. (3.15)

By (3.15) and using Lemma 2.1, we get

T (r, f ◦g◦h)≤ 2T (M(M(r,h),g), f )

≤ 2exp[p−1][{M(M(r,h),g)}ρp( f )+ε ]

≤ 2exp[p][c1exp[q−1]
{
{M(r,h)}ρq(g)+ε

}
].

Hence for a sequence {rn}→ ∞ we can get from above

T (rn, f ◦g◦h)≤ 2exp[p][c1exp[q]
{

c2exp[s−1](rµs(h)+ε
n )

}
].

So,

T (rn, f ◦g◦h)≤ 2exp[p+q+s−1]
{

rµs(h)+2ε
n

}
. (3.16)

From (3.15) and (3.16) for a sequence of values of {rn} tending to infinity, we get

log[q+s] T (rn, f ◦g◦h)
T (rn, f )

≤
exp[p−1]

{
rµs(h)+2ε

n

}
exp[p−1]

{
rµp( f )−ε

n

} → 0.

Therefore

liminf
r→∞

log[q+s] T (r, f ◦g◦h)
T (r, f )

= 0.

Again for sufficiently large r, we have

exp[p−1]
{

rµp( f )−ε
}
≤ logM(r, f )≤ exp[p−1]

{
rρp( f )+ε

}
(3.17)

and
M(r,h)≤ exp[s]

{
rρs(h)+ε

}
.

So for all large values of r, using Lemma 2.2

M(r, f ◦g◦h)≤M(M(M(r,h),g), f )

≤ exp[p][{M(M(r,h),g)}ρp( f )+ε

≤ exp[p+1][c3exp[q−1]
{
(M(r,h))ρq(g)+ε

}
].

Hence for a sequence {rn}→ ∞ we get

M(rn, f ◦g◦h)≤ exp[p+1][c3exp[q]
{{

c4exp[s−1](rn)
µs(h)+ε

}}
]

≤ exp[p+q+s]
{
(rn)

µs(h)+2ε
}
. (3.18)

From (3.17) and (3.18) we get for a sequence {rn}→ ∞

log[q+s+1] M(rn, f ◦g◦h)
logM(r, f )

≤
exp[p−1]

{
rµs(h)−2ε

n

}
exp[p−1]

{
rµp( f )−ε

} → 0

i.e.,

liminf
r→∞

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

= 0.

Theorem 3.5. Let f , g, h be three entire functions of finite iterated order with i( f ) = p, i(g) = q, i(h) = s, µq(g) > 0 and 0 < µp( f ) ≤
ρp( f )< ρs(h)< ∞ then liminfr→∞

log[q+s] T (r, f◦g◦h)
T (r, f ) = ∞ and liminfr→∞

log[q+s+1] M(r, f◦g◦h)
logM(r, f ) = ∞.
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Proof. By definition, there exists a sequence {rn}→ ∞ and for any given ε(> 0), we have

M(rn,h)≥ exp[s]
{

rρs(h)−ε
n

}
, T (rn, f )≤ exp[p−1]

{
rρp( f )+ε

n

}
. (3.19)

Also from (3.5)

log[q+s] T (rn, f ◦g◦h)≥ exp[p−1]
{

rρs(h)−2ε
n

}
.

Hence from (3.19)

log[q+s] T (rn, f ◦g◦h)
T (rn, f )

≥
exp[p−1]

{
rρs(h)−2ε

n

}
exp[p−1]

{
rρp( f )+ε

n

} .

Since ρs(h)> ρp( f ), so

liminf
r→∞

log[q+s] T (r, f ◦g◦h)
T (r, f )

= ∞.

Similarly we also have

liminf
r→∞

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

= ∞.

Theorem 3.6. Let f , g, h be three entire functions of finite iterated order such that 0< µp( f )< µs(h)<∞, then limsupr→∞

log[q+s] T (r, f◦g◦h)
T (r, f ) =

∞ and limsupr→∞

log[q+s+1] M(r, f◦g◦h)
logM(r, f ) = ∞.

Proof. For all large r we get using Lemma 2.2 and 2.3

T (r, f ◦g◦h) ≥ 1
3

logM(
1
9

M(
1
8

M(
r
8
,h),g) f )

≥ 1
3

exp[p−1]
{
[
1
9

M(
1
8

M(
r
8
,h),g)]µp( f )−ε

}
≥ 1

3
exp[p]

{
c1exp[q−1]

{
[M(

r
8
,h)]µq(g)−ε

}}
≥ 1

3
exp[p]

{
c1exp[q]

{
c2exp[s−1]

{
rµs(h)−ε

}}}
≥ exp[p+q+s−1]

{
rµs(h)−2ε

}
. (3.20)

By definition there exists a sequence {rn}→ ∞ such that for any given ε(> 0), we have

T (rn, f )≤ exp[p−1]
{

rµp( f )+ε

n

}
. (3.21)

From (3.20) and (3.21) we get for a sequence {rn} of values of r tending to infinity

log[q+s] T (rn, f ◦g◦h)
T (rn, f )

≥
exp[p−1]

{
rµs(h)−2ε

n

}
exp[p−1]

{
rµp( f )+ε

n

} → ∞

i.e., limsupr→∞

log[q+s] T (r, f◦g◦h)
T (r, f ) = ∞.

Similarly we can prove that

limsup
r→∞

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

= ∞.

Example 3.2. The condition µp( f )< µs(h) in Theorem 3.6 is necessary. To see this we consider the following example.
Let f (z) = exp[2](z), g(z) = exp[3](z) h(z) = exp(z), and p = 2, q = 3, s = 1. Then we have

µ2( f )=liminfr→∞
log[3] M(r, f )

logr = limr→∞
logr
logr = 1 and µ1(h) = liminfr→∞

log[2] M(r,h)
logr = 1.

But limr→∞
log[5] M(r, f◦g◦h)

logM(r, f ) = limr→∞
expr
expr = 1 6= ∞.

Theorem 3.7. Let f , g, h be three entire functions of finite iterated order with i( f )= p, i(g)= q, i(h)= s and 0< µp( f )≤ ρp( f )< µs(h)<∞

then limr→∞
log[q+s] T (r, f◦g◦h)

T (r, f ) = ∞ and limr→∞
log[q+s+1] M(r, f◦g◦h)

logM(r, f ) = ∞.

Proof. By definition, for large r and for any given ε(> 0), we have

T (r, f )≤ exp[p−1]
{

rρp( f )+ε
}
. (3.22)

Again for all large values of r we get from (3.20)

T (r, f ◦g◦h)≥ exp[p+q+s−1]
{

rµs(h)−2ε
}
. (3.23)
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So from (3.22) and (3.23) we have

log[q+s] T (r, f ◦g◦h)
T (r, f )

≥
exp[p−1]

{
rµs(h)−2ε

}
exp[p−1]

{
rρp( f )+ε

} .

Since µs(h)> ρp( f ) and ε(> 0) is arbitrary, so

lim
r→∞

log[q+s] T (r, f ◦g◦h)
T (r, f )

= ∞.

Now from (3.17) and (3.9) we get

log[q+s+1] M(rn, f ◦g◦h)
logM(r, f )

≥
exp[p−1]

{
rµs(h)−2ε

}
exp[p−1]

{
rρp( f )+ε

} → ∞

i.e.,

lim
r→∞

log[q+s+1] M(r, f ◦g◦h)
logM(r, f )

= ∞.

Theorem 3.8. Let f , g, h be three entire functions of finite iterated order such that 0 < µp( f )≤ ρp( f )< ∞ and 0 < µs(h)≤ ρs(h)< ∞,
then
µs(h)
ρp( f ) ≤ liminfr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f )

≤ min
{

µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤ max

{
µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤ limsupr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f )

≤ ρs(h)
µp( f ) .

Proof. By definition for sufficiently large r and for any ε(> 0) we have

(µp( f )− ε) logr ≤ log[p] T (r, f )≤ (ρp( f )+ ε) logr. (3.24)

From (3.5) we can easily say that

T (rn, f ◦g◦h)≥ 1
3

exp[p+q+s−1]
{

rµs(h)−2ε
n

}
.

So from above and for all large r and any ε(> 0) we have from (3.2)

(µs(h)−2ε) logr ≤ log[p+q+s] T (r, f ◦g◦h)≤ (ρs(h)+ ε) logr. (3.25)

From (3.24) and (3.25) we get for sufficiently large values of r

ρs(h)+ ε

µp( f )− ε
≥ log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≥ µs(h)−2ε

ρp( f )+ ε
. (3.26)

Since ε > 0, is arbitrary we get from (3.26)

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≥ µs(h)

ρp( f )

and

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≤ ρs(h)

µp( f )
.

Again by definition, there exist two sequences {rn} and {Rn} tending to infinity such that

log[p] T (rn, f )≥ (ρp( f )− ε) logrn, log[p] T (Rn, f )≤ (µp( f )+ ε) logRn. (3.27)

From (3.1)
T (r, f ◦g◦h)≤ exp[p+q+s−1]

{
rµs(h)+2ε

}
.

So from above and (3.5) there exists two sequences {r′n} and {R′n} tending to infinity such that

T (r
′
n, f ◦g◦h)≤ exp[p+q+s−1]

{
r
′
n

µs(h)+2ε
}

and

T (R
′
n, f ◦g◦h)≥ exp[p+q+s−1]

{
R
′
n

ρs(h)−2ε
}
.

Hence

log[p+q+s] T (r
′
n, f ◦g◦h)≤ (µs(h)+2ε) logr

′
n and log[p+q+s] T (R

′
n, f ◦g◦h)≥ (ρs(h)−2ε) logR

′
n. (3.28)

From (3.25) and (3.27) we get
log[p+q+s] T (rn, f ◦g◦h)

log[p] T (rn, f )
≤ (ρs(h)+ ε) logrn

(ρp( f )− ε) logrn
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i.e.,

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≤ ρs(h)

ρp( f )
.

From (3.24) and (3.28) we get
log[p+q+s] T (r

′
n, f ◦g◦h)

log[p] T (r′n, f )
≤ (µs(h)+2ε) logr

′
n

(µp( f )− ε) logr′n
i.e.,

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≤ µs(h)

µp( f )
.

Hence

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≤ min

{
µs(h)
µp( f )

,
ρs(h)
ρp( f )

}
.

Again from (3.25) and (3.27) we get
log[p+q+s] T (Rn, f ◦g◦h)

log[p] T (Rn, f )
≥ (µs(h)−2ε) logRn

(µp( f )+ ε) logRn

i.e.,

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≥ µs(h)

µp( f )
.

From (3.24) and (3.28) we get
log[p+q+s] T (R

′
n, f ◦g◦h)

log[p] T (R′n, f )
≥ (ρs(h)−2ε) logR

′
n

(ρp( f )+ ε) logR′n
i.e.,

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≥ ρs(h)

ρp( f )
.

Hence

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[p] T (r, f )
≥ max

{
µs(h)
µp( f )

,
ρs(h)
ρp( f )

}
.

Therefore
µs(h)
ρp( f ) ≤ liminfr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f )

≤ min
{

µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤ max

{
µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤ limsupr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f )

≤ ρs(h)
µp( f ) .

This completes the proof.

Corollary 3.1. Let f , g, h satisfy the hypotheses of Theorem 3.8, then µs(h)
ρp( f ) ≤ liminfr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f (k))

≤ min
{

µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤

max
{

µs(h)
µp( f ) ,

ρs(h)
ρp( f )

}
≤ limsupr→∞

log[p+q+s] T (r, f◦g◦h)
log[p] T (r, f (k))

≤ ρs(h)
µp( f ) . for k=1,2,..

Corollary 3.2. We can obtain the same result when we replace T (r, f ◦g◦h),T (r, f ) with logM(r, f ◦g◦h), logM(r, f ) in Theorem 3.8.

Theorem 3.9. Let f , g, h be three entire functions of finite iterated order such that 0 < µp( f )≤ ρp( f )< ∞ and 0 < µs(h)≤ ρs(h)< ∞,
then
µs(h)
ρs(h)

≤ liminfr→∞
log[p+q+s] T (r, f◦g◦h)

log[s] T (r,h)
≤ 1≤ limsupr→∞

log[p+q+s] T (r, f◦g◦h)
log[s] T (r,h)

≤ ρs(h)
µs(h)

and

µs(h)
ρs(h)

≤ liminfr→∞
log[p+q+s+1] M(r, f◦g◦h)

log[s+1] M(r,h)
≤ 1≤ limsupr→∞

log[p+q+s+1] M(r, f◦g◦h)
log[s+1] M(r,h)

≤ ρs(h)
µs(h)

.

Proof. For sufficiently large r and for any ε > 0, we have

log[s] T (r,h)≤ (ρs(h)+ ε) logr. (3.29)

Again for sufficiently large r and Lemma 2.3, we have

T (rn, f ◦g◦h) ≥ 1
3

logM(
1
9

M(
1
8

M(
rn

8
,h),g) f )

≥ 1
3

exp[p−1]
{
[
1
9

M(
1
8

M(
rn

8
,h),g)]µp( f )−ε

}
≥ 1

3
exp[p]

{
c1exp[q−1]

{
[M(

rn

8
,h)]µq(g)−ε

}}
≥ 1

3
exp[p]

{
c1exp[q]

{
c2exp[s−1]

{
rµs(h)−ε

n

}}}
≥ exp[p+q+s−1]

{
rµs(h)−2ε
n

}
. (3.30)

From (3.29) and (3.30) we get
log[p+q+s] T (rn, f ◦g◦h)

log[s] T (rn,h)
≥ (µs(h)−2ε) logrn

(ρs(h)+ ε) logrn
.
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As ε > 0 is any arbitrary
so,

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[s] T (r,h)
≥ µs(h)

ρs(h)
.

Again by definition, there exists a sequence {rn} tending to infinity such that

log[s] T (rn,h)≥ (ρs(h)− ε) logrn. (3.31)

From (3.2) for any given ε > 0 and sufficiently large r, we have

log[p+q+s] T (r, f ◦g◦h)≤ (ρs(h)+ ε) logr, log[s] T (r,h)≤ (ρs(h)+ ε) logr, log[s] T (r,h)≥ (µs(h)− ε) logr. (3.32)

From (3.31) and (3.32) we get
log[p+q+s] T (rn, f ◦g◦h)

log[s] T (rn,h)
≤ (ρs(h)+ ε) logrn

(ρs(h)− ε) logrn

i.e.,

liminf
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[s] T (r,h)
≤ 1.

Again from (3.32) we get
log[p+q+s] T (rn, f ◦g◦h)

log[s] T (rn,h)
≤ (ρs(h)+ ε) logrn

(µs(h)− ε) logrn

i.e.,

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[s] T (r,h)
≤ ρs(h)

µs(h)
.

Again for a sequence {Rn} tending to infinity we have from (3.5)

T (Rn, f ◦g◦h)≥ exp[p+q+s−1]
{

Rρs(h)−2ε
n

}
. (3.33)

From (3.32) and (3.33), we get
log[p+q+s] T (Rn, f ◦g◦h)

log[s] T (Rn,h)
≥ (ρs(h)−2ε) logRn

(ρs(h)+ ε) logRn
.

i.e.,

limsup
r→∞

log[p+q+s] T (r, f ◦g◦h)

log[s] T (r,h)
≥ 1.

Combining all we get
µs(h)
ρs(h)

≤ liminfr→∞
log[p+q+s] T (r, f◦g◦h)

log[s] T (r,h)
≤ 1≤ limsupr→∞

log[p+q+s] T (r, f◦g◦h)
log[s] T (r,h)

≤ ρs(h)
µs(h)

.

Similarly as above we can show that
µs(h)
ρs(h)

≤ liminfr→∞
log[p+q+s+1] M(r, f◦g◦h)

log[s+1] M(r,h)
≤ 1≤ limsupr→∞

log[p+q+s+1] M(r, f◦g◦h)
log[s+1] M(r,h)

≤ ρs(h)
µs(h)

.

Acknowledgement

The authors are thankful to the referees for several suggestions which considerably improve the presentation of the paper.

References

[1] W. Bergweiler , On the growth rate of composite meromorphic functions, complex Var. Elliptic Equ., 14(1990), 187-196.
[2] W. Bergweiler, Order and lower order of composite meromorphic functions, Michigam Math. J., 36(1989), 135-146.
[3] J. Clunie, The composition of entire and meromorphic functions, Mathematical essays dedicated to A.J. Macintyre, Ohio University Press (1970),
75-92.
[4] W.K.Hayman, Meromorphic functions, The clarendon Press, Oxford(1964).
[5] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4), (1998) 385-405.
[6] I.Lahiri and D.K.Sharma . Growth of composite entire and meromorphic functions,Indian journal pure appl. math,26(4)(1995),5451-58.
[7] I.Lahiri and S.K.Datta, on the growth of entire and meromorphic functions,Indian journal pure appl. math,35(4)(2004),525-43.
[8] K.Niino and N. Smita, Growth of composite function of entiure functions, Kodai Math. J., 3(1980),374-379.
[9] K.Niino and C.C. Yang, Some growth relationship on factors of two compositive entire functions, in: Factorization theory of Meromorphic functions
and related Topics, Marcel Dekker Inc., New York/Basel,1982, pp. 95-99.
[10] A. P. Singh, Growth of composite entire functions, Kodai Math. J.,8(1985), 99-102.
[11] J. Tu, Z.-X.Chen and X.-M.Zheng, Composition of entire fuynctions with finite iterated order , J. Math. Anal. Appl., 353(2009), 295-304.
[12] Z.-Z.Zhou, Growth of composite entire functions, Kodai Math. J., 9(1986), 419-420.


	Introduction and Definitions
	 Known lemmas
	Main theorems

