ESKİŞEHİR TEKNIK ÜNiVERSİESİ BİLIM VE TEKNOLOJí DERGisí B- TEORİK BİLIMLER

A GENERALIZED STUDY ON CLOSED LIE IDEALS WITH ($\alpha, \alpha)$-DERIVATIONS

Bariş ALBAYRAK ${ }^{1, *}$, Didem YEŞiL ${ }^{2}$
${ }^{1}$ Banking and Finance, Biga Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
${ }^{2}$ Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

Abstract

In this paper, we study square closed Lie ideals of semi-prime rings with generalized (α, α) - derivations and investigate commutative properties of square closed Lie ideals under different conditions. Also, we take generalized (α, α) - derivation H with determined (α, α) - derivation h on prime ring and prove that h is α-commuting on Lie ideal. Finally, we reach the corollaries about commutativity of prime rings by using the theorems we prove.

Keywords: Semi-prime ring, Lie ideal, Generalized (α, α) -derivation

1. INTRODUCTION

Let $Z(R)$ be center of ring R. Suppose that $p R s=(0)$ for any $p, s \in R$. If $p=0$ or $s=0$, then R is said to be a prime ring. Similarly, suppose that $s R s=(0)$ for any $s \in R$. If $s=0$, then R is said to be a semiprime ring. [p, s] notation is used for commutator $p s-s p$ and $p \circ s$ notation is used for anticommutator $p s+s p$ for $p, s \in R$. An additive subgroup $L \subseteq R$ is said to be a Lie ideal of R if $[L, R] \subseteq L . L$ is said to be a square closed if $p^{2} \in L$ for all $p \in L$. Let $\emptyset \neq S \subseteq R$. A map d from R into R that provides $[d(s), s]=0$ for all $s \in S$, is said to be commuting on S. Similarly, for α automorphism of R, a map d from R into R that provides $[d(s), \alpha(s)]=0$ for all $s \in S$, is said to be $\alpha-$ commuting on S.

After a map d that provides $d(p s)=d(p) s+p d(s)$ for any $p, s \in R$ is defined as a derivation, many authors have studied commutative property for prime rings and semi-prime rings with derivation. In [1], Bresar generalized the definition of derivation as the following: D from R into R is said to be generalized derivation with determined derivation d if $D(p s)=D(p) s+p d(s)$ for any $p, s \in R$. According to [2,3], definitions of (α, β)-derivation and generalized (α, β) - derivation are given as follows: Let d be an additive map from R into R and α, β are automorphisms of R. If $d(p s)=d(p) \alpha(s)+\beta(p) d(s)$ holds for any $p, s \in R$, then d is said to be (α, β)-derivation. Let D an additive map from R into R. If $D(p s)=D(p) \alpha(s)+\beta(p) d(s)$ holds for any $p, s \in R$, then D is said to be generalized (α, β)-derivation with determined (α, β)-derivation d.

Using these definitions, it is given definitions of (α, α)-derivation and generalized (α, α)-derivations for $\alpha=\beta$ as the following: If $d(p s)=d(p) \alpha(s)+\alpha(p) d(s)$ holds for any $p, s \in R$, then d is said to be (α, α)-derivation. If $D(p s)=D(p) \alpha(s)+\alpha(p) d(s)$ holds for any $p, s \in R$, then D is said to be generalized (α, α)-derivation with determined (α, α)-derivation d.

Of late years, several researchers have proved commutativity theorems and lemmas for prime rings and semi-prime rings with derivation, generalized derivation, (α, α)-derivation and generalized $(\alpha, \alpha)-$ derivation. Also, many researchers have generalized previous results to ideals and Lie ideals of ring. In [4], Söğütçü and Gölbaşı proved commutativity theorems for square closed Lie ideals of prime rings and semi-prime rings with generalized derivation. In this paper, we generalize the results for generalized derivation to generalized $(\alpha, \alpha)-$ derivation.

[^0]In this study, we generalize the previous study on Lie ideals of semi-prime rings with generalized derivation to generalized $(\alpha, \alpha)-$ derivation. Let R be a semi-prime ring, $0 \neq L$ be a square closed Lie ideal of R and $0 \neq D, H: R \rightarrow R$ are generalized (α, α) - derivations with determined (α, α) derivations $0 \neq d, h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. We investigate following conditions and prove that h is α-commuting map on L. (i) $D(p) \alpha(p)=\alpha(p) H(p)$ for all $p \in L$. (ii) $[D(p), \alpha(s)]=[\alpha(p), H(s)]$ for all $p, s \in L$. (iii) $D(p) o \alpha(s)=\alpha(p) o H(s)$ for all $p, s \in L$. (iv) $[D(p), \alpha(s)]=\alpha(p) o H(s)$ for all $p \in L$.

Also, we study above conditions for square closed Lie ideal L of prime ring R and prove that $L \subseteq$ $Z(R)$. Finally, we adapt the theorems which we prove for two derivations to only one derivation and we reach corollaries.

2. PRELIMINARIES

Following identities is provided for commutator and anticommutator for all $p_{1}, p_{2}, p_{3} \in R$.

- $\left[p_{1} p_{2}, p_{3}\right]=p_{1}\left[p_{2}, p_{3}\right]+\left[p_{1}, p_{3}\right] p_{2}$
- $\left[p_{1}, p_{2} p_{3}\right]=\left[p_{1}, p_{2}\right] p_{3}+p_{2}\left[p_{1}, p_{3}\right]$
$\cdot\left(p_{1} p_{2}\right) \circ p_{3}=p_{1}\left(p_{2} \circ p_{3}\right)-\left[p_{1}, p_{3}\right] p_{2}=\left(p_{1} \circ p_{3}\right) p_{2}+p_{1}\left[p_{2}, p_{3}\right]$
- $p_{1} \circ\left(p_{2} p_{3}\right)=\left(p_{1} \circ p_{2}\right) p_{3}-p_{2}\left[p_{1}, p_{3}\right]=p_{2}\left(p_{1} \circ p_{3}\right)+\left[p_{1}, p_{2}\right] p_{3}$

Remark Let R be a prime ring with char $R \neq 2$ and L be a square closed Lie ideal of R. Then, $2 p s \in L$ for all $p, s \in L$. Since char $R \neq 2$, if $2 p s=0$ for all $p, s \in L$, then $p s=0$. Hence, it is taken $p s \in L$ instead of $2 p s \in L$ in relations equal to zero.

Lemma 2.1 [5] Let R be a prime ring with char $R \neq 2, a, b \in R$. If U a noncentral Lie ideal of R and $a U b=0$, then $a=0$ or $b=0$.

Lemma 2.2 [5] Let R be a prime ring with char $R \neq 2$ and U a nonzero Lie ideal of R. If dis a nonzero derivation of R such that $d(U)=0$, then $U \subseteq Z$.

Lemma 2.3 [6] Let R be a 2 -torsion free semiprime ring, U a noncentral Lie ideal of R and $a, b \in U$. If $a U a=0$, then $a=0$.

Lemma 2.4 [7] Let R be a 2 -torsion free semiprime ring and L be a nonzero Lie ideal of R. If L is a commutative Lie ideal of R, i. e., $[x, y]=0$ for all $x, y \in L$, then $L \subseteq Z(R)$.

3. RESULTS

3.1. Generalization on Lie Ideals of Prime Rings

Throughout this section, we take R is a prime ring with $\operatorname{char} R \neq 2, L$ is a square closed Lie ideal of R, α is an automorphism of R and $0 \neq D, H: R \rightarrow R$ are generalized (α, α) - derivations determined with (α, α) - derivations $0 \neq d, h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$.

We begin with two lemmas to be used in the theorems.
Lemma 3.1.1. If $\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0$ for all $p_{1}, p_{2}, p_{3} \in L$, then $L \subseteq Z(R)$.

Proof: Let $\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0$ for all $p_{1}, p_{2}, p_{3} \in L$. Using the fact that α is automorphism, we have $\alpha\left[p_{1}, p_{2}\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0$ for all $p_{1}, p_{2}, p_{3} \in L$. Also, this relation is equal to following relation:

$$
\left[p_{1}, p_{2}\right] p_{3} \alpha^{-1}\left(h\left(p_{2}\right)\right)=0 \text { for all } p_{1}, p_{2}, p_{3} \in L .
$$

Suppose that, $L \nsubseteq Z(R)$. From Lemma 2.1, we get

$$
\left[p_{1}, p_{2}\right]=0 \text { or } \alpha^{-1}\left(h\left(p_{2}\right)\right)=0 \text { for all } p_{1}, p_{2} \in L .
$$

Since α is automorphism, this relation is equal to following relation:

$$
\left[p_{1}, p_{2}\right]=0 \text { or } h\left(p_{2}\right)=0 \text { for all } p_{1}, p_{2} \in L .
$$

Let $C=\left\{p_{2} \in L \mid\left[p_{1}, p_{2}\right]=0\right.$ for all $\left.p_{1} \in L\right\}$ and $E=\left\{p_{2} \in L \mid h\left(p_{2}\right)=0\right\}$. C and E are subgroups of additive group L whose $L=C \cup E$, but L can't be written as a union of its two proper subgroups. So, $L=$ C or $L=E$. If $L=C$, then $\left[p_{1}, p_{2}\right]=0$ for all $p_{1}, p_{2} \in L$. From Lemma 2.4, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \nsubseteq Z(R)$. If $L=E$, then $h\left(p_{2}\right)=0$ for all $p_{2} \in L$. That means, $h(L)=$ 0 . From Lemma 2.2, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \nsubseteq Z(R)$. Hence, assumption is incorrect and $L \subseteq Z(R)$.

Lemma 3.1.2. If $\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right)=0$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L or $L \subseteq Z(R)$.

Proof: Let

$$
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right)=0 \text { for all } p_{1}, p_{2} \in L .
$$

Since α is automorphism, this relation is equal to following relation:

$$
\left[p_{1}, \alpha^{-1}\left(h\left(p_{1}\right)\right)\right] p_{2} \alpha^{-1}\left(h\left(p_{1}\right)\right)=0 \text { for all } p_{1}, p_{2} \in L .
$$

Suppose that, $L \nsubseteq Z(R)$. From Lemma 2.1, we get

$$
\left[p_{1}, \alpha^{-1}\left(h\left(p_{1}\right)\right)\right]=0 \text { or } \alpha^{-1}\left(h\left(p_{1}\right)\right)=0 \text { for all } p_{1} \in L .
$$

Since α is automorphism, this relation is equal to following relation:

$$
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]=0 \text { or } h\left(p_{1}\right)=0 \text { for all } p_{1} \in L .
$$

Let $C=\left\{p_{1} \in L \mid\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]=0\right\}$ and $E=\left\{p_{1} \in L \mid h\left(p_{1}\right)=0\right\}$. C and E are subgroups of additive group L whose $L=C \cup E$, but L can't be written as a union of its two proper subgroups. Hence, $L=C$ or $L=E$. If $L=C$, then $\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]=0$ for all $p_{1} \in L$. So, h is α-commuting map on L and proof is complete. If $L=E$, then $h\left(p_{1}\right)=0$ for all $p_{1} \in L$. That means, $h(L)=0$. From Lemma 2.2, we arrive that $L \subseteq Z(R)$. But this result contradicts with $L \nsubseteq Z(R)$. Hence, h is α-commuting on L or $L \subseteq$ $Z(R)$.

In the following theorems, we give the results about inclusion of a Lie ideal in center of a prime ring with generalized (α, α) - derivation by using the previous lemmas.

Theorem 3.1.3 If $D\left(p_{1}\right) \alpha\left(p_{1}\right)=\alpha\left(p_{1}\right) H\left(p_{1}\right)$ for all $p_{1} \in L$, then $L \subseteq Z(R)$.
Proof. Let $D\left(p_{1}\right) \alpha\left(p_{1}\right)=\alpha\left(p_{1}\right) H\left(p_{1}\right)$ for all $p_{1} \in L$. Replacing p_{1} by $p_{1}+p_{2}, p_{2} \in L$ we have

$$
\begin{equation*}
D\left(p_{1}\right) \alpha\left(p_{2}\right)+D\left(p_{2}\right) \alpha\left(p_{1}\right)=\alpha\left(p_{1}\right) H\left(p_{2}\right)+\alpha\left(p_{2}\right) H\left(p_{1}\right) \text { for all } p_{1}, p_{2} \in L . \tag{1}
\end{equation*}
$$

Replacing p_{1} by $p_{1} p_{2}$ and using above relation, we get

$$
\begin{gathered}
0=D\left(p_{1}\right) \alpha\left(p_{2}\right) \alpha\left(p_{2}\right)+\alpha\left(p_{1}\right) d\left(p_{2}\right) \alpha\left(p_{2}\right)+D\left(p_{2}\right) \alpha\left(p_{1}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{1}\right) \alpha\left(p_{2}\right) H\left(p_{2}\right) \\
\quad-\alpha\left(p_{2}\right) H\left(p_{1}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) h\left(p_{2}\right) \\
=\left(D\left(p_{1}\right) \alpha\left(p_{2}\right)+D\left(p_{2}\right) \alpha\left(p_{1}\right)-\alpha\left(p_{2}\right) H\left(p_{1}\right)\right) \alpha\left(p_{2}\right)-\alpha\left(p_{1}\right) \alpha\left(p_{2}\right) H\left(p_{2}\right) \\
\\
+\alpha\left(p_{1}\right) d\left(p_{2}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) h\left(p_{2}\right) .
\end{gathered}
$$

Using equation (1) in above relation, we obtain

$$
\begin{gather*}
0=\alpha\left(p_{1}\right) H\left(p_{2}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{1}\right) \alpha\left(p_{2}\right) H\left(p_{2}\right)+\alpha\left(p_{1}\right) d\left(p_{2}\right) \alpha\left(p_{2}\right)- \\
\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) h(s) \text { for all } p_{1}, p_{2} \in L . \tag{2}
\end{gather*}
$$

Replacing p_{1} by $p_{1} p_{3}, p_{3} \in L$ in above relation, we get

$$
\begin{aligned}
& 0= \alpha\left(p_{1}\right) \alpha\left(p_{3}\right) H\left(p_{2}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{1}\right) \alpha\left(p_{3}\right) \alpha\left(p_{2}\right) H\left(p_{2}\right)+\alpha\left(p_{1}\right) \alpha\left(p_{3}\right) d\left(p_{2}\right) \alpha\left(p_{2}\right) \\
&-\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) \alpha\left(p_{3}\right) h\left(p_{2}\right) \\
&=\alpha\left(p_{1}\right)\left(\alpha\left(p_{3}\right) H\left(p_{2}\right) \alpha\left(p_{2}\right)-\alpha\left(p_{3}\right) \alpha\left(p_{2}\right) H\left(p_{2}\right)+\alpha\left(p_{3}\right) d\left(p_{2}\right) \alpha\left(p_{2}\right)\right) \\
&-\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) \alpha\left(p_{3}\right) h\left(p_{2}\right) .
\end{aligned}
$$

Using equation (2) in above relation, we have

$$
0=\alpha\left(p_{1}\right) \alpha\left(p_{2}\right) \alpha\left(p_{3}\right) h\left(p_{2}\right)-\alpha\left(p_{2}\right) \alpha\left(p_{1}\right) \alpha\left(p_{3}\right) h\left(p_{2}\right) \text { for all } p_{1}, p_{2}, p_{3} \in L .
$$

Using commutator properties in this relation, we obtain

$$
0=\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{2}\right) \text { for all } p_{1}, p_{2}, p_{3} \in L
$$

From Lemma 3.1.1, $L \subseteq Z(R)$.
Theorem 3.1.4 If $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$ for all $p_{1}, p_{2} \in L$, then $L \subseteq Z(R)$.
Proof: Let $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$ for all $p_{1}, p_{2} \in L$. Replacing p_{2} by $p_{2} p_{1}$, we get

$$
\begin{equation*}
\left[D\left(p_{1}\right), \alpha\left(p_{2}\right) \alpha\left(p_{1}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right) \alpha\left(p_{1}\right)+\alpha\left(p_{2}\right) h\left(p_{1}\right)\right] \text { for all } p_{1}, p_{2} \in L \tag{3}
\end{equation*}
$$

Editing equation (3), we obtain

$$
\begin{gathered}
{\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]} \\
=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right] \alpha\left(p_{1}\right)+\left[\alpha\left(p_{1}\right) \alpha\left(p_{2}\right)\right] h\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] .
\end{gathered}
$$

Using hypothesis in this relation, we get

$$
\begin{equation*}
\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]=\left[\alpha\left(p_{1}\right) \alpha\left(p_{2}\right)\right] h\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \text { for all } p_{1}, p_{2} \in L . \tag{4}
\end{equation*}
$$

Replacing p_{2} by $p_{2} p_{3}, p_{3} \in L$ in above relation, we have

$$
\begin{aligned}
\alpha\left(p_{2}\right) \alpha\left(p_{3}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]=[& \left.\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), \alpha\left(p_{3}\right)\right] h\left(p_{1}\right) \\
& +\alpha\left(p_{2}\right) \alpha\left(p_{3}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] .
\end{aligned}
$$

Using equation (4) in above relation, we have

$$
0=\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{1}\right) \text { for all } p_{1}, p_{2}, p_{3} \in L
$$

From Lemma 3.1.1, $L \subseteq Z(R)$.
Theorem 3.1.5 If $D\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L or $L \subseteq Z(R)$.

Proof: Let $D\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$. Replacing p_{2} by $p_{2} p_{1}$, we have

$$
\begin{equation*}
D\left(p_{1}\right) o\left(\alpha\left(p_{2}\right) \alpha\left(p_{1}\right)\right)=\alpha\left(p_{1}\right) o\left(H\left(p_{2}\right) \alpha\left(p_{1}\right)+\alpha\left(p_{2}\right) h\left(p_{1}\right)\right) \text { for all } p_{1}, p_{2} \in L . \tag{5}
\end{equation*}
$$

Using anti-commutator properties and editing equation (5), we obtain

$$
\begin{gathered}
\quad\left(D\left(p_{1}\right) o \alpha\left(p_{2}\right)\right) \alpha\left(p_{1}\right)-\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right] \\
=\left(\alpha\left(p_{1}\right) o H\left(p_{2}\right)\right) \alpha\left(p_{1}\right)+\left(\alpha\left(p_{1}\right) o \alpha\left(p_{2}\right)\right) h\left(p_{1}\right)-\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{2}\right)\right] .
\end{gathered}
$$

Using hypothesis in this relation, we have

$$
\begin{equation*}
0=\left(\alpha\left(p_{1}\right) o \alpha\left(p_{2}\right)\right) h\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \text { for all } p_{1}, p_{2} \in L \tag{6}
\end{equation*}
$$

Replacing p_{2} by $\alpha^{-1}\left(h\left(p_{1}\right)\right) s$ in above relation, we get

$$
\begin{aligned}
0=\left(\alpha\left(p_{1}\right) o(\right. & \left.\left.h\left(p_{1}\right) \alpha\left(p_{2}\right)\right)\right) h\left(p_{1}\right)+h\left(p_{1}\right) \alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-h\left(p_{1}\right) \alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \\
= & h\left(p_{1}\right)\left(\alpha\left(p_{1}\right) o \alpha\left(p_{2}\right)\right) h\left(p_{1}\right)+\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) \\
& \quad+h\left(p_{1}\right) \alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right] \\
& -h\left(p_{1}\right) \alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \\
= & h\left(p_{1}\right)\left(\left(\alpha\left(p_{1}\right) o \alpha\left(p_{2}\right)\right) h\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-\alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]\right) \\
& -\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) .
\end{aligned}
$$

Using equation (6) in above relation, we have

$$
0=\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) \text { for all } p_{1}, p_{2} \in L .
$$

From Lemma 3.1.2, h is α-commuting on L or $L \subseteq Z(R)$.

Theorem 3.1.6 If $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L or $L \subseteq Z(R)$.

Proof: Let $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$. Replacing p_{2} by $p_{2} p_{1}$, we obtain

$$
\begin{equation*}
\left[D\left(p_{1}\right), \alpha\left(p_{2}\right) \alpha\left(p_{1}\right)\right]=\alpha\left(p_{1}\right) o\left(H\left(p_{2}\right) \alpha\left(p_{1}\right)\right)+\alpha\left(p_{1}\right) o\left(\alpha\left(p_{2}\right) h\left(p_{1}\right)\right) \tag{7}
\end{equation*}
$$

for all $p_{1}, p_{2} \in L$. Using commutator and anti-commutator properties and editing equation (7), we get

$$
\begin{gathered}
{\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{1}\right)+\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]} \\
=\left(\alpha\left(p_{1}\right) o H\left(p_{2}\right)\right) \alpha\left(p_{1}\right)+\alpha\left(p_{2}\right)\left(\alpha\left(p_{1}\right) o h\left(p_{1}\right)\right)+\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] h\left(p_{1}\right) .
\end{gathered}
$$

Using hypothesis in this relation, we have

$$
\begin{gather*}
0=\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-\alpha\left(p_{2}\right)\left(\alpha\left(p_{1}\right) o h\left(p_{1}\right)\right)-\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] h\left(p_{1}\right) \text { for all } p_{1}, p_{2} \tag{8}\\
\in L .
\end{gather*}
$$

Replacing p_{2} by $\alpha^{-1}\left(h\left(p_{1}\right)\right) s$ in above relation, we get

$$
\begin{aligned}
0=h\left(p_{1}\right) \alpha(& \left.p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-h\left(p_{1}\right) \alpha\left(p_{2}\right)\left(\alpha\left(p_{1}\right) \operatorname{oh}\left(p_{1}\right)\right)-\left[\alpha\left(p_{1}\right), h\left(p_{1}\right) \alpha\left(p_{2}\right)\right] h\left(p_{1}\right) \\
= & h\left(p_{1}\right) \alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-h\left(p_{1}\right) \alpha\left(p_{2}\right)\left(\alpha\left(p_{1}\right) \operatorname{oh}\left(p_{1}\right)\right) \\
& -h\left(p_{1}\right)\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] h\left(p_{1}\right) \\
& -\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) \\
= & h\left(p_{1}\right)\left(\alpha\left(p_{2}\right)\left[D\left(p_{1}\right), \alpha\left(p_{1}\right)\right]-\alpha\left(p_{2}\right)\left(\alpha\left(p_{1}\right) \operatorname{oh}\left(p_{1}\right)\right)-\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] h\left(p_{1}\right)\right) \\
& -\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) .
\end{aligned}
$$

Using equation (8) in above relation, we have

$$
0=\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) \text { for all } p_{1}, p_{2} \in L .
$$

From Lemma 3.1.2, h is α-commuting on L or $L \subseteq Z(R)$.
Corollary 3.1.7 Let R be a prime ring with char $R \neq 2, L$ a square closed Lie ideal of R, α an automorphism of R and $0 \neq H: R \rightarrow R$ a generalized $(\alpha, \alpha)-$ derivation determined with $(\alpha, \alpha)-$ derivation $0 \neq h: R \rightarrow R$ such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. Then, following properties are provided.
(i) If $\left[H\left(p_{1}\right), \alpha\left(p_{1}\right)\right]=0$ for all $p_{1} \in L$, then $L \subseteq Z(R)$.
(ii) If $\left[H\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$ for all $p_{1}, p_{2} \in L$, then $L \subseteq Z(R)$.
(iiii) If $H\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L or $L \subseteq Z(R)$.
(iv) If $\left[H\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is $\alpha-$ commuting on L or $L \subseteq Z(R)$.

3.2. Generalization on Lie Ideals of Semi-Prime Rings

Throughout this section, we take R is a semi-prime ring with $\operatorname{char} R \neq 2, L$ is a noncentral square closed Lie ideal of R, α is an automorphism of R and $0 \neq D, H: R \rightarrow R$ are generalized (α, α) - derivations determined with (α, α) - derivations $0 \neq d, h: R \rightarrow R$ respectively such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$.

In this section, we generalize the previous study on Lie ideals of semi-prime rings with generalized derivation to generalized $(\alpha, \alpha)-$ derivation.

Theorem 3.2.1 If (i) or (ii) is provided for all $p_{1}, p_{2} \in L$, then h is α-commuting on L.
(i) $D\left(p_{1}\right) \alpha\left(p_{1}\right)=\alpha\left(p_{1}\right) H\left(p_{1}\right)$
(ii) $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$

Proof. (i) Let $D\left(p_{1}\right) \alpha\left(p_{1}\right)=\alpha\left(p_{1}\right) H\left(p_{1}\right)$ for all $p_{1} \in L$. Using same proof methods in Theorem 3.1.3, we get

$$
\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0 \text { for all } p_{1}, p_{2}, p_{3} \in L .
$$

In this relation, using the fact that α is automorphism, we have $\alpha\left[p_{1}, p_{2}\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0$ for all $p_{1}, p_{2}, p_{3} \in L$. Also, this relation is equal to following relation:

$$
\left[p_{1}, p_{2}\right] p_{3} \alpha^{-1}\left(h\left(p_{2}\right)\right)=0 \text { for all } p_{1}, p_{2}, p_{3} \in L .
$$

Replacing p by $\alpha^{-1}\left(h\left(p_{2}\right)\right)$ in above relation, we get

$$
\begin{equation*}
\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right] p_{3} \alpha^{-1}\left(h\left(p_{2}\right)\right)=0 \text { for all } p_{2}, p_{3} \in L . \tag{9}
\end{equation*}
$$

Right multiplication of equation (9) by p_{2}, we have

$$
\begin{equation*}
\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right] p_{3} \alpha^{-1}\left(h\left(p_{2}\right)\right) p_{2}=0 \text { for all } p_{2}, p_{3} \in L . \tag{10}
\end{equation*}
$$

On the other hand, replacing p_{3} by $p_{3} p_{2}$ in equation (9), we obtain

$$
\begin{equation*}
\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right] p_{3} p_{2} \alpha^{-1}\left(h\left(p_{2}\right)\right)=0 \text { for all } p_{2}, p_{3} \in L . \tag{11}
\end{equation*}
$$

Using equation (10) and equation (11), we get

$$
\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right] p_{3}\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right]=0 \text { for all } p_{2}, p_{3} \in L .
$$

From Lemma 2.3 we have

$$
\left[\alpha^{-1}\left(h\left(p_{2}\right)\right), p_{2}\right]=0 \text { for all } p_{2} \in L
$$

Using the fact that α is automorphism, we arrive that

$$
\left[h\left(p_{2}\right), \alpha\left(p_{2}\right)\right]=0 \text { for all } p_{2} \in L .
$$

So, h is α-commuting on L.

Albayrak and Yeşil / Eskişehir Technical Univ. J. of Sci. and Technology B - Theo. Sci. 7 (2) - 2019
(ii) Let $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$ for all $p_{1}, p_{2} \in L$. Using same proof methods in Theorem 3.1.4, we get

$$
\left[\alpha\left(p_{1}\right), \alpha\left(p_{2}\right)\right] \alpha\left(p_{3}\right) h\left(p_{2}\right)=0 \text { for all } p_{1}, p_{2}, p_{3} \in L
$$

Applying same methods in option (i), we arrive that, h is α-commuting on L.
Theorem 3.2.2 If (i) or (ii) is provided for all $p_{1}, p_{2} \in L$, then h is α-commuting on L.
$(\boldsymbol{i}) D\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$
$(i i)\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$
Proof. (i) Let $D\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$. Using same proof methods in Theorem 3.1.5, we get

$$
\begin{equation*}
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right)=0 \text { for all } p_{1}, p_{2} \in L \tag{12}
\end{equation*}
$$

Replacing p_{2} by $p_{2} p_{1}$ in above relation, we get

$$
\begin{equation*}
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) \alpha\left(p_{1}\right) h\left(p_{1}\right)=0 \text { for all } p_{1}, p_{2} \in L \tag{13}
\end{equation*}
$$

On the other hand, right multiplication of equation (12) by $\alpha\left(p_{1}\right)$, we have

$$
\begin{equation*}
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right) \alpha\left(p_{1}\right)=0 \text { for all } p_{1}, p_{2} \in L \tag{14}
\end{equation*}
$$

Using equation (13) and equation (14), we get

$$
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right)\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]=0 \text { for all } p_{1}, p_{2} \in L
$$

Using the fact that α is automorphism and Lemma 2.3, we obtain

$$
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right]=0 \text { for all } p_{1} \in L
$$

So, h is α-commuting map on L.
(ii) Let $\left[D\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$. Using same proof methods in Theorem 3.1.6, we get

$$
\left[\alpha\left(p_{1}\right), h\left(p_{1}\right)\right] \alpha\left(p_{2}\right) h\left(p_{1}\right)=0 \text { for all } p_{1}, p_{2} \in L
$$

Applying same methods in option (i), we arrive that, h is α-commuting on L.
Corollary 3.2.3 Let R be a semi-prime ring with char $R \neq 2, L$ a noncentral square closed Lie ideal of R, α an automorphism of R and $0 \neq H: R \rightarrow R$ a generalized (α, α) - derivation determined with (α, α) - derivation $0 \neq h: R \rightarrow R$ such that $\alpha(L) \subseteq L$ and $h(L) \subseteq L$. Then, following properties are provided.
(i) If $\left[H\left(p_{1}\right), \alpha\left(p_{1}\right)\right]=0$ for all $p_{1} \in L$, then h is α-commuting map on L.
(ii) If $\left[H\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\left[\alpha\left(p_{1}\right), H\left(p_{2}\right)\right]$ for all $p_{1}, p_{2} \in L$, then then h is α-commuting on L.
(iii) If $H\left(p_{1}\right) o \alpha\left(p_{2}\right)=\alpha\left(p_{1}\right) o H\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L.
(iv) If $\left[H\left(p_{1}\right), \alpha\left(p_{2}\right)\right]=\alpha\left(p_{1}\right)$ oH $\left(p_{2}\right)$ for all $p_{1}, p_{2} \in L$, then h is α-commuting on L.

REFERENCES

[1] Bresar M. On the distance of the composition of two derivations to the generalized derivations. Glaskow Math. J. 1991; 33: 89-93.
[2] Argaç N. On near-rings with two-sided α - derivations, Turk. J. Math. 2004; 28: 195-204.
[3] Chang J. C. Right generalized (α, β) - derivations having power central values, Taiwanese J. Math. 2009; 13(4): 1111-1120.
[4] Söğütçü E, Gölbaşı Ö. Lie ideals of semiprime rings with generalized derivations, Adıyaman University Journal of Science 2018;8(1): 1-12.
[5] Bergen J, Herstein I, Kerr W. Lie ideals and derivation of prime rings, J. Algebra 1981; 71: 259267.
[6] Hongan M, Rehman N, Al-Omary R. M. Lie Ideals and Jordan Triple derivations in rings. Rend, Sem. Mat. Univ. Padova 2011; 125: 147-156.
[7] Rehman N. On commutativity of rings with generalized derivations, Math. J. Okayama Univ. 2002; 44: 43-49.

[^0]: *Corresponding Author: balbayrak77@gmail.com
 Received: 25.02.2019 Accepted:15.08.2019

