

ESKİŞEHİR TEKNİK ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ B- TEORİK BİLİMLER

Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences

2019, 7(2), pp. 195 - 203, DOI: 10.20290/estubtdb.531860

A GENERALIZED STUDY ON CLOSED LIE IDEALS WITH (α, α) –DERIVATIONS

Barış ALBAYRAK ^{1,*}, Didem YEŞİL ²

¹ Banking and Finance, Biga Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
² Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

ABSTRACT

In this paper, we study square closed Lie ideals of semi-prime rings with generalized (α, α) – derivations and investigate commutative properties of square closed Lie ideals under different conditions. Also, we take generalized (α, α) – derivation *H* with determined (α, α) – derivation *h* on prime ring and prove that *h* is α – commuting on Lie ideal. Finally, we reach the corollaries about commutativity of prime rings by using the theorems we prove.

Keywords: Semi-prime ring, Lie ideal, Generalized (α, α) –derivation

1. INTRODUCTION

Let Z(R) be center of ring R. Suppose that pRs = (0) for any $p, s \in R$. If p = 0 or s = 0, then R is said to be a prime ring. Similarly, suppose that sRs = (0) for any $s \in R$. If s = 0, then R is said to be a semiprime ring. [p, s] notation is used for commutator ps - sp and $p \circ s$ notation is used for anticommutator ps + sp for $p, s \in R$. An additive subgroup $L \subseteq R$ is said to be a Lie ideal of R if $[L, R] \subseteq L$. L is said to be a square closed if $p^2 \in L$ for all $p \in L$. Let $\emptyset \neq S \subseteq R$. A map d from R into R that provides [d(s), s] = 0 for all $s \in S$, is said to be commuting on S. Similarly, for α automorphism of R, a map d from R into R that provides $[d(s), \alpha(s)] = 0$ for all $s \in S$, is said to be α – commuting on S.

After a map *d* that provides d(ps) = d(p)s + pd(s) for any $p, s \in R$ is defined as a derivation, many authors have studied commutative property for prime rings and semi-prime rings with derivation. In [1], Bresar generalized the definition of derivation as the following: *D* from *R* into *R* is said to be generalized derivation with determined derivation *d* if D(ps) = D(p)s + pd(s) for any $p, s \in R$. According to [2,3], definitions of (α, β) –derivation and generalized (α, β) – derivation are given as follows: Let *d* be an additive map from *R* into *R* and α, β are automorphisms of *R*. If $d(ps) = d(p)\alpha(s) + \beta(p)d(s)$ holds for any $p, s \in R$, then d is said to be (α, β) –derivation. Let *D* an additive map from *R* into *R*. If $D(ps) = D(p)\alpha(s) + \beta(p)d(s)$ holds for any $p, s \in R$, then *D* is said to be generalized (α, β) –derivation with determined (α, β) –derivation *d*.

Using these definitions, it is given definitions of (α, α) –derivation and generalized (α, α) – derivations for $\alpha = \beta$ as the following: If $d(ps) = d(p)\alpha(s) + \alpha(p)d(s)$ holds for any $p, s \in R$, then d is said to be (α, α) –derivation. If $D(ps) = D(p)\alpha(s) + \alpha(p)d(s)$ holds for any $p, s \in R$, then D is said to be generalized (α, α) –derivation with determined (α, α) –derivation d.

Of late years, several researchers have proved commutativity theorems and lemmas for prime rings and semi-prime rings with derivation, generalized derivation, (α, α) –derivation and generalized (α, α) – derivation. Also, many researchers have generalized previous results to ideals and Lie ideals of ring. In [4], Söğütçü and Gölbaşı proved commutativity theorems for square closed Lie ideals of prime rings and semi-prime rings with generalized derivation. In this paper, we generalize the results for generalized derivation to generalized (α, α) – derivation.

In this study, we generalize the previous study on Lie ideals of semi-prime rings with generalized derivation to generalized (α, α) – derivation. Let *R* be a semi-prime ring, $0 \neq L$ be a square closed Lie ideal of *R* and $0 \neq D, H: R \rightarrow R$ are generalized (α, α) – derivations with determined (α, α) – derivations $0 \neq d, h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. We investigate following conditions and prove that *h* is α –commuting map on *L*. (*i*) $D(p)\alpha(p) = \alpha(p)H(p)$ for all $p \in L$. (*ii*) $[D(p), \alpha(s)] = [\alpha(p), H(s)]$ for all $p, s \in L$. (*iii*) $D(p)o\alpha(s) = \alpha(p)oH(s)$ for all $p, s \in L$. (*iv*) $[D(p), \alpha(s)] = \alpha(p)oH(s)$ for all $p \in L$.

Also, we study above conditions for square closed Lie ideal L of prime ring R and prove that $L \subseteq Z(R)$. Finally, we adapt the theorems which we prove for two derivations to only one derivation and we reach corollaries.

2. PRELIMINARIES

Following identities is provided for commutator and anticommutator for all $p_1, p_2, p_3 \in R$.

•
$$[p_1p_2, p_3] = p_1[p_2, p_3] + [p_1, p_3]p_2$$

•
$$[p_1, p_2 p_3] = [p_1, p_2]p_3 + p_2[p_1, p_3]$$

• $(p_1p_2) \circ p_3 = p_1(p_2 \circ p_3) - [p_1, p_3]p_2 = (p_1 \circ p_3)p_2 + p_1[p_2, p_3]$

• $p_1 \circ (p_2 p_3) = (p_1 \circ p_2)p_3 - p_2[p_1, p_3] = p_2(p_1 \circ p_3) + [p_1, p_2]p_3$

Remark Let *R* be a prime ring with char $R \neq 2$ and *L* be a square closed Lie ideal of *R*. Then, $2ps \in L$ for all $p, s \in L$. Since char $R \neq 2$, if 2ps = 0 for all $p, s \in L$, then ps = 0. Hence, it is taken $ps \in L$ instead of $2ps \in L$ in relations equal to zero.

Lemma 2.1 [5] Let *R* be a prime ring with char $R \neq 2$, $a, b \in R$. If *U* a noncentral Lie ideal of *R* and aUb = 0, then a = 0 or b = 0.

Lemma 2.2 [5] Let *R* be a prime ring with char $R \neq 2$ and *U* a nonzero Lie ideal of *R*. If *d* is a nonzero derivation of *R* such that d(U)=0, then $U \subseteq Z$.

Lemma 2.3 [6] Let R be a 2 –torsion free semiprime ring, U a noncentral Lie ideal of R and $a, b \in U$. If aUa = 0, then a = 0.

Lemma 2.4 [7] Let R be a 2 -torsion free semiprime ring and L be a nonzero Lie ideal of R. If L is a commutative Lie ideal of R, i. e., [x, y] = 0 for all $x, y \in L$, then $L \subseteq Z(R)$.

3. RESULTS

3.1. Generalization on Lie Ideals of Prime Rings

Throughout this section, we take *R* is a prime ring with *charR* $\neq 2$, *L* is a square closed Lie ideal of *R*, α is an automorphism of *R* and $0 \neq D$, $H: R \rightarrow R$ are generalized (α, α) – derivations determined with (α, α) – derivations $0 \neq d$, $h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$.

We begin with two lemmas to be used in the theorems.

Lemma 3.1.1. If $[\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_2) = 0$ for all $p_1, p_2, p_3 \in L$, then $L \subseteq Z(R)$.

Proof: Let $[\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_2) = 0$ for all $p_1, p_2, p_3 \in L$. Using the fact that α is automorphism, we have $\alpha[p_1, p_2]\alpha(p_3)h(p_2) = 0$ for all $p_1, p_2, p_3 \in L$. Also, this relation is equal to following relation:

$$[p_1, p_2]p_3 \alpha^{-1}(h(p_2)) = 0$$
 for all $p_1, p_2, p_3 \in L$

Suppose that, $L \not\subseteq Z(R)$. From Lemma 2.1, we get

$$[p_1, p_2] = 0 \text{ or } \alpha^{-1}(h(p_2)) = 0 \text{ for all } p_1, p_2 \in L.$$

Since α is automorphism, this relation is equal to following relation:

$$[p_1, p_2] = 0 \text{ or } h(p_2) = 0 \text{ for all } p_1, p_2 \in L.$$

Let $C = \{p_2 \in L | [p_1, p_2] = 0 \text{ for all } p_1 \in L\}$ and $E = \{p_2 \in L | h(p_2) = 0\}$. *C* and *E* are subgroups of additive group *L* whose $L = C \cup E$, but *L* can't be written as a union of its two proper subgroups. So, L = C or L = E. If L = C, then $[p_1, p_2] = 0$ for all $p_1, p_2 \in L$. From Lemma 2.4, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \notin Z(R)$. If L = E, then $h(p_2) = 0$ for all $p_2 \in L$. That means, h(L) = 0. From Lemma 2.2, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \notin Z(R)$. But this result contradicts with $L \notin Z(R)$. Hence, assumption is incorrect and $L \subseteq Z(R)$.

Lemma 3.1.2. If $[\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) = 0$ for all $p_1, p_2 \in L$, then h is α -commuting on L or $L \subseteq Z(R)$.

Proof: Let

$$[\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) = 0 \text{ for all } p_1, p_2 \in L.$$

Since α is automorphism, this relation is equal to following relation:

$$\left[p_1, \alpha^{-1}\left(h(p_1)\right)\right] p_2 \alpha^{-1}\left(h(p_1)\right) = 0 \text{ for all } p_1, p_2 \in L.$$

Suppose that, $L \not\subseteq Z(R)$. From Lemma 2.1, we get

$$\left[p_1, \alpha^{-1}\left(h(p_1)\right)\right] = 0 \text{ or } \alpha^{-1}\left(h(p_1)\right) = 0 \text{ for all } p_1 \in L.$$

Since α is automorphism, this relation is equal to following relation:

$$[\alpha(p_1), h(p_1)] = 0 \text{ or } h(p_1) = 0 \text{ for all } p_1 \in L.$$

Let $C = \{p_1 \in L | [\alpha(p_1), h(p_1)] = 0\}$ and $E = \{p_1 \in L | h(p_1) = 0\}$. *C* and *E* are subgroups of additive group *L* whose $L = C \cup E$, but *L* can't be written as a union of its two proper subgroups. Hence, L = C or L = E. If L = C, then $[\alpha(p_1), h(p_1)] = 0$ for all $p_1 \in L$. So, *h* is α -commuting map on *L* and proof is complete. If L = E, then $h(p_1) = 0$ for all $p_1 \in L$. That means, h(L) = 0. From Lemma 2.2, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \notin Z(R)$. Hence, *h* is α -commuting on *L* or $L \subseteq Z(R)$.

In the following theorems, we give the results about inclusion of a Lie ideal in center of a prime ring with generalized (α, α) – derivation by using the previous lemmas.

Theorem 3.1.3 If $D(p_1)\alpha(p_1) = \alpha(p_1)H(p_1)$ for all $p_1 \in L$, then $L \subseteq Z(R)$.

Proof. Let $D(p_1)\alpha(p_1) = \alpha(p_1)H(p_1)$ for all $p_1 \in L$. Replacing p_1 by $p_1 + p_2, p_2 \in L$ we have

Albayrak and Yeşil / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 7 (2) – 2019

$$D(p_1)\alpha(p_2) + D(p_2)\alpha(p_1) = \alpha(p_1)H(p_2) + \alpha(p_2)H(p_1) \text{ for all } p_1, p_2 \in L.$$
(1)

Replacing p_1 by p_1p_2 and using above relation, we get

$$\begin{aligned} 0 &= D(p_1)\alpha(p_2)\alpha(p_2) + \alpha(p_1)d(p_2)\alpha(p_2) + D(p_2)\alpha(p_1)\alpha(p_2) - \alpha(p_1)\alpha(p_2)H(p_2) \\ &- \alpha(p_2)H(p_1)\alpha(p_2) - \alpha(p_2)\alpha(p_1)h(p_2) \\ &= (D(p_1)\alpha(p_2) + D(p_2)\alpha(p_1) - \alpha(p_2)H(p_1))\alpha(p_2) - \alpha(p_1)\alpha(p_2)H(p_2) \\ &+ \alpha(p_1)d(p_2)\alpha(p_2) - \alpha(p_2)\alpha(p_1)h(p_2). \end{aligned}$$

Using equation (1) in above relation, we obtain

$$0 = \alpha(p_1)H(p_2)\alpha(p_2) - \alpha(p_1)\alpha(p_2)H(p_2) + \alpha(p_1)d(p_2)\alpha(p_2) - \alpha(p_2)\alpha(p_1)h(s) \text{ for all } p_1, p_2 \in L.$$
(2)

Replacing p_1 by $p_1p_3, p_3 \in L$ in above relation, we get

$$0 = \alpha(p_1)\alpha(p_3)H(p_2)\alpha(p_2) - \alpha(p_1)\alpha(p_3)\alpha(p_2)H(p_2) + \alpha(p_1)\alpha(p_3)d(p_2)\alpha(p_2) - \alpha(p_2)\alpha(p_1)\alpha(p_3)h(p_2) = \alpha(p_1)(\alpha(p_3)H(p_2)\alpha(p_2) - \alpha(p_3)\alpha(p_2)H(p_2) + \alpha(p_3)d(p_2)\alpha(p_2)) - \alpha(p_2)\alpha(p_1)\alpha(p_3)h(p_2).$$

Using equation (2) in above relation, we have

$$0 = \alpha(p_1)\alpha(p_2)\alpha(p_3)h(p_2) - \alpha(p_2)\alpha(p_1)\alpha(p_3)h(p_2) \text{ for all } p_1, p_2, p_3 \in L.$$

Using commutator properties in this relation, we obtain

$$0 = [\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_2) \text{ for all } p_1, p_2, p_3 \in L.$$

From Lemma 3.1.1, $L \subseteq Z(R)$.

Theorem 3.1.4 *If* $[D(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$ *for all* $p_1, p_2 \in L$, *then* $L \subseteq Z(R)$.

Proof: Let $[D(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$ for all $p_1, p_2 \in L$. Replacing p_2 by p_2p_1 , we get

$$\left[D(p_1), \alpha(p_2)\alpha(p_1)\right] = \left[\alpha(p_1), H(p_2)\alpha(p_1) + \alpha(p_2)h(p_1)\right] \text{ for all } p_1, p_2 \in L.$$
(3)

Editing equation (3), we obtain

$$[D(p_1), \alpha(p_2)]\alpha(p_1) + \alpha(p_2)[D(p_1), \alpha(p_1)] = [\alpha(p_1), H(p_2)]\alpha(p_1) + [\alpha(p_1)\alpha(p_2)]h(p_1) + \alpha(p_2)[\alpha(p_1), h(p_1)].$$

Using hypothesis in this relation, we get

Albayrak and Yeşil / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 7 (2) – 2019

$$\alpha(p_2)[D(p_1), \alpha(p_1)] = [\alpha(p_1)\alpha(p_2)]h(p_1) + \alpha(p_2)[\alpha(p_1), h(p_1)] \text{ for all } p_1, p_2 \in L.$$
(4)

Replacing p_2 by p_2p_3 , $p_3 \in L$ in above relation, we have

$$\alpha(p_2)\alpha(p_3)[D(p_1),\alpha(p_1)] = [\alpha(p_1),\alpha(p_2)]\alpha(p_3)h(p_1) + \alpha(p_2)[\alpha(p_1),\alpha(p_3)]h(p_1) + \alpha(p_2)\alpha(p_3)[\alpha(p_1),h(p_1)].$$

Using equation (4) in above relation, we have

$$0 = [\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_1) \text{ for all } p_1, p_2, p_3 \in L.$$

From Lemma 3.1.1, $L \subseteq Z(R)$.

Theorem 3.1.5 If $D(p_1)o\alpha(p_2) = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L or $L \subseteq Z(R)$.

Proof: Let $D(p_1)o\alpha(p_2) = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$. Replacing p_2 by p_2p_1 , we have

$$D(p_1)o(\alpha(p_2)\alpha(p_1)) = \alpha(p_1)o(H(p_2)\alpha(p_1) + \alpha(p_2)h(p_1)) \text{ for all } p_1, p_2 \in L.$$
(5)

Using anti-commutator properties and editing equation (5), we obtain

$$(D(p_1)o\alpha(p_2))\alpha(p_1) - \alpha(p_2)[D(p_1),\alpha(p_1)]$$

= $(\alpha(p_1)oH(p_2))\alpha(p_1) + (\alpha(p_1)o\alpha(p_2))h(p_1) - \alpha(p_2)[\alpha(p_1),h(p_2)]$

Using hypothesis in this relation, we have

$$0 = \left(\alpha(p_1)o\alpha(p_2)\right)h(p_1) + \alpha(p_2)[D(p_1),\alpha(p_1)] - \alpha(p_2)[\alpha(p_1),h(p_1)] \text{ for all } p_1, p_2 \in L.$$
(6)

Replacing p_2 by $\alpha^{-1}(h(p_1))s$ in above relation, we get

$$\begin{aligned} 0 &= (\alpha(p_1)o(h(p_1)\alpha(p_2)))h(p_1) + h(p_1)\alpha(p_2)[D(p_1), \alpha(p_1)] - h(p_1)\alpha(p_2)[\alpha(p_1), h(p_1)] \\ &= h(p_1)(\alpha(p_1)o\alpha(p_2))h(p_1) + [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) \\ &+ h(p_1)\alpha(p_2)[D(p_1), \alpha(p_1)] \\ &- h(p_1)\alpha(p_2)[\alpha(p_1), h(p_1)] \\ &= h(p_1)((\alpha(p_1)o\alpha(p_2))h(p_1) + \alpha(p_2)[D(p_1), \alpha(p_1)] - \alpha(p_2)[\alpha(p_1), h(p_1)]) \\ &- [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1). \end{aligned}$$

Using equation (6) in above relation, we have

$$0 = [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) \text{ for all } p_1, p_2 \in L.$$

From Lemma 3.1.2, *h* is α –commuting on *L* or $L \subseteq Z(R)$.

Theorem 3.1.6 If $[D(p_1), \alpha(p_2)] = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L or $L \subseteq Z(R)$.

Proof: Let $[D(p_1), \alpha(p_2)] = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$. Replacing p_2 by p_2p_1 , we obtain

$$\left[D(p_1), \alpha(p_2)\alpha(p_1)\right] = \alpha(p_1)o\left(H(p_2)\alpha(p_1)\right) + \alpha(p_1)o\left(\alpha(p_2)h(p_1)\right).$$
(7)

for all $p_1, p_2 \in L$. Using commutator and anti-commutator properties and editing equation (7), we get

$$[D(p_1), \alpha(p_2)]\alpha(p_1) + \alpha(p_2)[D(p_1), \alpha(p_1)]$$

= $(\alpha(p_1)oH(p_2))\alpha(p_1) + \alpha(p_2)(\alpha(p_1)oh(p_1)) + [\alpha(p_1), \alpha(p_2)]h(p_1)$

Using hypothesis in this relation, we have

$$0 = \alpha(p_2)[D(p_1), \alpha(p_1)] - \alpha(p_2)(\alpha(p_1)oh(p_1)) - [\alpha(p_1), \alpha(p_2)]h(p_1) \text{ for all } p_1, p_2 \qquad (8) \\ \in L.$$

Replacing p_2 by $\alpha^{-1}(h(p_1))s$ in above relation, we get

$$0 = h(p_1)\alpha(p_2)[D(p_1), \alpha(p_1)] - h(p_1)\alpha(p_2)(\alpha(p_1)oh(p_1)) - [\alpha(p_1), h(p_1)\alpha(p_2)]h(p_1)$$

$$= h(p_1)\alpha(p_2)[D(p_1), \alpha(p_1)] - h(p_1)\alpha(p_2)(\alpha(p_1)oh(p_1))$$

$$- h(p_1)[\alpha(p_1), \alpha(p_2)]h(p_1)$$

$$- [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1)$$

$$= h(p_1)(\alpha(p_2)[D(p_1), \alpha(p_1)] - \alpha(p_2)(\alpha(p_1)oh(p_1)) - [\alpha(p_1), \alpha(p_2)]h(p_1))$$

$$- [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1).$$

Using equation (8) in above relation, we have

$$0 = [\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) \text{ for all } p_1, p_2 \in L.$$

From Lemma 3.1.2, *h* is α –commuting on *L* or $L \subseteq Z(R)$.

Corollary 3.1.7 Let R be a prime ring with charR $\neq 2$, L a square closed Lie ideal of R, α an automorphism of R and $0 \neq H: R \rightarrow R$ a generalized (α, α) – derivation determined with (α, α) – derivation $0 \neq h: R \rightarrow R$ such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. Then, following properties are provided.

(i) If
$$[H(p_1), \alpha(p_1)] = 0$$
 for all $p_1 \in L$, then $L \subseteq Z(R)$.
(ii) If $[H(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$ for all $p_1, p_2 \in L$, then $L \subseteq Z(R)$.
(iii) If $H(p_1) \circ \alpha(p_2) = \alpha(p_1) \circ H(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L or $L \subseteq Z(R)$.
(iv) If $[H(p_1), \alpha(p_2)] = \alpha(p_1) \circ H(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L or $L \subseteq Z(R)$.

3.2. Generalization on Lie Ideals of Semi-Prime Rings

Throughout this section, we take *R* is a semi-prime ring with $charR \neq 2$, *L* is a noncentral square closed Lie ideal of *R*, α is an automorphism of *R* and $0 \neq D$, $H: R \rightarrow R$ are generalized (α, α) – derivations determined with (α, α) – derivations $0 \neq d$, $h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$.

In this section, we generalize the previous study on Lie ideals of semi-prime rings with generalized derivation to generalized (α, α) – derivation.

Theorem 3.2.1 *If* (*i*) or (*ii*) is provided for all $p_1, p_2 \in L$, then h is α –commuting on L.

$$(\mathbf{i})D(p_1)\alpha(p_1) = \alpha(p_1)H(p_1)$$

 $(ii)[D(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$

Proof. (i) Let $D(p_1)\alpha(p_1) = \alpha(p_1)H(p_1)$ for all $p_1 \in L$. Using same proof methods in Theorem 3.1.3, we get

$$[\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_2) = 0 \text{ for all } p_1, p_2, p_3 \in L.$$

In this relation, using the fact that α is automorphism, we have $\alpha[p_1, p_2]\alpha(p_3)h(p_2) = 0$ for all $p_1, p_2, p_3 \in L$. Also, this relation is equal to following relation:

$$[p_1, p_2]p_3 \alpha^{-1}(h(p_2)) = 0$$
 for all $p_1, p_2, p_3 \in L$.

Replacing p by $\alpha^{-1}(h(p_2))$ in above relation, we get

$$\left[\alpha^{-1}\left(h(p_2)\right), p_2\right] p_3 \alpha^{-1}\left(h(p_2)\right) = 0 \text{ for all } p_2, p_3 \in L.$$
(9)

Right multiplication of equation (9) by p_2 , we have

$$\left[\alpha^{-1}\left(h(p_{2})\right), p_{2}\right]p_{3}\alpha^{-1}\left(h(p_{2})\right)p_{2} = 0 \text{ for all } p_{2}, p_{3} \in L.$$
(10)

On the other hand, replacing p_3 by p_3p_2 in equation (9), we obtain

$$\left[\alpha^{-1}(h(p_2)), p_2\right] p_3 p_2 \alpha^{-1}(h(p_2)) = 0 \text{ for all } p_2, p_3 \in L.$$
(11)

Using equation (10) and equation (11), we get

$$\left[\alpha^{-1}\left(h(p_2)\right), p_2\right]p_3\left[\alpha^{-1}\left(h(p_2)\right), p_2\right] = 0 \text{ for all } p_2, p_3 \in L$$

From Lemma 2.3 we have

$$\left[\alpha^{-1}\left(h(p_2)\right), p_2\right] = 0 \text{ for all } p_2 \in L.$$

Using the fact that α is automorphism, we arrive that

$$[h(p_2), \alpha(p_2)] = 0$$
 for all $p_2 \in L$.

So, *h* is α –commuting on *L*.

(*ii*) Let $[D(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$ for all $p_1, p_2 \in L$. Using same proof methods in Theorem 3.1.4, we get

$$[\alpha(p_1), \alpha(p_2)]\alpha(p_3)h(p_2) = 0 \text{ for all } p_1, p_2, p_3 \in L.$$

Applying same methods in option (*i*), we arrive that, *h* is α –commuting on *L*.

Theorem 3.2.2 If (i) or (ii) is provided for all $p_1, p_2 \in L$, then h is α –commuting on L.

$$(\mathbf{i})D(p_1)o\alpha(p_2) = \alpha(p_1)oH(p_2)$$

 $(\boldsymbol{i}\boldsymbol{i})[D(p_1),\alpha(p_2)] = \alpha(p_1)oH(p_2)$

Proof. (i) Let $D(p_1)o\alpha(p_2) = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$. Using same proof methods in Theorem 3.1.5, we get

$$[\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) = 0 \text{ for all } p_1, p_2 \in L.$$

$$(12)$$

Replacing p_2 by p_2p_1 in above relation, we get

$$[\alpha(p_1), h(p_1)]\alpha(p_2)\alpha(p_1)h(p_1) = 0 \text{ for all } p_1, p_2 \in L.$$

$$(13)$$

On the other hand, right multiplication of equation (12) by $\alpha(p_1)$, we have

$$[\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1)\alpha(p_1) = 0 \text{ for all } p_1, p_2 \in L.$$

$$(14)$$

Using equation (13) and equation (14), we get

$$[\alpha(p_1), h(p_1)]\alpha(p_2)[\alpha(p_1), h(p_1)] = 0 \text{ for all } p_1, p_2 \in L.$$

Using the fact that α is automorphism and Lemma 2.3, we obtain

$$[\alpha(p_1), h(p_1)] = 0$$
 for all $p_1 \in L$.

So, *h* is α –commuting map on *L*.

(*ii*) Let $[D(p_1), \alpha(p_2)] = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$. Using same proof methods in Theorem 3.1.6, we get

$$[\alpha(p_1), h(p_1)]\alpha(p_2)h(p_1) = 0 \text{ for all } p_1, p_2 \in L$$

Applying same methods in option (i), we arrive that, h is α –commuting on L.

Corollary 3.2.3 Let *R* be a semi-prime ring with char $R \neq 2$, *L* a noncentral square closed Lie ideal of *R*, α an automorphism of *R* and $0 \neq H: R \rightarrow R$ a generalized (α, α) – derivation determined with (α, α) – derivation $0 \neq h: R \rightarrow R$ such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. Then, following properties are provided.

(i) If
$$[H(p_1), \alpha(p_1)] = 0$$
 for all $p_1 \in L$, then h is α -commuting map on L.
(ii) If $[H(p_1), \alpha(p_2)] = [\alpha(p_1), H(p_2)]$ for all $p_1, p_2 \in L$, then then h is α -commuting on L.
(iii) If $H(p_1)o\alpha(p_2) = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L.
(iv) If $[H(p_1), \alpha(p_2)] = \alpha(p_1)oH(p_2)$ for all $p_1, p_2 \in L$, then h is α -commuting on L.

Albayrak and Yeşil / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 7 (2) – 2019

REFERENCES

- [1] Bresar M. On the distance of the composition of two derivations to the generalized derivations. Glaskow Math. J. 1991; 33: 89-93.
- [2] Argaç N. On near-rings with two-sided α derivations, Turk. J. Math. 2004; 28: 195-204.
- [3] Chang J. C. Right generalized (α, β) derivations having power central values, Taiwanese J. Math. 2009; 13(4): 1111-1120.
- [4] Söğütçü E, Gölbaşı Ö. Lie ideals of semiprime rings with generalized derivations, Adıyaman University Journal of Science 2018;8(1): 1-12.
- [5] Bergen J, Herstein I, Kerr W. Lie ideals and derivation of prime rings, J. Algebra 1981; 71: 259-267.
- [6] Hongan M, Rehman N, Al-Omary R. M. Lie Ideals and Jordan Triple derivations in rings. Rend, Sem. Mat. Univ. Padova 2011; 125: 147-156.
- [7] Rehman N. On commutativity of rings with generalized derivations, Math. J. Okayama Univ. 2002; 44: 43-49.