Composition of Three Entire Functions with Finite Iterated Order

Dibyendu Banerjee ${ }^{1 *}$ and Mithun Adhikary ${ }^{1}$
${ }^{1}$ Department of Mathematics, Visva-Bharati, Santiniketan-731235, India
* Corresponding author

Abstract

The purpose of this paper is to investigate the growth of three composite entire functions of finite iterated order by extending some results of Jin Tu et.al [11].

Keywords: Order, Iterated i-order, Entire function, Composition. 2010 Mathematics Subject Classification: 30D35.

1. Introduction and Definitions

For two transcendental entire functions $f(z)$ and $g(z)$ it is well known by a result of Clunie [3] that $\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, f)}=\infty$ and $\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, g)}=$ ∞. Many authors [5,6,7,10,12] made close investigation on composition of two entire functions with finite order and obtained many interesting results. In [11], Jin Tu et.al investigated the composition of entire functions with finite iterated order and proved various results on comparative growths of $\log ^{[p+q]} T(r, f \circ g)(p, q) \in \mathbb{N}$ with $\log ^{[p]} T(r, f)$ and $\log ^{[q]} T(r, g)$. The aim of this paper is to investigate the composition of three entire functions with finite iterated order and extend some results of Jin Tu et.al [11] for composition of three entire functions. We first introduce the notions of iterated order [5].

Definition 1.1. The iterated i order $\rho_{i}(f)$ of an entire function f is defined by
$\rho_{i}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[i+1]} M(r, f)}{\log r}=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[i]} T(r, f)}{\log r},(i \in \mathbb{N})$.
Similarly, the iterated i lower order $\mu_{i}(f)$ of an entire function f is defined by
$\mu_{i}(f)=\underset{r \rightarrow \infty}{\liminf } \frac{\log g^{[i+1]} M(r, f)}{\log r}=\underset{r \rightarrow \infty}{\liminf } \frac{\log g^{[i]} T(r, f)}{\log r},(i \in \mathbb{N})$,
where
$\log ^{[1]}(r)=\log (r), \log ^{[i+1]}(r)=\log \left(\log { }^{[i]}(r)\right) i \in \mathbb{N}$, for all sufficiently large r.

Definition 1.2. The finiteness degree of the order of an entire function $f(z)$ is defined by
$i(f)= \begin{cases}0 & \text { for polynomial, } \\ \min \left\{j \in \mathbb{N}: \rho_{j}(f)<\infty\right\} & \text { forf transcendental for which some } j \in \mathbb{N} \text { with } \rho_{j}(f)<\infty \text { exists }, \\ \infty & \text { for f with } \rho_{j}(f)=\infty \text { for all } j \in \mathbb{N} .\end{cases}$
Throughout we assume f, g, h etc. are non-constant entire functions of finite iterated order and c_{1}, c_{2}, c_{3} etc. are suitable constants.

2. Known lemmas

In this section we present three lemmas which will be needed in the sequel.
Lemma 2.1. [8] Let $f(z)$ and $g(z)$ be two entire functions. If $M(r, g)>\frac{2+\varepsilon}{\varepsilon}|g(0)|$ for any $\varepsilon>0$, then

$$
T(r, f \circ g)<(1+\varepsilon) T(M(r, g), f) .
$$

In particular if $g(0)=0$, then

$$
T(r, f \circ g) \leq T(M(r, g), f)
$$

for all $r>0$.
Lemma 2.2. [3] Let $f(z)$ and $g(z)$ be two entire functions with $g(0)=0$. Let α satisfy $0<\alpha<1$ and let $c(\alpha)=\frac{(1-\alpha)^{2}}{4 \alpha}$. Then for $r>0$

$$
M(M(r, g), f) \geq M(r, f \circ g) \geq M(c(\alpha) M(\alpha r, g), f) .
$$

Furthermore if $\alpha=\frac{1}{2}$, for sufficiently large r

$$
M(r, f \circ g) \geq M\left(\frac{1}{8} M\left(\frac{1}{2} r, g\right), f\right) .
$$

Lemma 2.3. [9] Let $f(z)$ and $g(z)$ be two entire functions. Then for all large values of r

$$
T(r, f \circ g) \geq \frac{1}{3} \log M\left(\frac{1}{9} M\left(\frac{r}{4}, g\right), f\right) .
$$

3. Main theorems

In this section we present the main results of the paper.
Theorem 3.1. Let f, g, h be three entire functions of finite iterated order with $i(f)=p, i(g)=q, i(h)=s$ and if $\mu_{p}(f)>0, \mu_{q}(g)>0$ then $i(f \circ g \circ h)=p+q+s$ and $\rho_{[p+q+s]}(f \circ g \circ h)=\rho_{s}(h)$.
Proof. We have for sufficiently large r and for any given $\varepsilon>0$
$T(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}, M(r, g) \leq \exp ^{[q]}\left\{r^{\rho_{q}(g)+\varepsilon}\right\}$ and $M(r, h) \leq \exp ^{[s]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}$.
Using Lemma 2.1, we have for sufficiently large r

$$
\begin{align*}
T(r, f \circ g \circ h) & \leq(1+o(1)) T(M(r, h), f \circ g) \\
& \leq(1+o(1)) T(M(M(r, h), g), f) \\
& \leq(1+o(1)) \exp ^{[p-1]}\left\{[M(M(r, h), g)]^{\rho_{p}(f)+\varepsilon}\right\} \\
& \leq(1+o(1)) \exp ^{[p]}\left\{c_{1} \exp ^{[q-1]}\left\{[M(r, h)]^{\rho_{q}(g)+\varepsilon}\right\}\right\} \\
& \leq(1+o(1)) \exp ^{[p]}\left\{c_{1} \exp ^{[q]}\left\{c_{2} \exp ^{[s-1]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}\right\}\right\} \\
& \leq \exp ^{[p+q+s-1]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\} . \tag{3.1}
\end{align*}
$$

Now by (3.1) we have
$\limsup _{r \rightarrow \infty} \frac{\log [p+q+s]}{\log r}(r, f \circ g \circ h) \leq \rho_{s}(h)$.
Again $i(h)=s$, so we have

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[s+1]} M(r, h)}{\log r}=\rho_{s}(h)
$$

If $\rho_{s}(h)>0$, there exists a sequence $\left\{r_{n}\right\} \rightarrow \infty$ such that for any $\varepsilon\left(0<\varepsilon<\rho_{s}(h)\right)$ and for sufficiently large r_{n}, we have
$M\left(r_{n}, h\right) \geq \exp ^{[s]}\left\{r_{n}^{\rho_{s}(h)-\varepsilon}\right\}$.
We denote $\left\{r_{n}\right\}$ a sequence tending to infinity not necessarily the same at each occurrence. Since $\mu_{p}(f)>0, \mu_{q}(g)>0$, then from Lemma 2.2 and Lemma 2.3 we have

$$
\begin{align*}
T\left(r_{n}, f \circ g \circ h\right) & \geq \frac{1}{3} \log M\left(\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r_{n}}{8}, h\right), g\right) f\right) \\
& \geq \frac{1}{3} \exp ^{[p-1]}\left\{\left[\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r_{n}}{8}, h\right), g\right)\right]^{\mu_{p}(f)-\varepsilon}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{3} \exp ^{[q-1]}\left\{\left[M\left(\frac{r_{n}}{8}, h\right)\right]^{\mu_{q}(g)-\varepsilon}\right\}\right\} . \tag{3.4}\\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{3} \exp ^{[q]}\left\{c_{4} \exp ^{[s-1]}\left\{r_{n}^{\rho_{s}(h)-\varepsilon}\right\}\right\}\right\} \text { using (3.3) } \\
& \geq \exp ^{[p+q+s-1]}\left\{r_{n}^{\rho_{s}(h)-2 \varepsilon}\right\} . \tag{3.5}
\end{align*}
$$

So,
$\underset{r \rightarrow \infty}{\limsup } \frac{\log { }^{[p+q+s]} T(r, f \circ g \circ h)}{\log r} \geq \rho_{s}(h)$.
Therefore from (3.2) and (3.6) we have

$$
\limsup _{r \rightarrow \infty} \frac{\log { }^{[p+q+s]} T(r, f \circ g \circ h)}{\log r}=\rho_{s}(h) .
$$

Thus $i(f \circ g \circ h)=p+q+s$ and $\rho_{[p+q+s]}(f \circ g \circ h)=\rho_{s}(h)$ for $\rho_{s}(h)>0$.
If $\rho_{s}(h)=0$, then by definition we have

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[s]} M(r, h)}{\log r}=\infty .
$$

Hence there exists a sequence $\left\{r_{n}\right\} \rightarrow \infty$ such that for any arbitrary $A>0$, we have
$\frac{\log ^{[s]} M\left(r_{n}, h\right)}{\log r_{n}} \geq A$ i.e., $M\left(r_{n}, h\right) \geq \exp ^{[s-1]}\left\{r_{n}^{A}\right\}$.
So from (3.4) and (3.7) we have

$$
\begin{aligned}
T\left(r_{n}, f \circ g \circ h\right) & \geq \frac{1}{3} \exp ^{[p]}\left\{c_{5} \exp ^{[q]}\left\{c_{6} \log M\left(\frac{r_{n}}{4}, h\right)\right\}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{5} \exp ^{[q]}\left\{c_{6} \exp ^{[s-2]}\left\{\left(\frac{r_{n}}{4}\right)^{A}\right\}\right\}\right\} \\
& \geq \frac{1}{3} \exp ^{[p+q+s-2]}\left\{\left(\frac{r_{n}}{4}\right)^{A-\varepsilon}\right\} .
\end{aligned}
$$

So,

$$
\frac{\log { }^{[p+q+s-1]} T\left(r_{n}, f \circ g \circ h\right)}{\log r_{n}} \geq(A-\varepsilon) .
$$

Hence $\lim _{r \rightarrow \infty} \frac{\log ^{[p+q+s-1]} T(r, f \circ g \circ h)}{\log r} \geq A$. Since A is arbitrary large, then we get

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p+q+s-1]} T(r, f \circ g \circ h)}{\log r}=\infty .
$$

Therefore $i(f \circ g \circ h)=p+q+s$ and $\rho_{[p+q+s]}(f \circ g \circ h)=\rho_{s}(h)$.

Theorem 3.2. Let f, g, h be three entire functions of finite iterated order such that $0<\rho_{p}(f)<\infty, 0<\mu_{q}(g) \leq \rho_{q}(g)<\infty$ and $0<\mu_{s}(h) \leq$ $\rho_{s}(h)<\infty$, then $i(f \circ g \circ h)=p+q+s$ and $\mu_{s}(h) \leq \rho_{[p+q+s]}(f \circ g \circ h) \leq \rho_{s}(h)$.

Proof. Since $\rho_{p}(f)>0$, there exists a sequence $\left\{R_{n}\right\}$ tending to infinity such that for any $\varepsilon\left(0<\varepsilon<\rho_{p}(f)\right)$ and sufficiently large R_{n}, we have
$M\left(R_{n}, f\right) \geq \exp ^{[p]}\left\{{R_{n}}^{\rho_{p}(f)-\varepsilon}\right\}$.
Since $M(r, h)$ is an increasing continuous function, then there exists a sequence $\left\{r_{n}\right\}$ tending to infinity satisfying $R_{n}=\frac{1}{8} M\left(\frac{1}{16} M\left(\frac{r_{n}}{2}, h\right), g\right)$ such that for sufficiently large r_{n} and by Lemma 2.2 , we have

$$
\begin{align*}
M\left(r_{n}, f \circ g \circ h\right) & \geq M\left(\frac{1}{8} M\left(\frac{1}{16} M\left(\frac{r_{n}}{2}, h\right), g\right), f\right) \\
& \geq \exp ^{[p]}\left\{R_{n} \rho_{p}(f)-\varepsilon\right\} u \operatorname{sing}(3.8) \\
& \left.\geq \exp ^{[p]}\left[\frac{1}{8} M\left(\frac{1}{16} M\left(\frac{r_{n}}{2}, h\right), g\right)\right\}^{\rho_{p}(f)-\varepsilon}\right] \\
& \geq \exp ^{[p+1]}\left\{c_{1} \exp ^{[q-1]}\left\{\frac{1}{16} M\left(\frac{r_{n}}{2}, h\right)\right\}^{\mu_{q}(g)-\varepsilon}\right\} \\
& \geq \exp ^{[p+1]}\left\{c_{1} \exp ^{[q]}\left\{c_{2} \exp ^{[s-1]}\left(\frac{r_{n}}{2}\right)^{\mu_{s}(h)-\varepsilon}\right\}\right\} \\
& \geq \exp ^{[p+q+s]}\left\{r_{n}^{\mu_{s}(h)-2 \varepsilon}\right\} . \tag{3.9}
\end{align*}
$$

So,

$$
\frac{\log ^{[p+q+s+1]} M\left(r_{n}, f \circ g \circ h\right)}{\log r_{n}} \geq \mu_{s}(h)-2 \varepsilon
$$

i.e.,
$\rho_{[p+q+s]}(f \circ g \circ h) \geq \mu_{s}(h)$.

Again for sufficiently large r, we have from Lemma 2.2

$$
\begin{align*}
M(r, f \circ g \circ h) & \leq M(M(M(r, h), g), f) \\
& \leq \exp ^{[p]}\left[\{M(M(r, h), g)\}^{\rho_{p}(f)+\varepsilon}\right] \\
& \leq \exp ^{[p+1]}\left[c_{3} \exp ^{[q-1]}\{M(r, h)\}^{\rho_{q}(g)+\varepsilon}\right] \\
& \leq \exp ^{[p+1]}\left[c_{3} \exp ^{[q]}\left\{c_{4} \exp ^{[s-1]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}\right\}\right] \\
& \leq \exp ^{[p+q+s]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\} . \tag{3.11}
\end{align*}
$$

So,

$$
\frac{\log ^{[p+q+s+1]} M(r, f \circ g \circ h)}{\log r} \leq \rho_{s}(h)+2 \varepsilon
$$

i.e.,
$\rho_{[p+q+s]}(f \circ g \circ h) \leq \rho_{s}(h)$.
Therefore from (3.10) and (3.12) we get

$$
\mu_{s}(h) \leq \rho_{[p+q+s]}(f \circ g \circ h) \leq \rho_{s}(h) .
$$

This completes the proof of the Theorem 3.2.
Theorem 3.3. Let f, g, h be three entire functions of iterated order with $i(f)=p, i(g)=q, i(h)=s$ and $\rho_{s}(h)<\mu_{p}(f) \leq \rho_{p}(f)$, then $\lim _{r \rightarrow \infty} \frac{\log ^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)}=0$ and $\lim _{r \rightarrow \infty} \frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=0$.
Proof. By definition, for sufficiently large r, we have
$\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\} \leq T(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}, M(r, h) \leq \exp ^{[s]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}$.
By (3.1), we have
$T(r, f \circ g \circ h) \leq \exp ^{[p+q+s-1]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\}$.
Hence for sufficiently large r and for any given ε, we have from (3.13)
$\frac{\log { }^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)} \leq \frac{\exp ^{[p-1]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\}}{\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\}} \rightarrow 0$
i.e.,
$\lim _{r \rightarrow \infty} \frac{\log ^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)}=0$.
Similarly for sufficiently large r, we have
$\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\} \leq \log M(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}, M(r, h) \leq \exp ^{[s]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}$.
Again by (3.11), we have
$M(r, f \circ g \circ h) \leq \exp ^{[p+q+s]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\}$.
Hence from (3.14), we get
$\frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)} \leq \frac{\exp ^{[p-1]}\left\{r^{\rho_{s}(h)+2 \varepsilon}\right\}}{\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\}} \rightarrow 0$
i.e.,
$\lim _{r \rightarrow \infty} \frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=0$.
Example 3.1. The condition $\rho_{s}(h)<\mu_{p}(f)$ in Theorem 3.3 is necessary. To see this we consider the following example.
Let $f(z)=\exp (z), g(z)=\exp ^{[2]}(z), h(z)=\exp ^{[3]}(z)$ and $p=1, q=2, s=3$. Then we have
$\rho_{3}(h)=\lim \sup _{r \rightarrow \infty} \frac{\log ^{(4]} M(r, h)}{\log r}=\lim _{r \rightarrow \infty} \frac{\log r}{\log r}=1$ and $\mu_{1}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log r}=1$.
But $\lim _{r \rightarrow \infty} \frac{\log ^{[6]} M(r, f \circ g \circ h)}{\log M(r, f)}=\lim _{r \rightarrow \infty} \frac{r}{r}=1 \neq 0$.
Theorem 3.4. Let f, g, h be three entire functions of finite iterated order with $i(f)=p, i(g)=q, i(h)=s$ and $\mu_{s}(h)<\mu_{p}(f) \leq \rho_{p}(f)$ then $\liminf _{r \rightarrow \infty} \frac{\log ^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)}=0$ and $\liminf _{r \rightarrow \infty} \frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=0$.

Proof. By definition for sufficiently large r we have
$\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\} \leq T(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}, M(r, h) \leq \exp ^{[s]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\}$.
By (3.15) and using Lemma 2.1, we get

$$
\begin{aligned}
T(r, f \circ g \circ h) & \leq 2 T(M(M(r, h), g), f) \\
& \leq 2 \exp ^{[p-1]}\left[\{M(M(r, h), g)\}^{\rho_{p}(f)+\varepsilon}\right] \\
& \leq 2 \exp ^{[p]}\left[c_{1} \exp ^{[q-1]}\left\{\{M(r, h)\}^{\rho_{q}(g)+\varepsilon}\right\}\right] .
\end{aligned}
$$

Hence for a sequence $\left\{r_{n}\right\} \rightarrow \infty$ we can get from above
$T\left(r_{n}, f \circ g \circ h\right) \leq 2 \exp ^{[p]}\left[c_{1} \exp ^{[q]}\left\{c_{2} \exp ^{[s-1]}\left(r_{n}^{\mu_{s}(h)+\varepsilon}\right)\right\}\right]$.
So,
$T\left(r_{n}, f \circ g \circ h\right) \leq 2 \exp ^{[p+q+s-1]}\left\{r_{n}^{\mu_{s}(h)+2 \varepsilon}\right\}$.
From (3.15) and (3.16) for a sequence of values of $\left\{r_{n}\right\}$ tending to infinity, we get
$\frac{\log { }^{[q+s]} T\left(r_{n}, f \circ g \circ h\right)}{T\left(r_{n}, f\right)} \leq \frac{\exp ^{[p-1]}\left\{r_{n}^{\mu_{s}(h)+2 \varepsilon}\right\}}{\exp { }^{[p-1]}\left\{r_{n}^{\mu_{p}(f)-\varepsilon}\right\}} \rightarrow 0$.
Therefore
$\liminf _{r \rightarrow \infty} \frac{\log [q+s]}{T(r, f \circ g \circ h)} \underset{T(r, f)}{ }=0$.
Again for sufficiently large r, we have
$\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\} \leq \log M(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}$
and

$$
M(r, h) \leq \exp ^{[s]}\left\{r^{\rho_{s}(h)+\varepsilon}\right\} .
$$

So for all large values of r, using Lemma 2.2

$$
\begin{aligned}
M(r, f \circ g \circ h) & \leq M(M(M(r, h), g), f) \\
& \leq \exp ^{[p]}\left[\{M(M(r, h), g)\}^{\rho_{p}(f)+\varepsilon}\right. \\
& \leq \exp ^{[p+1]}\left[c_{3} \exp ^{[q-1]}\left\{(M(r, h))^{\rho_{q}(g)+\varepsilon}\right\}\right] .
\end{aligned}
$$

Hence for a sequence $\left\{r_{n}\right\} \rightarrow \infty$ we get

$$
\begin{align*}
M\left(r_{n}, f \circ g \circ h\right) & \leq \exp ^{[p+1]}\left[c_{3} \exp ^{[q]}\left\{\left\{c_{4} \exp ^{[s-1]}\left(r_{n}\right)^{\mu_{s}(h)+\varepsilon}\right\}\right\}\right] \\
& \leq \exp ^{[p+q+s]}\left\{\left(r_{n}\right)^{\mu_{s}(h)+2 \varepsilon}\right\} . \tag{3.18}
\end{align*}
$$

From (3.17) and (3.18) we get for a sequence $\left\{r_{n}\right\} \rightarrow \infty$
$\frac{\log g^{[q+s+1]} M\left(r_{n}, f \circ g \circ h\right)}{\log M(r, f)} \leq \frac{\exp ^{[p-1]}\left\{r_{n}^{\mu_{s}(h)-2 \varepsilon}\right\}}{\exp ^{[p-1]}\left\{r^{\mu_{p}(f)-\varepsilon}\right\}} \rightarrow 0$
i.e.,
$\underset{r \rightarrow \infty}{\liminf } \frac{\log { }^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=0$.
Theorem 3.5. Let f, g, h be three entire functions of finite iterated order with $i(f)=p, i(g)=q, i(h)=s, \mu_{q}(g)>0$ and $0<\mu_{p}(f) \leq$ $\rho_{p}(f)<\rho_{s}(h)<\infty$ then $\liminf _{r \rightarrow \infty} \frac{\log ^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)}=\infty$ and $\liminf _{r \rightarrow \infty} \frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=\infty$.

Proof. By definition, there exists a sequence $\left\{r_{n}\right\} \rightarrow \infty$ and for any given $\varepsilon(>0)$, we have
$M\left(r_{n}, h\right) \geq \exp ^{[s]}\left\{r_{n}^{\rho_{s}(h)-\varepsilon}\right\}, T\left(r_{n}, f\right) \leq \exp ^{[p-1]}\left\{r_{n}^{\rho_{p}(f)+\varepsilon}\right\}$.
Also from (3.5)
$\log ^{[q+s]} T\left(r_{n}, f \circ g \circ h\right) \geq \exp ^{[p-1]}\left\{r_{n}^{\rho_{s}(h)-2 \varepsilon}\right\}$.
Hence from (3.19)
$\frac{\log ^{[q+s]} T\left(r_{n}, f \circ g \circ h\right)}{T\left(r_{n}, f\right)} \geq \frac{\exp ^{[p-1]}\left\{r_{n}^{\rho_{s}(h)-2 \varepsilon}\right\}}{\exp ^{[p-1]}\left\{r_{n}^{\rho_{p}(f)+\varepsilon}\right\}}$.
Since $\rho_{s}(h)>\rho_{p}(f)$, so

$$
\liminf _{r \rightarrow \infty} \frac{\log [q+s]}{T(r, f \circ g \circ h)} \underset{T(r, f)}{ }=\infty .
$$

Similarly we also have

$$
\liminf _{r \rightarrow \infty} \frac{\log { }^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=\infty .
$$

Theorem 3.6. Let f, g, h be three entire functions of finite iterated order such that $0<\mu_{p}(f)<\mu_{s}(h)<\infty$, then $\lim \sup _{r \rightarrow \infty} \frac{\log ^{[q+s} \mid}{T(r, f \circ f)}=$ ∞ and $\lim \sup _{r \rightarrow \infty} \frac{\log (q+s+1]}{\log M(r, f \circ f)}=\infty$.
Proof. For all large r we get using Lemma 2.2 and 2.3

$$
\begin{align*}
T(r, f \circ g \circ h) & \geq \frac{1}{3} \log M\left(\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r}{8}, h\right), g\right) f\right) \\
& \geq \frac{1}{3} \exp ^{[p-1]}\left\{\left[\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r}{8}, h\right), g\right)\right]^{\mu_{p}(f)-\varepsilon}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{1} \exp ^{[q-1]}\left\{\left[M\left(\frac{r}{8}, h\right)\right]^{\mu_{q}(g)-\varepsilon}\right\}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{1} \exp ^{[q]}\left\{c_{2} \exp ^{[s-1]}\left\{r^{\mu_{s}(h)-\varepsilon}\right\}\right\}\right\} \\
& \geq \exp ^{[p+q+s-1]}\left\{r^{\mu_{s}(h)-2 \varepsilon}\right\} . \tag{3.20}
\end{align*}
$$

By definition there exists a sequence $\left\{r_{n}\right\} \rightarrow \infty$ such that for any given $\varepsilon(>0)$, we have
$T\left(r_{n}, f\right) \leq \exp ^{[p-1]}\left\{r_{n}^{\mu_{p}(f)+\varepsilon}\right\}$.
From (3.20) and (3.21) we get for a sequence $\left\{r_{n}\right\}$ of values of r tending to infinity
$\frac{\log [q+s]}{T\left(r_{n}, f \circ g \circ h\right)} \underset{T\left(r_{n}, f\right)}{\exp ^{[p-1]}\left\{r_{n}^{\mu_{s}(h)-2 \varepsilon}\right\}} \underset{\exp { }^{[p-1]}\left\{r_{n}^{\mu_{p}(f)+\varepsilon}\right\}}{\infty} \rightarrow \infty$
i.e., $\limsup _{r \rightarrow \infty} \frac{\log ^{[q+s]} T(r, f \circ \circ \circ h)}{T(r, f)}=\infty$.

Similarly we can prove that

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[q+s+1]} M(r, f \circ g \circ h)}{\log M(r, f)}=\infty .
$$

Example 3.2. The condition $\mu_{p}(f)<\mu_{s}(h)$ in Theorem 3.6 is necessary. To see this we consider the following example.
Let $f(z)=\exp ^{[2]}(z), g(z)=\exp ^{[3]}(z) h(z)=\exp (z)$, and $p=2, q=3, s=1$. Then we have
$\mu_{2}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r}=\lim _{r \rightarrow \infty} \frac{\log r}{\log r}=1$ and $\mu_{1}(h)=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, h)}{\log r}=1$.

Theorem 3.7. Let f, g, h be three entire functions of finite iterated order with $i(f)=p, i(g)=q, i(h)=s$ and $0<\mu_{p}(f) \leq \rho_{p}(f)<\mu_{s}(h)<\infty$ then $\lim _{r \rightarrow \infty} \frac{\log ^{[q+s} T(r, f \circ g \circ h)}{T(r, f)}=\infty$ and $\lim _{r \rightarrow \infty} \frac{\log [q+s+1]}{\log M(r, f \circ f)}=\infty$.
Proof. By definition, for large r and for any given $\boldsymbol{\varepsilon}(>0)$, we have
$T(r, f) \leq \exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}$.
Again for all large values of r we get from (3.20)
$T(r, f \circ g \circ h) \geq \exp ^{[p+q+s-1]}\left\{r^{\mu_{s}(h)-2 \varepsilon}\right\}$.

So from (3.22) and (3.23) we have
$\frac{\log ^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)} \geq \frac{\exp ^{[p-1]}\left\{r^{\mu_{s}(h)-2 \varepsilon}\right\}}{\exp { }^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}}$.
Since $\mu_{s}(h)>\rho_{p}(f)$ and $\varepsilon(>0)$ is arbitrary, so
$\lim _{r \rightarrow \infty} \frac{\log { }^{[q+s]} T(r, f \circ g \circ h)}{T(r, f)}=\infty$.
Now from (3.17) and (3.9) we get
$\frac{\log ^{[q+s+1]} M\left(r_{n}, f \circ g \circ h\right)}{\log M(r, f)} \geq \frac{\exp ^{[p-1]}\left\{r^{\mu_{s}(h)-2 \varepsilon}\right\}}{\exp ^{[p-1]}\left\{r^{\rho_{p}(f)+\varepsilon}\right\}} \rightarrow \infty$
i.e.,
$\lim _{r \rightarrow \infty} \frac{\log [q+s+1] M(r, f \circ g \circ h)}{\log M(r, f)}=\infty$.
Theorem 3.8. Let f, g, h be three entire functions of finite iterated order such that $0<\mu_{p}(f) \leq \rho_{p}(f)<\infty$ and $0<\mu_{s}(h) \leq \rho_{s}(h)<\infty$, then
$\frac{\mu_{s}(h)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \min \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\} \leq \max \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\}$
$\leq \limsup r_{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \frac{\rho_{s}(h)}{\mu_{p}(f)}$.
Proof. By definition for sufficiently large r and for any $\boldsymbol{\varepsilon}(>0)$ we have
$\left(\mu_{p}(f)-\varepsilon\right) \log r \leq \log ^{[p]} T(r, f) \leq\left(\rho_{p}(f)+\varepsilon\right) \log r$.
From (3.5) we can easily say that

$$
T\left(r_{n}, f \circ g \circ h\right) \geq \frac{1}{3} \exp ^{[p+q+s-1]}\left\{r_{n}^{\mu_{s}(h)-2 \varepsilon}\right\} .
$$

So from above and for all large r and any $\varepsilon(>0)$ we have from (3.2)
$\left(\mu_{s}(h)-2 \varepsilon\right) \log r \leq \log { }^{[p+q+s]} T(r, f \circ g \circ h) \leq\left(\rho_{s}(h)+\varepsilon\right) \log r$.
From (3.24) and (3.25) we get for sufficiently large values of r
$\frac{\rho_{s}(h)+\varepsilon}{\mu_{p}(f)-\varepsilon} \geq \frac{\log { }^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \geq \frac{\mu_{s}(h)-2 \varepsilon}{\rho_{p}(f)+\varepsilon}$.
Since $\varepsilon>0$, is arbitrary we get from (3.26)

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]}}{} \frac{T(r, f \circ g \circ h)}{\log { }^{[p]} T(r, f)} \geq \frac{\mu_{s}(h)}{\rho_{p}(f)}
$$

and

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \frac{\rho_{s}(h)}{\mu_{p}(f)} .
$$

Again by definition, there exist two sequences $\left\{r_{n}\right\}$ and $\left\{R_{n}\right\}$ tending to infinity such that
$\log ^{[p]} T\left(r_{n}, f\right) \geq\left(\rho_{p}(f)-\varepsilon\right) \log r_{n}, \quad \log { }^{[p]} T\left(R_{n}, f\right) \leq\left(\mu_{p}(f)+\varepsilon\right) \log R_{n}$.
From (3.1)

$$
T(r, f \circ g \circ h) \leq \exp ^{[p+q+s-1]}\left\{r^{\mu_{s}(h)+2 \varepsilon}\right\} .
$$

So from above and (3.5) there exists two sequences $\left\{r_{n}^{\prime}\right\}$ and $\left\{R_{n}^{\prime}\right\}$ tending to infinity such that

$$
T\left(r_{n}^{\prime}, f \circ g \circ h\right) \leq \exp ^{[p+q+s-1]}\left\{{r_{n}^{\prime} \mu_{s}(h)+2 \varepsilon}_{\}}\right\}
$$

and

$$
T\left(R_{n}^{\prime}, f \circ g \circ h\right) \geq \exp ^{[p+q+s-1]}\left\{R_{n}^{\prime} \rho_{s}(h)-2 \varepsilon\right\} .
$$

Hence
$\log ^{[p+q+s]} T\left(r_{n}^{\prime}, f \circ g \circ h\right) \leq\left(\mu_{s}(h)+2 \varepsilon\right) \log r_{n}^{\prime}$ and $\log { }^{[p+q+s]} T\left(R_{n}^{\prime}, f \circ g \circ h\right) \geq\left(\rho_{s}(h)-2 \varepsilon\right) \log R_{n}^{\prime}$.
From (3.25) and (3.27) we get

$$
\frac{\log ^{[p+q+s]} T\left(r_{n}, f \circ g \circ h\right)}{\log ^{[p]} T\left(r_{n}, f\right)} \leq \frac{\left(\rho_{s}(h)+\varepsilon\right) \log r_{n}}{\left(\rho_{p}(f)-\varepsilon\right) \log r_{n}}
$$

i.e.,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \frac{\rho_{s}(h)}{\rho_{p}(f)} .
$$

From (3.24) and (3.28) we get

$$
\frac{\log ^{[p+q+s]} T\left(r_{n}^{\prime}, f \circ g \circ h\right)}{\log ^{[p]} T\left(r_{n}^{\prime}, f\right)} \leq \frac{\left(\mu_{s}(h)+2 \varepsilon\right) \log r_{n}^{\prime}}{\left(\mu_{p}(f)-\varepsilon\right) \log r_{n}^{\prime}}
$$

i.e.,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \frac{\mu_{s}(h)}{\mu_{p}(f)}
$$

Hence

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \min \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\} .
$$

Again from (3.25) and (3.27) we get

$$
\frac{\log { }^{[p+q+s]} T\left(R_{n}, f \circ g \circ h\right)}{\log ^{[p]} T\left(R_{n}, f\right)} \geq \frac{\left(\mu_{s}(h)-2 \varepsilon\right) \log R_{n}}{\left(\mu_{p}(f)+\varepsilon\right) \log R_{n}}
$$

i.e.,

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \geq \frac{\mu_{s}(h)}{\mu_{p}(f)} .
$$

From (3.24) and (3.28) we get

$$
\frac{\log { }^{[p+q+s]} T\left(R_{n}^{\prime}, f \circ g \circ h\right)}{\log ^{[p]} T\left(R_{n}^{\prime}, f\right)} \geq \frac{\left(\rho_{s}(h)-2 \varepsilon\right) \log R_{n}^{\prime}}{\left(\rho_{p}(f)+\varepsilon\right) \log R_{n}^{\prime}}
$$

i.e.,

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \geq \frac{\rho_{s}(h)}{\rho_{p}(f)} .
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{\log { }^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \geq \max \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\}
$$

Therefore
$\frac{\mu_{s}(h)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \min \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\} \leq \max \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\}$
$\leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T(r, f)} \leq \frac{\rho_{s}(h)}{\mu_{p}(f)}$.
This completes the proof.
Corollary 3.1. Let f, g, h satisfy the hypotheses of Theorem 3.8, then $\frac{\mu_{s}(h)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g o h)}{\log ^{p]} T\left(r, f^{(k)}\right)} \leq \min \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\} \leq$ $\max \left\{\frac{\mu_{s}(h)}{\mu_{p}(f)}, \frac{\rho_{s}(h)}{\rho_{p}(f)}\right\} \leq \limsup \sin _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[p]} T\left(r, f^{(k)}\right)} \leq \frac{\rho_{s}(h)}{\mu_{p}(f)}$. for $k=1,2, .$.
Corollary 3.2. We can obtain the same result when we replace $T(r, f \circ g \circ h), T(r, f)$ with $\log M(r, f \circ g \circ h), \log M(r, f)$ in Theorem 3.8.

Theorem 3.9. Let f, g, h be three entire functions of finite iterated order such that $0<\mu_{p}(f) \leq \rho_{p}(f)<\infty$ and $0<\mu_{s}(h) \leq \rho_{s}(h)<\infty$, then
$\frac{\mu_{s}(h)}{\rho_{s}(h)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \leq 1 \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[f]} T(r, h)} \leq \frac{\rho_{s}(h)}{\mu_{s}(h)}$ and
$\frac{\mu_{s}(h)}{\rho_{s}(h)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s+1]} M(r, f \circ g \circ h)}{\log ^{[s+1]} M(r, h)} \leq 1 \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[p+q+s+1]} M(r, f \circ g \circ h)}{\log ^{s+1]} M(r, h)} \leq \frac{\rho_{s}(h)}{\mu_{s}(h)}$.
Proof. For sufficiently large r and for any $\varepsilon>0$, we have
$\log ^{[s]} T(r, h) \leq\left(\rho_{s}(h)+\varepsilon\right) \log r$.
Again for sufficiently large r and Lemma 2.3, we have

$$
\begin{align*}
T\left(r_{n}, f \circ g \circ h\right) & \geq \frac{1}{3} \log M\left(\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r_{n}}{8}, h\right), g\right) f\right) \\
& \geq \frac{1}{3} \exp ^{[p-1]}\left\{\left[\frac{1}{9} M\left(\frac{1}{8} M\left(\frac{r_{n}}{8}, h\right), g\right)\right]^{\mu_{p}(f)-\varepsilon}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{1} \exp ^{[q-1]}\left\{\left[M\left(\frac{r_{n}}{8}, h\right)\right]^{\mu_{q}(g)-\varepsilon}\right\}\right\} \\
& \geq \frac{1}{3} \exp ^{[p]}\left\{c_{1} \exp ^{[q]}\left\{c_{2} \exp ^{[s-1]}\left\{r_{n}^{\mu_{s}(h)-\varepsilon}\right\}\right\}\right\} \\
& \geq \exp ^{[p+q+s-1]}\left\{r_{n}^{\mu_{s}(h)-2 \varepsilon}\right\} . \tag{3.30}
\end{align*}
$$

From (3.29) and (3.30) we get

$$
\frac{\log ^{[p+q+s]} T\left(r_{n}, f \circ g \circ h\right)}{\log ^{[s]} T\left(r_{n}, h\right)} \geq \frac{\left(\mu_{s}(h)-2 \varepsilon\right) \log r_{n}}{\left(\rho_{s}(h)+\varepsilon\right) \log r_{n}}
$$

As $\varepsilon>0$ is any arbitrary
so,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \geq \frac{\mu_{s}(h)}{\rho_{s}(h)} .
$$

Again by definition, there exists a sequence $\left\{r_{n}\right\}$ tending to infinity such that
$\log { }^{[s]} T\left(r_{n}, h\right) \geq\left(\rho_{s}(h)-\varepsilon\right) \log r_{n}$.
From (3.2) for any given $\varepsilon>0$ and sufficiently large r, we have
$\log { }^{[p+q+s]} T(r, f \circ g \circ h) \leq\left(\rho_{s}(h)+\varepsilon\right) \log r, \quad \log { }^{[s]} T(r, h) \leq\left(\rho_{s}(h)+\varepsilon\right) \log r, \quad \log ^{[s]} T(r, h) \geq\left(\mu_{s}(h)-\varepsilon\right) \log r$.
From (3.31) and (3.32) we get

$$
\frac{\log { }^{[p+q+s]} T\left(r_{n}, f \circ g \circ h\right)}{\log ^{[s]} T\left(r_{n}, h\right)} \leq \frac{\left(\rho_{s}(h)+\varepsilon\right) \log r_{n}}{\left(\rho_{s}(h)-\varepsilon\right) \log r_{n}}
$$

i.e.,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \leq 1 .
$$

Again from (3.32) we get

$$
\frac{\log [p+q+s]}{\log ^{[s]} T\left(r_{n}, f \circ g \circ h\right)} \leq \frac{\left(\rho_{s}(h)+\varepsilon\right) \log r_{n}}{\left(\mu_{s}(h)-\varepsilon\right) \log r_{n}}
$$

i.e.,

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \leq \frac{\rho_{s}(h)}{\mu_{s}(h)} .
$$

Again for a sequence $\left\{R_{n}\right\}$ tending to infinity we have from (3.5)
$T\left(R_{n}, f \circ g \circ h\right) \geq \exp ^{[p+q+s-1]}\left\{R_{n}^{\rho_{s}(h)-2 \varepsilon}\right\}$.
From (3.32) and (3.33), we get

$$
\frac{\log { }^{[p+q+s]} T\left(R_{n}, f \circ g \circ h\right)}{\log ^{[s]} T\left(R_{n}, h\right)} \geq \frac{\left(\rho_{s}(h)-2 \varepsilon\right) \log R_{n}}{\left(\rho_{s}(h)+\varepsilon\right) \log R_{n}} .
$$

i.e.,

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \geq 1 .
$$

Combining all we get
$\frac{\mu_{s}(h)}{\rho_{s}(h)} \leq \liminf f_{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[s]} T(r, h)} \leq 1 \leq \lim \sup _{r \rightarrow \infty} \frac{\log ^{[p+q+s]} T(r, f \circ g \circ h)}{\log ^{[S]} T(r, h)} \leq \frac{\rho_{s}(h)}{\mu_{s}(h)}$.
Similarly as above we can show that
$\frac{\mu_{s}(h)}{\rho_{s}(h)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p+q+s+1]} M(r, f \circ g \circ h)}{\log ^{[s+1]} M(r, h)} \leq 1 \leq \limsup \sin _{r \rightarrow \infty} \frac{\log ^{[p+q+s+1]} M(r, f \circ g \circ h)}{\log ^{[s+1]} M(r, h)} \leq \frac{\rho_{s}(h)}{\mu_{s}(h)}$.

Acknowledgement

The authors are thankful to the referees for several suggestions which considerably improve the presentation of the paper.

References

[1] W. Bergweiler, On the growth rate of composite meromorphic functions, complex Var. Elliptic Equ., 14(1990), 187-196.
[2] W. Bergweiler, Order and lower order of composite meromorphic functions, Michigam Math. J., 36(1989), 135-146.
[3] J. Clunie, The composition of entire and meromorphic functions, Mathematical essays dedicated to A.J. Macintyre, Ohio University Press (1970), 75-92.
[4] W.K.Hayman, Meromorphic functions, The clarendon Press, Oxford(1964).
[5] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4), (1998) 385-405.
[6] I.Lahiri and D.K.Sharma . Growth of composite entire and meromorphic functions,Indian journal pure appl. math,26(4)(1995),5451-58.
[7] I.Lahiri and S.K.Datta, on the growth of entire and meromorphic functions,Indian journal pure appl. math,35(4)(2004),525-43.
[8] K.Niino and N. Smita, Growth of composite function of entiure functions, Kodai Math. J., 3(1980),374-379.
[9] K.Niino and C.C. Yang, Some growth relationship on factors of two compositive entire functions, in: Factorization theory of Meromorphic functions and related Topics, Marcel Dekker Inc., New York/Basel,1982, pp. 95-99.
[10] A. P. Singh, Growth of composite entire functions, Kodai Math. J.,8(1985), 99-102.
[11] J. Tu, Z.-X.Chen and X.-M.Zheng, Composition of entire fuynctions with finite iterated order , J. Math. Anal. Appl., 353(2009), 295-304.
[12] Z.-Z.Zhou, Growth of composite entire functions, Kodai Math. J., 9(1986), 419-420.

