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Abstract: Among several ways of communications, the voice remains the prominent tool for human. Therefore, the research in automatic 

voice pathology detection and classification area has gained much interest in the recent years. Indeed, these automatic systems may be used 

as assistive tools for the physicians during the clinical evaluation, to make decision whether the input voice signal belong to a healthy or 

unhealthy subject and to identify the nature of pathology. In this context, the paper provides a voice pathology detection and classification 

system based on wavelet analysis and Teager Energy Operator (TEO). In the first step, we used the voice signal that we taken form 

Saarbrücken Voice Database (SVD), to extract a set of features. In the second step, these feature vectors were used to feed a Gaussian 

Mixture Model (GMM) classifier for the sake of classification. The obtained results are 96.66% for the detection task and 92.5 % for the 

identification task using TEO. The combination of the three extracted features was tested and the reached accuracies were 92.22% and 

86.11% for the detection and identification tasks, respectively. These results show that our proposal outperforms some state-of-art methods 

developed in the field of voice pathology identification. 
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1. Introduction 

The identification and classification researches in the field of 

pathological voice are disregarded over the years. However, 

pathological voice detection (VPD) systems were widely 

developed in the literature. The numbers of people affected by 

vocal pathologies increases yearly, approximately 7.5 million 

people in the United States have trouble using their voices [2]. This 

large number may be due to the bad habits and people’s jobs. The 

pathologies which affect the vocal folds during the phonation 

process; make it produced irregular vibrations due to the 

malfunctioning of different systems contributing to voice 

production [3]. Indeed, to produce the voice three main systems 

are involved: the respiratory system, the laryngeal system and the 

supra-laryngeal system (Fig.1). The nervous system has the 

prominent role in the control of the phonation process [4]. If one 

of these systems was affected the voice will be affected 

automatically. The voice impairments were derived from different 

origins: neurological, functional, laryngeal and psychogenic. For 

the speech production (expressive and receptive language), voice, 

resonance, articulation, fluency, and prosodic features are the 

major elements. When any one of these elements changes even 

moderately, our ability to communicate can be compromised [5]. 

As an alternative, to avoid the available apparatus using to assess 

patient’s voice, digital processing of speech signals has provided a 

non invasive analytical technique which is considered to be an 

effective assisting tool to physicians when identifying voice 

impairments, specifically in their early stages. Orozco-Arroyave et 

al. [6], based on four methods were turned the voice signals into a 

set of relevant features (e.g. noise content measures, spectral-

cepstral modelling, nonlinear features and measurements to 

quantify the stability of the fundamental frequency). Using these 

approaches they tried to discriminate between laryngeal, functional 

and neurological diseases. The obtained results show that for a 

particular disorder there are appropriate features to model it. 

Several studies have been developed in the literature; aiming to 

identify people with Parkinson diseases (PD) from others 

neurological or other kinds of diseases based on cepstral analysis 

and acoustic features reported a high accuracy rate near or up to 

90% [7]– [12]. 

 

Fig. 1 The laryngeal system and the supra-laryngeal system 
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Hugo Cordeiro et al. [13] based on short-term features (e.g. MFCC 

and LSF) developed a hierarchical classification system which 

combine three classifiers: support vector machines (SVM), 

Gaussian mixture models (GMM) and discriminant analysis (DA) 

to identify three classes: healthy, neuromuscular larynx 

pathologies (e.g. unilateral vocal fold paralysis) and physiological 

larynx pathologies (e.g. vocal fold edemas or nodules). The highest 

accuracy reported was 84.4%. 

In this way, we try to invest in the field of pathological voice 

identification by developing a new pattern based on wavelet 

analysis and Teager Energy Operator (TEO) and other features to 

discriminate between psychological and laryngeal impairments.      

This work is organised as follows: Section 2 devoted to describe 

the material used in this work and the developed methodologies: 

features extracted and the classifier. Section 3 presents the 

obtained results and the discussion and Section 4 contain a 

conclusion of all the work featured in this paper. 

2. PROPOSED METHOD 

The proposed method contains tree main steps: the first one is the 

feature extraction, the second one is the detection stage and the 

third one is the identification stage as shows in Fig.2. All the 

method steps were detailed in next subsection.   

2.1. SVD corpus  

Saarbrücken Voice Database (SVD) [1] is a free database 

elaborated by the Institute of Phonetics of Saarland University. 

This latter, contains recordings of sustained vowels, /a/, /i/ and /u/ 

for normal, high and low pitch. The recordings files were taken 

from healthy and pathological subjects who suffer from several 

kinds of disorders (e.g. dysphonia, cyst, laryngitis, etc). 

Furthermore, it contains a spoken sentence in German language: 

“Guten Morgen, wiegeht es Ihnen?” which means in English: 

“Good morning, how are you?”.  

Table I.  Distribution of SVD subset selected 

 Normal Laryngitis Psychogenic 

dysphonia 

Male  150 70 10 

Female  100 50 70 

 

Table I shows the subset selected from SVD database to perform 

our experience. From the whole database we choose a group of 

healthy subjects and two others groups of pathological subjects 

(which suffer from psychogenic dysphonia and laryngitis). The age 

of the chosen subject’s files recordings ranges between 25-70 

years.   

2.2. Wavelet transform 

The wavelet transform analysis provides the so called time-

frequency localization and multi-scale resolution, by suitably 

focussing and zooming around the neighborhood of one's choice. 

Unlike the Fourier transform, wavelets analysis can have infinite 

varieties which are fundamentally different from each other [14]. 

The wavelet domain contains more complicated basis functions 

called: the scaling function or father wavelet Ф (t) and the wavelet 

function or mother wavelet Ѱ (t). A wavelet function is defined as 

[15]: 

Ѱ𝑢,𝑠(𝑡) =
1

√𝑠
 Ѱ (

𝑡 − 𝑢

𝑠
) (𝑢 ∊ 𝐼𝑅, 𝑠 ∊  𝐼𝑅+

∗ )                               (1) 

Where s is the scale and u is the spatial displacement. 

 

Fig. 3 Wavelet decomposition tree (Filter banks): three-level analysis 

The wavelets which have strictly finite extent in the time domain 

are called discrete wavelets [14]. This latter, is based on sub-band 

coding using high-pass and low-pass filters. The discrete wavelet 

transform (DWT) is found to yield a fast computation due to his 

easy implementation which reduces the computation time and 

required resources. 

Our proposal deals with feature extraction techniques based on 

discrete wavelet transform (DWT). Using wavelet analysis, the 

voice signal was turned into a series of wavelet coefficients, by 

applying successive low-pass filters which gives the 

approximation coefficients A[n] (low frequency information) and 

high-pass filters which gives the detail coefficients D[n] (high 
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Fig. 2 The block diagram of the proposed system   
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frequency information). The discrete time-domain signal 

decomposition or Mallat-tree decomposition is shown in Fig.3. 

Indeed, the main selection criteria to choose a suitable mother 

wavelet is to have a wavelet function with enough number of 

vanishing moments in order to represent the salient features of the 

disturbance, as far as this wavelet should provide sharp cut-off 

frequencies [16]. The mother wavelet used in our proposed method 

is the Daubechies 40 (db40), which is an orthonormal wavelet. As 

described in [16], the number of vanishing moments of db40 

wavelet is large, and hence it gives a meaningful wavelet spectrum 

of the analyzed signal (Fig.4). The decomposition was stopped to 

level 3 to decrease the complexity of the developed system. 

 

Fig. 4 Daubechies-40 wavelet: moment and spectrum  

After the decomposition of voice signal using db40 at level-three, 

we extracted a set of robust features allowing the detection and 

identification of voice pathologies. 

2.3. Features Extraction  

Form the four wavelet coefficients, a set of three nonlinear 

parameters were extracted to create the feature vectors which 

describe properly the voice signal: the Teager Energy Operator 

(TEO), the Entropy (T), and the Theoretical Dimension (TD). 

 

2.3.1. Teager Energy Operator (TEO): 

The Teager Energy Operator (TEO) [17], [18] is defined as the 

nonlinear energy. Based on this feature we can estimate the 

envelope amplitude and the instantaneous frequency of a speech 

signal [19] and the energy changes of signals composed of a single 

time-varying frequency [20]. The Teager Energy Operator is 

defined in the continuous case as [21]: 

𝛹(𝑥(𝑡)) =  �̇�2(𝑡) − 𝑥(𝑡)�̈�(𝑡)                                                         (2) 

Where x(t) is the signal, ẋ is the first derivative of x and ẍ is the 

second derivative. In the discrete case TEO is expressed as follows: 

Ѱ[𝑥[𝑛]] =  𝑥2[𝑛] − 𝑥[𝑛 − 1]𝑥[𝑛 + 1]                                         (3) 

The Teager Energy Operator was used in several areas like signal 

processing [22], [23] and image processing (e.g. contrast 

enhancement). 

2.3.2. Entropy (T): 

The Entropy (T) criterion measures the uncertainty of a random 

variable more precisely in the area of signal processing, it describes 

information related properties for an accurate representation of a 

given signal [16]. The most common definition is the Shannon’s 

entropy, which is expressed as: 

 

𝑇(𝑥) =  − ∑ 𝑥𝑖
2 log 𝑥𝑖

2                                                                  (4)
𝑖

 

Where xi stands to the wavelet coefficients at level i. 

2.3.3. Theoretical Dimension (TD): 

The Theoretical Dimension (TD) is a measure of the energy 

concentration of the signal decomposition based on orthogonal 

wavelet mother [24]. It is a criterion which reflects the degree of 

organization of information in the speech signal. It is defined as 

[25]: 

𝑇𝐷 =  
1

𝑁
𝑒𝐻                                                                                          (5) 

Where N is the size of the signal xi and H is the mean wavelet 

entropy: 

H =
1

𝑁
∑ 𝑥𝑖

2𝑙𝑜𝑔(𝑥𝑖
2)𝑖                                                                      (6) 

2.4. Gaussian Mixture Model (GMM) 

The Gaussian Mixture Model (GMM) [26] is one of the most 

important modelling methods used to resolve the problems of 

classification in different areas like speaker recognition, 

pathological voice detection and identification and image 

processing. The GMM copes more with the space of the features 

rather than the time sequence of their appearance [27]. The main 

idea of the GMM is to generate a mixture of Gaussian densities to 

model a set of a given data. The model density is a weighted sum 

of M component densities expressed as: 

𝑃(𝑋) = ∑ 𝛼𝑘𝑔(𝑋|µ𝑘 , 𝐶𝐾),

𝑀

𝑘=1

𝑘 = 1,2, … , 𝑀                                 (7)  

Where αk, µk and Ck are the weight, the mean vector and the 

covariance matrix of the i-th Gaussian component, respectively. 

3. Experimental setup 

For pathological voice detection and classification we proposed a 

new system based on nonlinear features extracted from wavelet 

coefficients and GMM classifier. From the SVD database we 

selected a subset of sustained vowel /a/ recordings of three classes: 

healthy subjects, subjects who suffer from laryngitis (laryngeal 

class) and subjects suffer from psychogenic dysphonia 

(psychogenic class). The voice signals were decomposed using 

Daubechies wavelet (db40) at level three. As a consequence we 

obtained three detail coefficients and one approximation 

coefficient. From each wavelet coefficients three features were 

extracted which are: the Teager Energy Operator (TEO), the 

Entropy (T) and the Theoretical Dimension (TD) as shown in 

Table II. The combination of the three feature vectors result a new 

feature vectors which contains 12 features, was tested in the 

detection and identification stages.  

Each detection and classification stages were performed using 

three GMM models. For the pathological voice detection we used 

GMMs with 8, 32, and 64 Gaussian mixtures (Fig. 5), and in the 

pathological voice identification 8, 16, 24 Gaussian mixtures were 

used (Fig. 6). The database was divided equally into five-fold, 

where each time one set is used as a test set whilst the remaining 

sets performed the training step. Consequently, all the data were 

used in the test step. 
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Table 2. Input vectors for GMM classifier 

Vectors  Feature vector 

V1 Teager Energy Operator (TEO) 

V2       Entropy (T) 

V3      Theoretical Dimension (TD) 

V4       (TEO, T and TD) 

 

4. Metrics  

The performances of the conducted experiments were expressed in 

terms of sensitivity (Sn), specificity (Sp) and accuracy (Acc). These 

letters are defined as follow:   

𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100                                                                        (8) 

𝑆𝑝 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100                                                                      (9) 

 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100                                           (10) 

 

 Where (TP) is the true positive: when the system detects a 

pathological subject as a pathological subject, (TN) is the true 

negative: when the system detects a normal subject as a normal 

subject, (FP) is the false positive: when the system detects the 

normal subject as pathological subject and (FN) is the false 

negative: when the system detects the pathological subject as 

normal subject. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Pathology voice detection  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Pathology voice identification 

 

 

Fig. 7 Wavelet analysis of the sustained vowel /a/ signal of woman that 

suffer from Laryngitis impairments 
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Fig. 8 Wavelet analysis of the sustained vowel /a/ signal of Healthy 

woman  

5. Results and discussion  

In this work we developed a new system to discriminate between 

healthy and pathologic subjects as a first stage. Afterwards, the 

system will perform the identification process between two 

classes: laryngeal disease and psychogenic disease. Based on 

Discrete Wavelet Transform analysis, the proposed system 

decomposed the selected signals from SVD database via 

Daubechies 40 at level three. As a result, we have obtained four 

coefficients; Fig. 7, 8 and 9 depicted the wavelet decomposition 

for three different women voices (a healthy woman, a woman who 

suffer from laryngeal impairment and a woman that suffer from 

psychogenic impairment). From these coefficients a set of 

parameters such as Teager Energy Operator (TEO), Entropy (T) 

and Theoretical Dimension (TD) were extracted. In order, to 

classify the set of the extracted data, several Gaussian Mixture 

models were developed and tested. During the detection stage three 

GMM systems were setting with different number of Gaussian 

mixtures (8, 32 and 64) and the results were shown in Table III. 

The best accuracy achieved was 96.66% for using TEO and a 

GMM with 32 Gaussian Mixtures. Nevertheless, for a GMM 

classifier with 8 and 64 mixtures the accuracy rate decreases 

(87.77% for a GMM with 8 mixtures, and 95.55% for a GMM with 

64 mixtures). The combination of the three feature vectors 

extracted from the four wavelet coefficients reported an accuracy 

rate equal to 92.22% using a GMM with 32 Gaussian Mixtures. 

The best accuracy achieved was for using TEO with 32 Gaussian 

Mixtures. 

 

 

Fig. 9 Wavelet analysis of the sustained vowel /a/ signal of woman that 

suffer from Psychogenic Dysphonia 

 

Table 3. Performance measures for pathology detection  

Features Gaussians Sn (%) Sp (%) Acc (%) 

TEO 8 90 85 87.77 

32 98 95 96.66 

64 98 92.5 95.55 

T 8 88 80 84.44 

32 88 85 86.66 

64 86 80 83.33 

TD 8 82 80 81.11 

32 86 82.5 84.44 

64 80 77.5 78.88 

Combination 

(TEO, T, TD) 

8 90 90 91.11 

32 94 90 92.22 

64 86 85 85.55 

 

In the identification stage, we used three GMM systems to classify 

the extracted data into two classes’ laryngeal disease and 

psychogenic disease. The best accuracy reached is 92.5% when we 

used the Teager Energy Operator (TEO) and a GMM classifier 

with 24 mixtures. However, using GMM with 8 and 16 mixtures 

do not give a good result. Likewise, the combination of three 

feature vectors in the identification stage did not report a good 

accuracy rate (86.11%) as show in Table IV.  

The Entropy parameter was widely used in the field of pathological 

voice detection and it gives a good result [16], [28] combining with 

other classifier (e.g. support vector machine and neural network). 

However, in our work using the Entropy as input data for the GMM 
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classifier gave accuracies rate equal to 86.66% and 87.5% for the 

detection and identification tasks, respectively. In addition, the 

Theoretical Dimension gave the lower accuracies values for both 

the detection and identification stages. The accuracies reached 

were 84.44% and 67.5% for the detection and identification tasks 

respectively. The best results obtained for the detection and 

identification tasks were shown in Fig.10 and Fig.11 with the 

results of features combination experiments. Fig.12 shows a 

comparison of our proposed method with other methods using the 

same voice database (SVD). Al-Nasheri et al. [29] used a subset of 

normal and pathological subjects (suffer from cyst, polyp and 

paralysis) to extract features from different frequency bands. These 

features were used to feed an SVM classifier and the obtained 

accuracy was 90.979%. However, the same authors in [30] extract 

a set of multi-dimensional voice program (MDVP) features from 

the same selected subset from SVD voice database. The proposed 

method reported an accuracy of 99.68%. This can be explained by 

used of the Fisher Discriminant Ratio (FDR) as a feature selection 

method combined with the SVM classifier to improve the correct 

rate value. In our study the obtained results were promising 

comparing with other methods and we can improve it using a 

feature selection method. 

 

Table 4. Performance measures for pathology identification 

Features Gaussians Sn (%) Sp (%) Acc(%) 

TEO 8 62.5 62.5 62.5 

16 62.5 62.5 62.5 

24 93.75 91.66 92.5 

T 8 56.25 54.16 55 

16 68.75 58.33 62.5 

24 87.5 87.5 87.5 

 

TD 

8 56.25 50 52.5 

16 56.25 50 52.5 

24 81.25 58.33 67.5 

Combination 

(TEO, T, TD) 

8 65 68.75 66.66 

16 75 81.25 77.77 

24 85 87.5 86.11 

 

 

 

 

Fig.10 The best performance of the GMM classifier in detection Stage 

with 32 Gaussian Mixtures  

 

 

 

 

 

 

 

 

 

Fig. 11 The best performance of the GMM classifier in identification 

Stage with 24 Gaussian Mixtures 

 

 

Fig .12 Comparison of the performance of our proposed method with 

other methods using the SVD database 

6. Conclusion  

In this work we had tried to discriminate between three voice 

classes in two stages. The first stage is devoted to discriminate 

between pathological and healthy subjects. Whilst, the second 

stage is devoted to discriminate between two voice impairments 

(laryngeal disease and psychogenic disease). Indeed, to perform 

our proposed method we extracted a set of feature from wavelet 

coefficients. A GMM classifier combined with Teager Energy 

Operator (TEO) gave prominent results. The accuracies rate 

reported were 96.66% and 92.5% for the detection and the 

identification tasks, respectively. The results of the features 

combination were mediocre. As a future works we are going to 

discriminate between several classes of voice pathologies based on 

a new approach.    
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