
Sakarya University Journal of Science
ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University |

http://www.saujs.sakarya.edu.tr/

Title: Designing and Interpreting a Mathematical Programming Language

Authors: Hüseyin Pehlivan
Recieved: 2018-12-11 06:02:48

Accepted: 2019-04-16 11:50:43

Article Type: Research Article
Volume: 23
Issue: 6
Month: December
Year: 2019
Pages: 1027-1041

How to cite
Hüseyin Pehlivan; (2019), Designing and Interpreting a Mathematical Programming
Language. Sakarya University Journal of Science, 23(6), 1027-1041, DOI:
10.16984/saufenbilder.494974
Access link
http://www.saujs.sakarya.edu.tr/issue/44246/494974

New submission to SAUJS
http://dergipark.gov.tr/journal/1115/submission/start

Designing and Interpreting a Mathematical Programming Language

Hüseyin Pehlivan *1

Abstract

The syntax of the programming languages has a significant impact on the definition and validation of
mathematical calculations. In particular, the management of code identification and validation processes
can be made easier and faster, depending on the parametric behavior of the functions. In this article, a
programming language that supports the use of mathematical function structures is designed and an
interpreter, which can evaluate the source code written in this language, is developed. The language syntax
is represented by an LL (k) grammar defined in the BNF notation. The interpreter consists of several basic
components such as parser, semantic controller and code evaluator, each of which makes a different kind
of code interpretation. The LL (k) parser component used for the syntactic analysis of the language is
generated via an automatic code generation tool called JavaCC. The other components work on the abstract
syntactic tree that this parser generates. To illustrate the use of the language with code samples, several
mathematical algorithms that include calculations on different sequences of numbers, are programmed and
interpreted. The paper also performs a comparative analysis of the language with some related ones. The
paper also performs a comparative analysis of the language with some related ones based on some design
principles and mathematical aspects.

Keywords: programming languages, formal grammars, parsers, interpreters

1. INTRODUCTION

Programming languages are problem solving tools
that play a critical role in the development of both
computer systems and computer programs which
are the most important component of these
systems. For programs that can be used in many
different service areas such as education, health
and safety, it is not only important to edit their

* Corresponding Author: pehlivan@ktu.edu.tr

1 Karadeniz Technical University, Department of Computer Engineering, Trabzon, Turkey. ORCID: 0000-0002-0672-9009

source code but also their integration with the
target computer systems. A programming
language can make it possible to write programs
that can easily be integrated into one or several
computer systems with different architectures. The
efficiency of the development processes of source
code depends on design principles adopted by
language developers, such as readability,
writability, reliability, portability, and

Sakarya University Journal of Science 23(6), 1027-1041, 2019

extensibility [1,2]. These principles, increasing the
effectiveness and common usage of programming
languages, provide an easy adaptation for a wide
range of programmers. As each language has its
own programming practice or style, some
languages are not challenging to use this practice.
For example, as in C [3] and Perl [4], very complex
coding styles that are subject to international
competitions can be developed [5,6].

Programming languages can be divided into two
groups as general and special purpose languages.
General purpose languages are designed for
writing computer applications that can solve
different kinds of problems with high level
programming structures. They can be classified
based on their fundamental features as four main
programming paradigms, such as procedural
languages (Pascal [7], C [3]), object-oriented
languages (Java [8], C# [9]), functional languages
(Scheme [10], Haskell [11]) and logical languages
(Prolog [12], Ciao [13]). Special purpose
languages are developed for programming tasks
that require higher performance during
compilation, interpretation, or runtime. In these
languages, a particular class of problems can be
programmed in an easier way, and system security
can be increased by hiding the language runtime
code. Typical programming areas include text
formatting and display (TeX [14], LateX [15]),
database interaction (SQL [16], AQL [17]),
symbolic mathematics (Matlab [18], Mathematica
[19]), hardware identification (Verilog [20],
VHDL [21]) and computer games (Maya [22],
Unreal Engine [23]).

Functional languages have the syntax similar to
the notations of writing mathematical expressions.
In these languages, the behavior of mathematical
functions play an important role in the definitions
made for functions. For example, the scope of the
variables is limited to the function bodies and the
functions always produce a return value. Since the
syntax of the language does not support
assignment statements, the variables are single-
valued. The behavior of the functions depends
only on the parameters given to them. However,
some non-mathematical components of the syntax

can be used in formal parameter declarations and
body definitions of functions.

The literature includes many mathematical
programming languages that are basically
developed for mathematical modeling and
optimization. Typical examples of such languages
are AIMMS, AMPL, GAMS, LINGO, LPL,
Mosel, MPL, OMNI, OPL and PCOMP, which are
all described in [24]. In the modeling languages,
the real-world problems are especially represented
by mathematical models constructed with a proper
set of some relationships such as equalities,
inequalities and logical conditions. The main focus
is on the provision of programming structures
required for mathematical formulations of the
problems. The syntax and semantics of these
structures contain the code components such as
loops and selection statements, as well as strict
evaluation, which are not purely mathematical.
The same is true for those in special purpose
languages such as Matlab and Mathematica.

The design and development processes of
programming languages require the coding of a
large number of components from syntax
definition to code generation in a machine
language. One of these components is the language
parser that performs syntax analysis. In order to
generate the parser code automatically, many
compiler-compiler tools (also called parser
generators) such as YACC [25], SableCC [26] and
JavaCC [27] are developed. Each tool usually uses
a different specification file in which the syntax of
a particular language is defined in a similar way to
the structure of formal grammars [28]. For
example, the JavaCC tool that generates the source
code of a parser in Java requires the use of two
different definition formats adapted from the
language grammar for the words and expressions
contained in the language syntax.

This paper addresses the development of a
mathematical programming language, shortly
called MaPL. The mathematical expressions
construct the main computational structure of the
MaPL language represented by a formal grammar.
The interpreter implemented for the language has

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1028

several components, such as lexer, parser,
semantic controller and code evaluator. The
JavaCC tool is used for lexical analysis, syntax
analysis and generation of abstract syntax tree
(shortly called as AST). The operations of
semantic analysis and code evaluation are
performed through the syntax tree.

In the design of the syntax of the MaPL language,
basic programming structures that meet the
requirements of mathematical programming are
taken into consideration. Variable declaration,
sequential execution, conditional selection,
repeated execution and function definition are the
most important programming structures. As in
functional languages, variable declarations are
made without specifying the data type, and
repeated calculations are performed with the help
of recursive definitions which may be an
alternative to the looping statements. Different
statements can be executed depending on certain
conditions.

2. SYNTAX

Syntax is an issue related to the expression
structure of a language. MaPL is designed as a
programming language with syntax supporting the
notation of writing mathematical expressions. The
syntax of the language allows the definition of
functions in two different ways, which can be
given as follows:

function(p1, p2, …, pn) = body
function(p1, p2, …, pn) : {s1, s2, …, sn} = body

In this syntax, the declarations such as x or x + k
(k is an integer) can be made in the formal
parameter fields represented by the elements such
as p1 and p2. The elements such as s1 and s2,
which are specified by opening a code block, can
be assignment statements or print statements that
display data on the standard output. In the body of
the functions, in addition to the ordinary
calculation expressions, a sequence of the pairs of
expressions and conditions can appear in the
following form.

{ expression, condition }

The expressions in this form correspond to the
definitions of segmented functions in
mathematics. Here are the examples of two
functions defined in the MaPL language.

f(x) = 2 * x + 1
g(x+1,y) : { z = x + y; print(z) } = x * y + z

The MaPL language does not include the looping
statements provided by the imperative
programming languages. In accordance with the
mathematical definitions of functions, recursive
functions should be used for the calculations that
must be made through a looping statement. For
example, for the sum of integers between 1 and n,
the following function definition can be made,
consisting of two equations.

fSum(1) = 1
fSum(n) = fSum (n-1) + n

It is also possible to define in a similar way to the
segmented function structure in mathematics. As
the function fSum is defined mathematically like

𝑓(𝑛) = ൜
1, 𝑛 = 1

𝑓(𝑛 − 1) + 𝑛, 𝑛 > 1

the corresponding definition in the MaPL language
can be made as follows (instead of the keyword
"otherwise", a conditional expression like “n> 1”
can also be used to represent the other cases).

fSum(n) = { 1, n == 1 }
 { fSum (n-1) + n, otherwise }

Three types of data can be used in the source file;
int, double and string. There is no need to
explicitly declare the data types of variables. The
type inference of a variable is performed by the
language itself, with the type analysis of the first
expression that assigns data to that variable. For
example, in the following expression, the type
inference for the variable x will be made as a
string.

x=2 + 3.4 + "5"

Note that the addition operations in this statement
associate from left to right. Thus, the value 5.4
calculated by the first operation (i.e., 2 + 3.4) will
be of double type and then the data "5.45"

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1029

calculated with the next operation (i.e., 5.4 + "5")
will be of string type.

The MaPL language has a flat block structure
consisting of two levels: global and local. The
scope of the function definitions corresponds to
the global level, which is the entire source code
file. The definitions of formal parameters and local
variables have a scope limited only to the body of
the relevant function.

As in most programming languages, the evaluation
of the source code is initiated by the invocation of
the function called main. A source code file can
have many syntax components, such as functions,
arguments, formal parameters, and segmented
function equations. In the language parser, syntax
classes are defined using a data structure of linked
lists to represent these components. The number of
syntax components that can be contained by the
source code is determined dynamically by the size
of the memory the interpreter uses.

3. PARSING

The parsing process requires the design of a formal
grammar for the syntax of a programming
language. The JavaCC tool is used to develop the
parser for the MaPL language. This section shows
how to use a formal grammar in the production of
the parser via JavaCC.

3.1. Grammar Design

A formal grammar is specified using a
mathematical notation such as BNF and EBNF.
The EBNF notation is an extended version of BNF
with the addition of some meta-characters (*, +, ?,
|, etc.). In these notations, a grammar can consist
of one or more syntactic definitions, called rules,
which govern the phrase structure of a language.
The recursive nature of the rules can always
generate an infinite number of possible sentences
out of finite number of words. A grammar rule has
left and right side definitions separated by symbols
such as “=”, “:=” or “->”. The left side of the rule
contains a non-terminal and the right side contains
a collection of some terminals (also called token)
or non-terminals. In the following grammar

specifications, the terminals are written in double
quotes.

In the syntax analysis, first the source data is
scanned from the left to the right and broken into a
sequence of terminals. Then the order of terminals
in the sequence is examined by means of a
grammar. The token examination can be
performed from left to right (LL(k) parsing) or
from bottom to top (LR(k) parsing), where k is the
amount of lookahead the parser needs to select a
rule. Since the JavaCC tool can produce only
LL(k) parsers, the formal grammar designed for
the MaPL language has to consist of a set of rules
satisfying the following three properties.

 All the alternatives of a rule (the rules that
contain the same non-terminal on the left side)
have to produce a k number of different first
tokens.

 If there is a rule that may not produce any token,
this rule and the rule called after it have to
produce a k number of different first tokens.

 The right side of a rule must not contain a left-
recursive definition.

Considering the above properties, the LL(1)
grammar developed for k = 1 is shown in Table 1,
using the EBNF notation. Please note that the
grammar does not provide the necessary
definitions for id, num, dnum and str rules. The
format of the data that is generated by these rules
will be defined in the token specification block of
the parser.

Table 1. Formal grammar for the MaPL language

program -> function (program)?
function -> header (block)? "=" (expr | eqlist)
header -> id "(" (parlist)? ")"
parlist -> param ("," parlist)?
param -> id ("+" num)? | num
eqlist -> "{" expr "," bexpr "}" (eqlist)?
block -> ":" "{" (stmlist)? "}"
stmlist -> stm ("," stmlist)?
stm -> id "=" expr
stm -> "print" "(" explist ")"
explist -> expr ("," explist)?

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1030

expr -> ("+" | "-")? term (("+" | "-") term)*
term -> power (("*" | "/" | "%") power)*
power -> elem ("^" power)?
elem -> id ("(" (explist)? ")")? | num | dnum
elem -> str | "(" expr ")" | abs "(" expr ")"
bexpr -> and ("||" and)*
and -> not ("&&" not)*
not -> "!" "(" bexpr ")" | belem | "otherwise"
belem -> expr boper expr
boper -> "==" | "/=" | "<" | "<=" | ">=" | ">"

The grammar in Table 1 also includes the
descriptions of the semantic structure of the MaPL
language. The usual precedence and associativity
of the operators are two semantic issues, which can
be represented by the grammar rules. For example,
the expr rule containing the operators "+" and "-"
is invoked before the rules (i.e., term and power)
containing other operators. The early invocation
places these two operators in the nodes close to the
root of the parsing tree), giving them a lower
priority level. On the other hand, since the power
rule is defined in a right-recursive way, the
operator “^” contained by the rule is made right-
associative.

The JavaCC tool requires three types of definitions
for a programming language, such as lexical
structure, syntactic structure and generating
expressions of abstract syntax tree. All these
definitions are stored in the same JavaCC
specification file.

3.2. Lexer

The lexical structure of a language is usually
defined using regular expressions. In the MaPL-
language word set, in addition to 25 functional
components consisting of 16 operators, 3
keywords and 6 other symbols, there is an infinite
number of data components represented by the
rules id, num, dnum and str in Table 1. A separate
token class is defined for each of the functional
components, while there is only one token class
per rule for the others. In the syntax analysis, it is
sufficient to make the token class definition for the
types since the type of the data is more important
than the value.

In Table 2, token class definitions of the MaPL
language are given in the TOKEN block in
accordance with the JavaCC specification format.
No tokens are produced for the words covered by
the definitions made within the SKIP block. The
token classes whose names begin with the symbol
#, such as LETTER and DIGIT, are used as part of
other class definitions.

Table 2. Token definitions

TOKEN: {
 <PLUS: "+"> | <MINUS: "-">
 | <TIMES: "*"> | <DIVIDE: "/">
 | <MOD: "%"> | <POWER: "^">
 | <AEQ: "="> | <AND: "&&"> | <OR: "||">
 | <NOT: "!"> | <EQ: "=="> | <NE: "/=">
 | <LE: "<"> | <LT: "<="> | <GT: ">=">
 | <GE: ">"> | <COMMA: ",">
 | <COLON: ":"> | <LCURLY: "{">
 | <RCURLY: "}"> | <LPAREN: "(">
 | <RPAREN: ")"> | <ABS: "abs">
 | <PRINT: "print"> | <OTHER: "otherwise">
 | <#LETTER: ["a"-"z","A"-"Z"]>
 | <#DIGIT: [0"-"9"]>
 | <ID: <LETTER>(<LETTER> | <DIGIT>)*>
 | <NUM: (<DIGIT>)+>
 | <DNUM: (<DIGIT>)+"."(<DIGIT>)+>
 | <STR: ("\"" (~["\""] | "\\" "\"")* "\"")>
}
SKIP: { " " | "\t" | "\r" | "\n" }

For example, according to the definitions given in
Table 2, the sequence of the tokens produced for
the statement print (x, y + 1) will be as follows.

PRINT LPAREN ID COMMA ID PLUS NUM
RPAREN

This token sequence indicates that the
specification order in Table 2 is important. The
lexer evaluates all token class definitions from top
to bottom, for each word it scans in the source data,
and selects the first one matching the word and
produces the corresponding token. For example,
there are two possible token classes that match the
word "print"; PRINT and ID. However, since the
print is a keyword in the MaPL language, the
PRINT token must be produced. Therefore, the

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1031

PRINT definition is placed in one of the lines
before the ID definition, with the aim of producing
the correct token.

3.3. Parser

The parsers that are used to analyze the syntactic
structure of a programming language can be
developed by hand or by means of an automated
code generating tool like JavaCC. With these
tools, the source code of a parser is generated from
the method definitions based on the grammar rules
of the language. The language of the generated
code varies depending on the used tool. For
example, the JavaCC tool generates the parser
code in the Java programming language.

With the two main deterministic parsing methods
called LL(k) and LR(k), the parsing steps are
managed by the grammar representing the syntax
of the language. An LL(k) parser that performs a
leftmost derivation of the code can be configured
according to the structure of the grammar rules. It
is possible to develop an LL(1) parser for the
formal grammar given in Table 1, where a rule can
be selected only with one token (i.e., k = 1). In this
way, some method definitions are added to the
parser to represent each grammar rule, keeping
them in the order that the rules call each other in
the grammar. Table 3 shows some of typical
method definitions for an LL(1) parser using the
JavaCC specification format.

Table 3. Parser methods

void start() : { } {program() <EOF>}
void program() : { } {function() (program())?}
void function() : { }
 {header() (block())? <AEQ> (expr()|eqlist())}
void header() : { }
 {<ID> <LPAREN> (parlist)? <RPAREN>}
void parlist() : { }
 { param() (<COMMA> parlist())? }
void param() : { }
 { <ID> (<PLUS> <NUM>)? | <NUM> }
void eqlist() : { }
 { <LCURLY> expr() <COMMA>
 bexpr() <RCURLY> (eqlist())? }

void block() : { }
 { <COLON> <LCURLY>
 (stmlist())? <RCURLY> }
void stmlist() : { }
 { stm() (<COMMA> stmlist())? }
void stm() : { }
 { <ID> <AEQ> expr()
 | <PRINT> <LPAREN>
 explist() <RPAREN> }
void explist() : { }
 { expr() (<COMMA> explist())? }

As shown in Table 3, start() is the starting method
of the parser. A special JavaCC token <EOF> is
used to mark the end of source data that can be
entered from the standard input or read from a file.
The parsing process continues to perform on the
source data until this token is encountered.

3.4. Syntax Classes

Syntax classes serve to build a tree-based
representation of source data with object-oriented
programming structures. The grammar rules of the
language have an important role in what syntax
classes must be defined. In general, a syntax class
is defined for each grammar rule that contains an
operator or keyword. The definition of syntax
classes representing the rules with the alternatives
is made by inheriting from the same super class
and thus they can serve as alternatives to each
other in a similar way to the rules.

In some cases, a single class is created by
combining some of the grammar rules (especially
those that are complementary to a certain
expression or statement, or invoked by another
rule). For example, in the case that a programming
language expression is defined by more than one
grammar rule, it is adequate to define one syntax
class to represent all of these rules. In the grammar
in Table 1, the syntax classes for the <block>,
<expr>, and <eqlist> rules, which are all invoked
by the <function> rule, are not defined.

A syntax class can be given the name of the related
grammar rule represented or another name
associated with the expression generated by that

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1032

rule. The fields of the class are defined by the data
types appropriate to the terminals and non-
terminals contained in the relevant rule. The
classes Var, Num, DNum and Str, for which a rule
is not defined, are constructed for id, num, dnum
and str non-terminals, respectively. Table 4 shows
some of the syntax classes.

Table 4. Syntax classes

class Program {
 Function def; Program prog;
 public Program(Function x, Program y)
 { def = x; prog = y; }
}
class Function {
 Header f; Stm s; EList eq;
 public Function(Header x, Stm y, EList z)
 { f = x; s = y; eq = z; }
}
class EList {
 Exp e; BExp b; EList eq;
 public EList(Exp x, BExp y, EList z)
 { e = x; b = y; eq = z; }
}
class Stm { }
class AStm extends Stm {
 String id; Exp e;
 public AStm(String x, Exp y) {id = x; e = y;}
}
class PStm extends Stm {
 EList eq;
 public PStm(EList x) { eq = x; }
}
class Exp { }
class Header extends Exp {
 String id; EList eq;
 public Header(String x, EList y)
 { id = x; eq = y; }
}

Although, in most programming languages, the
definition expression of a function has a different
format or syntax from the invocation expression,
both expressions can have the same syntax in the
MaPL language. Therefore, the object reference of
the Header type added to the Function class will be

used to represent both the function definition and
calling expressions.

As seen in Table 4, a constructor that is used to
create an object of the related class is provided for
all the syntax classes. In addition, in the phase of
interpreting the source data, a method called
accept() for the use of the Visitor interface,
described in Section 4, must be defined in the
syntax classes as follows.

public accept(Visitor v) {
 return v.visit(this);
}

The type of the return value for this method should
be void for the classes such as Stm, AStm and
PStm, and Object for the ones such as Exp, Header
and Plus.

3.5. Abstract Syntax Tree

A syntax tree is created as a representation of the
source data in the form of a tree data structure by
connecting objects derived from syntax classes.
The functional components (operators, keywords,
etc.) of the source code form the intermediate
nodes of the tree, while the data components
(constants, variables, etc.) do the leaves. In this
way, each node of the tree can contain objects of a
different syntax class, depending on the type of the
related code component.

Syntax trees are used to perform operations such
as type control and code interpretation that are
difficult to perform over source data. As in the
syntax analysis of the source data, the JavaCC tool
can be used in the production of syntax trees. For
this purpose, the expressions in Java that will
generate the data required for the corresponding
node of the syntax tree are added to the special
code blocks that are opened in the body of the
parser methods. The production of the tree is
provided via these expressions that are performed
simultaneously with the syntax analysis. In Table
5, some parser methods are shown together with
the code blocks added for the generation of the
syntax tree.

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1033

Table 5. Parser methods that generate abstract
syntax tree

Program start() : { Program prog; }
 { prog=program() <EOF> { return prog; } }
Program program() :
 { Function def; Program prog = null; }
 { def=function() (prog=program())?
 { return new Program(def, prog); } }
Function function() :
 { Header fn; Stm s=null; EList eq; Exp e; }
 { fn=header() (s=block())? <AEQ>
 (e=expr()
 {eq = new EList(e, new BNum(true), null);}
 | eq=eqlist())
 { return new Function(fn, s, eq); } }
Header header() :
 {Token t; EList eq = null; boolean b = false;}
 { t=<ID> <LPAREN>
 (eq=parlist())? <RPAREN>
 { return new Header(t.image, eq); } }
EList parlist() :{ EList eq = null; Exp e; }
 { e=param() (<COMMA> eq=parlist())?
 { return new EList(e, null, eq); } }
Exp param() : { Token t, t2; Exp e; }
 { t=<ID> (<PLUS> t2=<NUM>
 return new Plus(new Var(t.image),
 new Num(Integer.parseInt(t2.image))); })?
 { return new Var(t.image); }
 | t=<NUM> { return new
 Num(Integer.parseInt(t.image)); } }
EList eqlist() :
 { Exp e; BExp b; EList eq = null; }
 { <LCURLY> e=expr() <COMMA>
 b=bexpr() <RCURLY> (eq=eqlist())?
 { return new EList(e, b, eq); } }
Stm block() : { Stm s=null; }
 { <COLON> <LCURLY> (s=stmlist())?
 <RCURLY> { return s; } }

Since the syntax analysis starts with a call to the
start() method, the root node of the syntax tree
always has an object of the Program type. Other
methods called during the analysis produce
different types of objects. For example, using the
class definitions in Table 4 and the method
definitions in Table 5, the syntax tree produced by

the parser for the expression print (x, y + 1) would
be as follows.

PStm p = new PStm(new EList(new Var("x"),
null,
 new EList(new Plus(new Var("y"),
 new Num(1)), null, null)));

The EList class, defined as a linked list, is used in
object construction through several parser
methods. The list of function formal parameters,
the argument lists of both the print function and
user-defined functions, and the list of segmented
functions are created as an object of the EList
class. The related list element is given as the first
argument to this class constructor, the other
argument is either the condition expression of the
segmented function list or null for the other lists.

4. EVALUATION

The two components, the semantic controller and
the code evaluator, need to interpret the source
code, using the syntax tree. The implementation of
these components that interpret the AST data in
different forms is based on the Visitor design
pattern, which is one of the behavioral design
patterns [29].

4.1. Visitor Interface

The Visitor interface, which provides the type
information of visit() methods, corresponds to one
of the two components of the Visitor design
pattern. The other component is the Accept
interface and involves the definition of accept()
methods within all syntax classes. The visit() and
accept() methods together constitute a double
dispatch mechanism that is used to evaluate the
objects found in the AST data. Table 6 lists some
of the methods that are described in the Visitor
interface.

Table 1. Visitor interface

interface Visitor {
 public Object visit(Exp e);
 public Object visit(Fn e);
 public Object visit(Plus e);

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1034

 public Object visit(Minus e);
 public Object visit(Times e);
 public Object visit(Divide e);
 public Object visit(Mod e);
 public Object visit(Power e);
 public Object visit(Var e);
 public Object visit(Num e);
 public Object visit(DNum e);
 public Object visit(Str e);
 public void visit(Stm s);
 public void visit(AStm s);
 public void visit(PStm s);
……….
}

For some method declarations in Table 6, the type
of the return value is specified as Object. This kind
of method declarations allows the use of the same
Visitor interface for different evaluation
requirements (type control, interpretation, etc.) of
the abstract syntax tree.

4.2. Semantic Controller

For type control operations performed with the
semantic controller, a symbol table is created using
the definitions in the source code. All formal
parameters and local variables defined in the body
of the functions are added as symbols to this table.
There are some important cases to take into
account when an entry is added to the symbol
table, which are given below.

 The formal parameters of a function must have
unique names.

 The type of a formal parameter is inferred from
the expression that uses the parameter.

 The names of local variables must be different
from formal parameter names.

 The type of a local variable is inferred from the
expression that initializes its first value.

Table 7 shows the SymTable class defined to
represent the symbol table. During the analysis of
a function definition, a new symbol block is
created in the symbol table, and all symbols and
their types in the related definition are stored in
this block. The symbol block is only accessible

through the analysis of the function and is released
when the analysis is finished.

Table 7. SymTable class

class SymTable {
 int size;
 int index = -1;
 Hashtable[] table;
 public SymTable(int s) {
 size = s;
 table = new Hashtable[s];
 }
 public int beginScope() {
 ++ index;
 if (index >= table.length)
 return -1;
 table[index] = new Hashtable();
 return 0;
 }
 public void endScope() {
 -- index;
 }
 public void put(String id, Object obj) {
 if (obj == null)
 return ;
 table[index].put(id, obj);
 }
 public Object get(String id) {
 return table[index].get(id);
 }
}

The semantic analysis of the source code focuses
on the syntax tree created by the parser. First,
traversing all nodes of the tree, the symbol
definitions are determined. For each symbol
defined in the source code, a pair (name, type) is
stored in the symbol table. For example, the pair
("x", new Num (0)) for a variable x of type int and
the pair ("y", new Str ("")) for a variable y of type
string are added to the symbol table. When the use
of a symbol is encountered during the traversal, the
symbol table is looked up and their types are
obtained. The following cases are considered for
the type inspection performed through the symbol
table.

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1035

 The data type, order and number of formal
parameters as well as the type of returned data
must be the same in all equations of a function.

 The actual parameters passed to a function must
match the formal parameters in type, order and
number.

 The type of a formal parameter or a local
variable must be compatible with the use in all
expressions, or with the type of value re-
assigned to it.

 All local variables must be initialized before
being used.

 Each called function must have a definition.

 All operators must be applied to the correct type
of data.

The TypeVisitor class, which is implemented from
the Visitor interface, is defined to represent the
semantic controller. Table 8 shows a part of the
TypeVisitor class with the visit() methods defined
on some syntax classes.

Table 8. TypeVisitor class

Class TypeVisitor implements Visitor {
 Program p;
 SymTable t;
 public TypeVisitor(Program a, SymTable b)
 { p = a; t = b; }

 public void visit(Stm s) {
 s.accept(this);
 }
 public void visit(LStm s) {
 s.a.accept(this);
 s.b.accept(this);
 }
 public void visit(AStm s) {
 Object a = s.a.accept(this);
 if (a != null) {
 Object b = t.get(s.id);
 if (b == null)
 t.put(s.id, a);
 else if ((a instanceof Num &&
 !(b instanceof Num)) ||
 (a instanceof DNum &&

 !(b instanceof DNum)) ||
 (a instanceof Str &&
 !(b instanceof Str)))
 System.out.println("Consistency error: "
 + s.id + "=" + new PrintVisitor().visit(s.a));
 }
 else
 System.out.println("Inference error: " +
 s.id + "=" + new PrintVisitor().visit(s.a));
 }
 public Object visit(Var e) {
 return t.get(e.id);
 }
 public Object visit(Num e) {
 return new Num(0);
 }
}

In the code fragment shown in Table 8, there is a
visit() method defined to analyze a tree node of
type AStm that represents an assignment
statement. This method checks the compatibility
of the type of the variable on the left side of the
statement with the type of data calculated by the
expression on the right side. If the type cannot be
inferred from the expression or the type
inconsistency is encountered, then the PrintVisitor
class, which is also implemented from the Visitor
interface, is used to indicate the relevant
expression of the source code.

4.3. Evaluator

The symbol table represented by the SymTable
class in the previous section is also used to
evaluate the source code. The evaluation process
traverses the nodes of the syntax tree and stores the
pairs (name, value) for the values assigned to
formal parameters or local variables in this table.
For example, the pair ("x", new DNum (3.0)) for
the expression x = 3.0 is added to the symbol table.
If this expression is followed by another
expression y = x + 1, then the value of the variable
x is queried from the symbol table and a new pair
("y", new DNum (4.0)) is added to the table.

The code evaluator component is represented by
the EvalVisitor class implemented from the Visitor

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1036

interface. Table 9 shows the EvalVisitor class with
some visit() methods.

Table 9. EvalVisitor class

class EvalVisitor implements Visitor {
 Program p;
 SymTable t;
 public EvalVisitor(Program a, SymTable b)
 { p = a; t = b; }

 public void visit(Stm s) {
 s.accept(this);
 }
 public void visit(LStm s) {
 s.a.accept(this);
 s.b.accept(this);
 }
 public void visit(AStm s) {
 t.put(s.id, s.a.accept(this));
 }
 public Object visit(Var e) {
 return t.get(e.id);
 }
 public Object visit(Num e) {
 return new Integer(e.n);
 }
}

In all classes implementing the Visitor interface,
the data passing between the visit() methods is
performed through the objects of type Object. So,
in order to be able to use the value wrapped in an
object in the calculations, it needs to be converted
from the Object type to the primitive data type. For
example, given the statement obj=new Integer(x)
wrapping the integer x with the object of type
Integer, the conversion from the wrapping object
to the correct type is performed by the statement
x=((Integer)obj).intValue().

5. INTERPRETATION

This section describes the integration of the
interpreter components and some examples of
programs developed in the MaPL language.

5.1. Integration of Components

The interpreter of the MaPL language is
constructed by integrating the Parser, Semantic
Controller and Evaluator components introduced
in the previous sections. The main() method of the
interpreter contained in the Interpreter class is
coded as shown in Table 10.

Table 2. Interpreter class

public class Interpreter {
 public static void main(String[] args) {
 try {
 Program p =
 new Parser(System.in).Prog();
 SymTable t = new SymTable(10000);
 TypeVisitor type = new TypeVisitor(p, t);
 Object res = type.visit(new Fn("main", null));
 if (res != null) {
 EvalVisitor eval = new EvalVisitor(p, t);
 eval.visit(new Fn("main", null));
 }
 }
 catch(ParseException ex) {
 System.out.println(ex.getMessage());
 }
 }
}

There are some source files that the interpreter
components depend on. The parser is composed of
the JavaCC specifications and the syntax classes
for which the files Parser.jj and AST.java are
developed, respectively. The type controller is
stored in the file TypeVisitor.java, and the code
evaluator in the file EvalVisitor.java. Using these
files placed in the same directory, the interpreter
can be produced as follows.

$> javacc Parser.jj
$> javac *.java

The interpretation of a program written in the
MaPL language, which is held in a source file
called prog.txt, is started by the following
command

$> java Interpreter < prog.txt

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1037

5.2. Program Examples

To illustrate the syntax of the MaPL language, five
examples of programs that generate some popular
sequence of numbers are given below.

Program 1: Table 11 shows the source code of a
program that finds all the factors of the number
100 and displays it via the show() function.

Table 11. Program that finds the factors of 100

main() = factor(100, 1)
factor(n, k) =
 { 0, k > n }
 { show(n, k), n % k ==0 }
 { factor(n, k+1), otherwise }
show(n, k) : { print(k + " ") } = factor(n, k+1)

Output 1: The output of the program is as follows:

1 2 4 5 10 20 25 50 100

Program 2: The program in Table 12 shows the
prime numbers smaller than 40 in the ascending
order; the mod() function checks the divisibility of
the number n with the integers k less than the
number √𝑛.

Table 3. Program that finds the primes up to 40

main() = prime(40, 2)
prime(n, k) =
 { 0, k >= n }
 { show(n, k), mod(k, 2)>0 }
 { prime(n, k+1), otherwise }
mod(n, k) =
 { 1, k*k > n }
 { 0, n % k == 0 }
 { mod(n, k+1), otherwise }
show(n, k) : { print(k + " ") } = prime(n, k+1)

Output 2: The output of the program is as follows:

2 3 5 7 11 13 17 19 23 29 31 37

Program 3: The program given in Table 13 shows
the factorials of positive integers not greater than
5; The fact() function is written in accordance with
the mathematical definition. The print() function

with no argument writes a new line to the standard
output.

Table 43. Program that shows the factorials of 0
to 5

main() = show(5, 0)
show(n,k) : { print((k) + "!=" + fact(k)), print()
} =
 { 0, k >= n }
 { show(n, k+1), otherwise }
fact(0) = 1
fact(n) = n * fact(n-1)

Output 3: The output of the program is as
follows:
0!=1
1!=1
2!=2
3!=6
4!=24
5!=120

Program 4: The program in Table 14 shows the
first 15 elements of the fibonacci number
sequence, where the fib() function is written in
accordance with the mathematical definition.

Table 54. Program that shows the 15 fibonacci
numbers

main() = show(14, 0)
show(n, k) : { print(fib(k) + " ") } =
 { 0, k >= n }
 { show(n, k+1), otherwise }
fib(0) = 0
fib(1) = 1
fib(k) = fib(k-1) + fib(k-2)

Output 4: The output of the program is as
follows:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Program 5: The following program in Table 15
shows the first 10 elements of the Catalan number
sequence, where the cat() function is written from
the mathematical definition. The current syntax of
the MaPL language does not allow the use of the

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1038

summation symbol (∑), which represents the sum
of number sequences.

Table 65. Program that shows the 10 Catalan
numbers

main() = show(9,0)
show(n, k) : { print(cat(k, 0) + " ") } =
 { 0, k >= n }
 { show(n, k+1), otherwise }
cat(n+1, i) =
 { 1, n < 0 }
 { 0, i > n }
 { cat(i, 0) * cat(n-i, 0) + cat(n+1, i+1),
 otherwise }

Output 5: The output of the program is as
follows:

1 1 2 5 14 42 132 429 1430 4862

6. COMPARATIVE ANALYSIS

There are several design principles (also known as
language metrics) that are introduced for guiding
the evaluation of programming languages [30].
For a comparative analysis of the MaPL language,
selecting the languages C, C++, Java, Haskell and
Matlab, we perform the evaluation based on the
metrics of efficiency, extensibility,
maintainability, portability, orthogonality,
readability, reliability, uniformity and writability.
The results are presented in Table 16.

Table 76. Comparison of selected languages via
some metrics

Metrics
MaP

L
C

C+
+

Jav
a

Haskel
l

Matla
b

Efficiency X X X X X X

Extensibility X X X X X

Maintainabilit
y

X X X X X X

Orthogonality X X

Portability X X X

Readability X X X X X X

Reliability X X X X X X

Uniformity X X X

Writability X X X X X X

Another comparison is made for some
mathematical languages from the perspective of
programming aspects that can support
mathematical reasoning. These aspects are
generally related to the syntax and semantics of a
language; the ones such as referential
transparency, non-strict semantics, assignments,
recursion, pattern-matching are purely
mathematical, as the others such as type
annotations, loops, selection statements and side-
effects are not. The evaluation focuses on four
mathematical languages (i.e., OPL, LPL, AMPL
and CMPL) as well as MaPL, considering
mathematics as another language called Math.
Table 17 shows the analysis results.

Table 87. The aspects of some mathematical
languages

Aspect
Mat

h
MaP

L
OP
L

AMP
L

LP
L

CMP
L

assignments X X X X X X

loops X X X X

non-strict
semantics

X X

pattern-
matching

X X X

recursion X X X X

referential
transparenc
y

X X

segmented
functions

X X X X

selection
statements

 X X X X

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1039

side-effects X X X X

type
annotations

 X X X

7. CONCLUSIONS

This study describes the development and
interpretation of a programming language (called
MaLP) based on the syntax notation of
mathematical expressions. The language
development process starts with the grammar
design and ends with the interpretation stage after
various definitions for the syntax. With respect to
the syntax, the JavaCC tool is used for the
definition of the token and expression structures,
and the generation of the abstract syntax tree.
During the type control and interpretation stages,
two Visitor interfaces that use the abstract syntax
tree are implemented. The results of some
evaluations of the language interpreter are shown
for several examples of MaPL programs.

The syntax of the MaPL language is designed to
meet the general programming needs. The
language source code supports the use of the basic
programming language structures, such as
variables, expression sequences, selection (or
conditional) expressions, loops, and functions in a
mathematical way. In the definitions of
mathematical functions based on variables,
expressions are written in a polynomial-like form.
Different execution paths can be created
depending on the selection between two or more
statements controlled by conditional expressions.
Loop expressions can only be represented by the
definitions of recursive functions. These
mathematical aspects of the language are
supported by the results of the comparative
analysis made with some other mathematical
languages.

The language syntax needs to be extended to allow
the programming of many different mathematical
operations during the coding process. For
example, it is important that complex numbers and
fractional numbers can be represented and basic
operations can be performed on these numbers. In

addition, there is another need for the operations
carried out by the logarithmic and trigonometric
functions as well as the summation and product
notations used on number sequences. These kinds
of operations can be supported by adding new
keywords to the language syntax or by developing
a language library.

REFERENCES

[1] L. K. C. Louden, “Programming Languages:
Principles and Practices", Cengage
Learning, 2011.

[2] R. Harper, "Practical Principles for
Programming Languages", 2nd ed.,
Cambridge University Press, 2016.

[3] B. W. Kernighan and D. M. Ritchie, "The C
Programming Language", Prentice Hall
Professional Technical Reference, 1988.

[4] L. Wall, T. Christiansen and J. Orwant,
"Programming Perl", 3rd ed., O'Reilly
Media, 2000.

[5] M. Mateas and N. Montfort, "A Box,
Darkly: Obfuscation, Weird Languages, and
Code Aesthetics", In Digital Arts and
Culture: Digital Experience: Design,
Aesthetics, Practice (DAC 2005),
Copenhagen, Denmark, 2005.

[6] International Obfuscated C Code Contest.,
https://www.ioccc.org/, 2018.

[7] J. Wakerly, "The programming language
Pascal", Microprocessors and
Microsystems, vol. 3, no. 7, pp. 321-326,
1979.

[8] K. Arnold, J. Gosling, and D. Holmes, "The
Java programming language", Addison
Wesley Professional, 2005.

[9] A. Hejlsberg, M. Torgersen, S. Wiltamuth,
and P. Golde, "C# Programming Language",
Addison-Wesley Professional, 2010.

[10] G. Sussman and G. L. Steele, Jr., "Scheme:
A interpreter for extended lambda calculus",

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1040

Higher-Order and Symbolic Computation,
vol. 11, no. 4, pp. 405-439, 1998.

[11] S. P. Jones. "Haskell 98 language and
libraries: the revised report", Cambridge
University Press, 2003.

[12] L. Sterling and E.Y. Shapiro, "The Art of
Prolog: Advanced Programming
Techniques", 2nd ed., The MIT Press, 1994.

[13] M. V. Hermenegildo, F. Bueno, M. Carro, P.
López-García, E. Mera, J. F. Morales and G.
Puebla, "An overview of Ciao and its design
philosophy", Theory and Practice of Logic
Programming - Prolog Systems, vol.12, no.
1-2, pp. 219-252, 2012.

[14] W. T. Richter, "TEX and Scripting
Languages", Proceedings of the Practical
TEX 2004 Conference, TUGboat, vol. 25,
no. 1, pp. 71-88, 2004.

[15] L. Lamport, "LateX : A document
preparation system", 2nd ed., Addison-
Wesley, 1994.

[16] F. Houlette, "SQL: A Beginner's Guide",
McGraw-Hill Education, New York, US,
2000.

[17] IBM Security QRadar, "Ariel Query
Language (AQL) Guide v7.3.1", IBM Corp.,
2017.

[18] D. J. Higham , N. J. Higham, The Matlab
Guide, 3rd ed., SIAM, 2017.

[19] M. Trott, "The Mathematica guidebook for
programming", Springer, 2014.

[20] D. E. Thomas, P. R. Moorby, "The Verilog
Hardware Description Language", 5th ed.,
Springer, 2002.

[21] D. L. Perry, "VHDL: Programming by
Example", McGraw-Hill Education, 2002.

[22] M. McKinley, "The Game Animator's Guide
to Maya", Sybex, 2006.

[23] A. Tavakkoli, "Game Development and
Simulation with Unreal Technology",
Routledge, 2015.

[24] J. Kallrath, "Modeling Languages in
Mathematical Optimization", Springer,
Boston, MA, 2004

[25] J. R. Levine, J. R. Levine, T. Mason and D.
Brown, "Lex & Yacc", O’Reilly Media, Inc.,
Sebastopol, CA, USA, 1992.

[26] E. M. Gagnon and L. J. Hendren, "SableCC,
an object-oriented compiler framework", In
TOOLS USA 98 (Technology of Object-
Oriented Languages and Systems), IEEE,
1998.

[27] V. Kodaganallur, "Incorporating language
processing into Java applications: A JavaCC
tutorial", IEEE Software, vol. 21, no. 4, pp.
70–77, 2004.

[28] A. J. Dos Reis, "Compiler Construction
Using Java, JavaCC, and Yacc", IEEE
Computer Society, Inc., 2012.

[29] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, "Design Patterns: Elements of
Reusable Object-Oriented Software",
Addison-Wesley Reading, MA, 1995.

[30] R. Harper, Practical Principles for
Programming Languages, 2nd ed.,
Cambridge University Press, 2016.

Hüseyin Pehlivan

Designing and Interpreting a Mathematical Programming Language

Sakarya University Journal of Science 23(6), 1027-1041, 2019 1041

