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1. Introduction
In this work, we consider the asymptotic behavior of non-autonomous stochastic strong

damped wave equations with multiplicative noise defined on

utt − α∆ut − ∆u+ g(u)ut + f(u) = q(x, t) + cu ◦ dW
dt

, (1.1)

with initial data

u(τ, x) = uτ (x) ut(τ, x) = u1,τ (x) x ∈ Rn, t ≥ τ, τ ∈ R, (1.2)

where −∆ is the Laplacian operator with respect to the variable x ∈ Rn, with n ≤ 3,
u = u(t, x) is a real-valued function on Rn × [τ,∞), α and c are positive constants.
The given function q(x, t) ∈ Ł2

loc(R, L2(Rn)), W(t) are independent two sided real-valued
Wiener processes on probability space. Here we show the following conditions.

(a) The function g ∈ C1(R) is not identically equal to zero and satisfies the following
condition:

− β < β1 ≤ g(s) ≤ β2 < +∞, (1.3)
where β, β1 and β2 are positive constants.
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(b) We assume that the nonlinear function f ∈ C2(R) satisfies the following conditions:

|f ′(s)| ≤ C1(1 + |s|p), with
{

0 ≤ p < ∞, when n = 1, 2
0 ≤ p < 2, when n = 3, (1.4)

and
lim

|s|→∞
sup f(s)

s
≤ 0, ∀ s ∈ R, (1.5)

lim
|s|→∞

inf sf(s) − c3F (s)
s2 ≥ 0, (1.6)

where C1, C2, C3 are positive constants.

(c) q(x, t) is external force term satisfying the following conditions:∫ τ

−∞
eσr∥q(x, r)∥2dr < ∞, ∀τ ∈ R, (1.7)

and
lim

k→∞

∫ τ

−∞

∫
|x|≥k

eσr|q(x, r)|2dxdr = 0, ∀τ ∈ R. (1.8)

The asymptotic behavior of dynamical systems is one of the most important prob-
lems of modern mathematical physics and the theory has been greatly developed over
the last decade or so. In the deterministic case the global attractor, a compact in-
variant and attracting set, occupy a central position see, for example, Temam [26]. In
this paper, we study random attractors of equation (1.1) when the forcing term is time
dependent. In this case, we want to introduce two parametric spaces to describe the
dynamics of the equations: one is responsible for deterministic forcing and the other is
responsible for stochastic perturbations. Existence and upper semi-continuity of the global
attractor, pullback attractor (or kernel sections) for deterministic autonomous and non-
autonomous dynamical systems were studied widely related with this problem (see, e.g.,
[6, 7, 16,18,20–22,24,32,33,35]).

In order to study the corresponding random dynamical system (RDS), some authors
have introduced a different notion of an attractor from the view of stochastic partial differ-
ential equations, for example, see G.Da Prato, J. Zabczyk [11], Morimoto [23], L. Arnold
[2] and H. Crauel, F. Fladoli Crauel [10], Duan, Lu, and Schmalfuß [12] and T. Caraballo,
J. Langa [4], in which the authors studied the existence and the upper semi-continuity
of attractors for deterministic and random dynamical systems, respectively. They ob-
tained a general criteria for the existence and upper semi-continuous of attractors. For
non-autonomous stochastic evolution equations with the time-dependent external term
and multiplicative noise, Wang [29] established a useful theory about the existence and
upper semi-continuity of random attractors by introducing two parametric spaces and giv-
ing some applications to non-autonomous stochastic reaction-diffusion equations and wave
equations, see also [1, 3–5,13,19,30,31,34] for more details.
Note that the stochastic equation (1.1) is defined in unbounded domains. Since Sobolev
embeddings are not compact on unbounded domains, we have an extra difficulty to prove
our main results.

This article is organized as follows. In Section 2 we recall some basic concepts related
to RDS and a random attractor for RDS. In Section 3, we first provide some basic settings
about (1.1) and (1.2) and show that it generates an RDS in proper function space and
existence and uniqueness of solutions. We devote the Section 4 to uniform energy estimates
on the solutions of (1.1) and (1.2) defined on Rn when t → ∞ with the purpose of proving
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the existence of a bounded random absorbing set and the asymptotic compactness of the
RDS associated with the equation. In Section 5, we prove the existence of a random
attractor.

2. Preliminaries
In this section, we recall some basic concepts related to RDS and a random attractor

for RDS [9, 10, 15, 27], which are important for getting our main results. Let (Ω,F, P ) be
a probability space and (X, d) be a Polish space with the Borel σ-algebra B(X). Then,
the distance between x ∈ X and B⊆ X is denoted by d(x,B). If B⊆ X and C⊆ X, the
Hausdorff semi-distance from B to C is denoted by d(B,C) = supx∈B d(x,C).

Definition 2.1. (Ω,F, P, (θt)t∈R) is called a metric dynamical system if θ : R × Ω −→ Ω
is (B(R) × F,F)-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs, ∀ (s, t) ∈ R and
θ0P = P, ∀ t ∈ R.

Definition 2.2. A mapping Φ(t, τ , ω, x) : R+ × R × Ω × X → X is called continuous
cocycle on X over R and (Ω,F, P, (θt)t∈R), if for all τ ∈ R , ω ∈ Ω and t, s ∈ R+, the
following conditions are satisfied:
i) Φ(t, τ, ω, x) : R+ × R × Ω ×X → X is a (B(R+) × F,B(R))-measurable mapping,
ii) Φ(0, τ, ω, x) is identity on X,
iii) Φ(t+ s, τ, ω, x) = Φ(t, τ + s, θsω, x) ◦ Φ(s, τ, ω, x),
iv) Φ(t, τ, ω, x) : X → X is continuous.

Definition 2.3. Let 2X be the collection of all subsets of X. A set valued mapping
(τ, ω) 7→ D(t ω) : R × Ω 7→ 2X is called measurable with respect to F ∈ Ω, if D(t ω)
is a (usually closed) nonempty subset of X and the mapping ω ∈ Ω 7→ d(X,B(τ, ω)) is
(F,B(R))-measurable for every fixed x ∈ X and τ ∈ R. Let B = {B(t, ω) ∈ D(t, ω) : τ ∈
R, ω ∈ Ω} be called a random set.

Definition 2.4. A random bounded set B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D of X is called
tempered with respect to {θ(t)}t∈Ω, if for p-a.e ω ∈ Ω ,

lim
t 7→∞

e−βt d(B(θ−tω)) = 0 , ∀ β > 0,

where
d(B) = sup

x∈B
∥x∥X .

Definition 2.5. Let D be a collection of random subset of X and K = {K(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D, then K is called an absorbing set of Φ ∈ D, if for all τ ∈ R, ω ∈ Ω and
B ∈ D, there exists, T = T (τ, ω,B) > 0 such that

Φ(t , τ, θ−tω,B(τ, θ−tω)) ⊆ K(τ, ω) , ∀ t ≥ T.

Definition 2.6. Let D be a collection of random subset of X, the Φ is said to be D-
pullback asymptotically compact in X if for p-a.e ω ∈ Ω , {Φ(tn , θ−tnω , xn)}∞

n=1 has a
convergent subsequence in X when tn 7→ ∞ and xn ∈ B(θ−tnω) with {B(ω)}ω∈Ω ∈ D.

Definition 2.7. Let D be a collection of random subset of X and A = {A(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D,then A is called a D-random attractor (or D-pullback attractor ) for Φ, if
the following conditions are satisfied:

For all t ∈ R+, τ ∈ R and ω ∈ Ω,
i) A(τ, ω) is compact, and ω 7→ d(x,A(ω)) is measurable for every x ∈ X,
ii) A(τ, ω) is invariant, that is

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω),∀ t ≥ τ,
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iii) A(τ, ω) attracts every set in D, that is for every B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

lim
t 7→∞

dX(Φ(t, τ, θ−tω,B(τ, θ−tω)),A(τ, ω)) = 0,

where dX is the Hausdorff semi-distance given by

dX(Y, Z) = sup
y∈Y

inf
z∈Z

∥y − z∥X , ∀ (Y, Z) ∈ X.

Lemma 2.8. Let D be a neighborhood-closed collection of (τ, ω)-parameterized families of
nonempty subsets of X and Φ be a continuous cocycle on X over R and (Ω,z, P, (θt)t∈R).
Then Φ has a pullback D-attractor A in D if and only if Φ is pullback D-asymptotically
compact in X and Φ has a closed, z-measurable pullback D-absorbing set K ∈ D, the
unique pullback D-attractor A = A(τ , ω) is given by

A(τ, ω) =
∩

r≥0

∪
t≥r

Φ(t, τ − t, θ−tω,K(τ − t, θ−tω)) τ ∈ R , ω ∈ Ω.

3. Existence and uniqueness of solutions
In this section, we study the existence and uniqueness of solutions for the system (1.1)

and (1.2) on an unbounded set of Rn, (n = 3).
Let A = −△, D(A) = H1(Rn) ∩ H2(Rn) → L2(Rn). It is self-adjoint, positive and

linear, and the eigenvalue {λi}i∈N of A satisfies, 0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·, λi →
+∞ (i → +∞).

Define the set of Hilbert space V2r = D(Ar), r ∈ R, with standard inner products and
norms, respectively, ((·, ·))D(Ar) = (Ar·, Ar·), ∥ · ∥D(Ar) = ∥Ar · ∥, ((u, v)) =

∫
Rn ∇u∇vdx,

∥∇u∥ = ((u, u))
1
2 , ∀ u, v ∈ H1(Rn).

Especially, (·, ·) and ∥ · ∥ denote the L2(Rn) inner product and norm respectively as,

(u, v) =
∫
Rn
uvdx, ∥u∥ = (u, u)

1
2 , ∀u, v ∈ L2(Rn).

Thus we have D(Ar) → D(As), for r > s, and the continuous embedding D(Ar) →
L

2n
n−4r (Rn), ∀r ∈ [0, n

2 ].

Let E = H1(Rn) × L2(Rn), endowed with norms on E and Eν = H2ν+1 ×H2ν ,

∥φ∥2
E = ∥φ∥2

H1(Rn)×L2(Rn).

For a convenient study of dynamical behavior of the problem (1.1) and (1.2), we need
to convert the stochastic system into deterministic with a random parameter, then show
that it generates an RDS.

Consider Ornstein-Uhlenbeck process driven by the Brownian motion, which satisfies
the Itô differential equation

dz + µzdt = dW, µ > 0,
and hence the solution is given by

θtω(s) = ω(t+ s) − ω(t),
z(θtω) = z(t, ω) = −ε

∫ 0
−∞ eεs(θtω)sds, s ∈ R, ω ∈ Ω. (3.1)

From [33], it is known that the random variable |z(ω)| is tempered and there is an invari-
ant set Ω̄ ⊆ Ω of full P measure, such that z(θtω) = z(t, ω) is continuous in t for every
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ω ∈ Ω̄. For convenience, we shall write Ω̄ as Ω.

For the Ornstien-Uhlenbeck process z(θtω) in (3.1) (see [8, 14]), we have

lim
t→±∞

|z(θtω)|
|t|

= 0,

lim
t→±∞

1
t

∫ 0

−t
z(θsω)ds = E[z(θsω)] = 0,

lim
t→±∞

1
t

∫ 0

−t
z(θsω)ds = E[z(θsω)] = 1√

πδ
,

lim
t→±∞

1
t

∫ 0

−t
|z(θsω)|2ds = E[|z(θsω)|2] = 1

2δ
.

(3.2)

By (3.2), there exists T1(ω) > 0, such that, for all t ≥ T1(ω),∫ 0

−t
z(θsω)ds < 2√

πδ
t ,

∫ 0

−t
|z(θsω)|2ds < 1

2δ
t. (3.3)

To define a cocycle associated with the problem (1.1) and (1.2), let v = ut +εu−cuz(θtω),
then we get

du

dt
= v − εu+ cuz(θtω),

dv

dt
= (ε− αA)v − (ε2 − εαA+A)u− g(u)(v − εu+ cuz(θtω))

+ c ((3ε− αA)u− v − cuz(θtω)) z(θtω) − f(u) + q(x, t),
u(x, τ) = uτ (x), v(x, τ) = vτ (x) = u1(x) + εuτ (x) − cuτ (x)z(θtω).

(3.4)

We define
ψ1 = u, ψ2 = du

dt
+ εu− cuz(θtω), (3.5)

where ε is a given positive constant, then the system (3.4) can be rewritten as the following
equivalent system with random coefficients, but without multiplicative noise on E

dψ1
dt

= ψ2 − εψ1 + cψ1z(θtω),

dψ2
dt

= (ε− αA)ψ2 − (ε2 − εαA+A)ψ1 − g(ψ1)(ψ2 − εψ1 + cψ1z(θtω))

+ c((3ε− αA)ψ1 − ψ2 − cψ1z(θtω))z(θtω) − f(ψ1) + q(x, t),
ψ1(x, τ) = uτ (x) , ψ2(x, τ) = u1(x) + εuτ (x) − cuτ (x)z(θtω),

(3.6)

then the random differential equation (3.6) can be written as{
ψ′ + Lψ = Q(ψ1, t, ω)

ψτ = (ψ1(x, τ), ψ2(x, τ)) = (uτ (x), u1τ (x) + εuτ (x) − cuτz(θτω))⊤,
(3.7)

where
ψ =

(
ψ1
ψ2

)
, L =

(
εI −I

ε2I − εαA+A −εI + αA

)
,

and

Q(ψ, ω, t) =
(

cψ1z(θtω)
−g(ψ1)ψ1t + c((3ε− αA)ψ1 − ψ2 − cψ1z(θtω))z(θtω) − f(ψ1) + q(x, t)

)
.

Consider the equation (3.7), we know that −L is the infinitesimal generator of semigroup
e−Lt on E for t > 0, by the assumptions (1.3)-(1.8). It is easy to check that Q(ψ, t, ω) :
E → E is locally Lipschitz continuous with respect to ψ, then by the classical semigroup
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theory concerning the (local) existence and uniqueness solution of evolution differential
equation [25], we have the following theorem.

Theorem 3.1. Assume that the conditions (1.3)-(1.8) hold, for each τ ∈ R, ω ∈ Ω and for
any ψτ ∈ E, there exists T > 0, such that (3.7) has a unique mild function ψ(t, τ, ω, ψτ ) ∈
C([τ, τ + T );E), such that ψ(t) satisfies the integral equation

ψ(t, τ, ω, ψτ ) = e−L(t−τ)ψτ (ω) +
∫ t

τ
e−L(t−r)Q(ψ, r, ω)dr. (3.8)

In this case, ψ(t, τ, ω, ψτ ) is called mild solution of (3.7), ψ(t, τ, ω, ψτ ) is jointly continuous
into t and measurable in ω, moreover (u, ut) ∈ C([τ,+∞, E]), ∀ T > 0.

From Theorem 3.1, the solution ψ(t, τ, ω, ψτ ) of (3.7) can define a continuous RDS over
R and (Ω,F, P, (θt)t∈R).

Φε(t, ω) : R × Ω × E 7→ E, t ≥ τ,
ψ(τ, ω) = (uτ (ω), vτ (ω))⊤ 7→ (u(t, ω), v(t, ω))⊤ = ψ(t, ω), (3.9)

it is easy to see that
Φ(t, ω) : ψ(τ, ω) + (0, cuz(θτω))⊤ 7→ ψ(t, ω) + (0, cuz(θtω))⊤. (3.10)

We will also use the transformation
φ1 = u , φ2 = ut + εu. (3.11)

Thus, like as (3.6), it yields{
φ′ +Hφ = F1(φ, t, ω),

φτ = (uτ , vτ )⊤ = (uτ (x), u1τ (x) + εuτ (x))⊤,
(3.12)

where
Hφ =

(
v − εu

ε(ε− αA)u+Au− (ε− αA)v

)
,

and
F1(φ, t, ω) =

(
0

−g(u)(v − εu) − f(u) + q(x, t) + cuz(θtω)

)
.

We introduce the isomorphism Tϵφ = (φ1, φ2 − εφ1)⊤ , φ = (φ1, φ2)⊤ ∈ E which has
inverse isomorphism T−ϵψ = (φ1, φ2 + εφ1)⊤, it follows that (θ, φ) with mapping

Ψ = TϵΦ(t, ω)T−ϵ = Ψ(t, ω) (3.13)
is an RDS corresponding, such that the two RDS are equivalent.

4. Uniform estimates of solutions
In this section, we will show the existence of a random absorbing set for the RDS

{φ(t, τ, ω, φτ ), t ≥ 0} in the space E and uniform estimates for the solutions of (3.4)
defined on Rn. For this purpose, we introduce a new weight inner product and norm in
the Hilbert space E that is, (φ, φ̃)E = µ(A

1
2u1, A

1
2u2) + (v1, v2) and ∥φ∥E = (φ,φ)

1
2
E for

any φ = (u1, v1)⊤, φ̃ = (u2, v2)⊤ ∈ E, where µ is chosen as

µ = 4 + (αλ1 + β1)α+ β2
2/λ1

4 + 2(αλ1 + β1)α+ β2
2/λ1

∈ (1
2
, 1). (4.1)

It is clear that, the norm ∥ · ∥E is equivalent to the usual norm ∥ · ∥H1×L2 of E. Let
φ = (u, v)⊤ = (u, ut + εu− cuz(θtω))⊤, where ε is chosen as

ε = αλ1 + β1
4 + 2(αλ1 + β1)α+ β2

2/λ1
, (4.2)
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and then the system (3.6) can be rewritten as{
φ′ +Hφ = F1(t, φ, ω),

φτ = (uτ , vτ )⊤ = (uτ (x), u1τ (x) + εuτ (x) − cuτz(θτω))⊤ ,
(4.3)

where
Hφ =

(
v − εu

ε(ε− αA)u+Au− (ε− αA)v

)
,

and

F1(t, φ, ω) =
(

cuz(θtω)
−g(u)(v − εu − cuz(θtω)) + c ((3ε − αA)u − v − cuz(θtω)) z(θtω) − f(u) + q(x, t)

)
.

Lemma 4.1. Suppose −αλ1 < β1 ≤ β2 < +∞ and

β2 ≥ β1 + min[ 1
α
,
αλ1 + β1

2
], (4.4)

for any φ = (u, v)⊤ ∈ E, it follows that

(Hφ,φ)E ≥ σ∥φ∥2
E + α

2
∥∇v∥2 + β1

2
∥v∥2

≥ σ∥φ∥2
E + αλ1+β1

2 ∥v∥2,
(4.5)

where
σ = αλ1 + β1

γ1 + √
γ1γ2

γ1 = 4 + (αλ1 + β1)α+ β2
2/λ1,

γ2 = (αλ1 + β1)α+ β2
2/λ1.

(4.6)

Proof. This can be easily obtained after simple computations. �
Lemma 4.2. Assume that (1.3)-(1.8) hold, then there exists closed tempered random
absorbing set r(ω) and a bounded ball B0(τ, ω) ⊂ E, centered at 0 with a radius ϱ(ω) > 0,
BE(0, ϱ(ω) ∈ D(E), such that for any bounded non-random set B ∈ D(E), there exists
T = T (τ, ω,B) ≥ 0, forall τ ∈ R, ω ∈ Ω, B ∈ D, such that the mild solution φ ∈ B0 of
system (4.3) with initial value φτ = (uτ , vτ ) ∈ B satisfies

∥φ(t, τ, θ−tω, φτ (θ−tω))∥2
E ≤ ϱ2(ω), (4.7)

Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)) ⊆ B0(τ, ω)), ∀ t ≥ T.

Proof. For any τ ∈ R, ω ∈ Ω, t ≥ 0, suppose that φ(s) = (u(s), v(s)) ∈ E, t ≥ s ≥ τ be a
mild solution of (4.3), taking the inner product of (4.3) with φ(s) = (u, v) = (u, ut + εu−
cuz(θtω))⊤. According to Lemma 4.1, we find that

1
2
d

dt
∥φ∥2

E + σ∥φ∥2
E + αλ1 + β1

2
∥v∥2 ≤ (F1(t, φ, ω), φ). (4.8)

We estimate the right hand side of (4.8)
(F1(φ, t, ω), φ) =c((uz(θtω), u)) − (g(u)(v − εu− cuz(θtω), v) − αc(Au, v)z(θtω)

+ c ((3εu− v − cuz(θtω)) z(θtω), v) − (f(u) − q(x, t), v) , (4.9)
we deal with the term in (4.9) one by one as follows. For the first term of the right hand
side of (4.9)

c ((uz(θtω), u)) ≤ c|z(θtω)| ∥∇u∥2 . (4.10)
By (1.3), we have

− (g(u)(v − εu− cuz(θtω), v) = −g(u)(v, v) + εg(u)(u, v) − cg(u)(u, v)z(θtω)
≤ −β2 ∥v∥2 + εβ1(u, v) − β2c(u, v)z(θtω)
≤ −β2 ∥v∥2 + εβ1

2
√

λ1
∥φ∥2

E + β2c(u, v)z(θtω).
(4.11)



Existence of random attractors ... 499

For the fourth term on the right-hand side of (4.9), the last term of (4.11), using the
Cauchy-Schwartz inequality and Young’s inequality, we obtain

c ((3ε+ β2)u− v − cuz(θtω), v) z(θtω)
≤ (c(3ε+ β2)z(θtω) + c2|z(θtω)|2)(u, v) − c|z(θtω)|∥v∥2

≤ 1
2(c(3ε+ β2)z(θtω) + c2|z(θtω)|2)(∥u∥2 + ∥v∥2) − c|z(θtω)|∥v∥2

≤ 1
2
√

λ1
(c(3ε+ β2)|z(θtω)| + c2|z(θtω)|2) ∥φ∥2

E − c|z(θtω)|∥v∥2,

(4.12)

− αc(Au, v)z(θtω) ≤ αc (∇uz(θtω),∇v) ≤ cα
√
λ1

2
|z(θtω)| ∥φ∥2

E , (4.13)

(q(x, t), v) ≤ ∥q(x, t)∥ ∥v∥
≤ 1

2(αλ1+β1−2β2−ε)∥q(x, t)∥2 + (αλ1+β1−2β2−ε)
2 ∥v∥2.

(4.14)

Let F̃ (u) =
∫
Rn F (u)dx, then using (1.5) and (1.6), and the Hölder inequality, we get that

− (f(u), v) = −
(
f(u), du

dt + εu− cuz(θtω)
)

≤ − d
dt F̃ (u) − ε(f(u), u) + (f(u), cuz(θtω)) .

(4.15)

Due to (1.6) and Poincarè inequality, there exists positive constants ϑ1, ϑ2, such that

(f(u), u) − C3F̃ (u) + ϑ1 ∥∇u∥2 + ϑ2 ≥ 0. (4.16)
According to [17], follows (1.5), for each given Cϑ3 > 0,

(f(u), u) + ϑ3 ∥∇u∥2 + Cϑ3 ≥ 0. (4.17)
Then, by (4.14)-(4.17) we obtain

− (f(u), v) ≤ − d
dt F̃ (u) − εC3F̃ (u) + (εϑ1 − ϑ3c|z(θtω)|) ∥∇u∥2

+εϑ2 − Cϑ3c|z(θtω)|. (4.18)

Thus, we show that

(F1(t, φ, ω), φ) ≤
(
α1c|z(θtω)| + c2|z(θtω)|2√

λ1
− σ1

)
∥φ∥2

E − d
dt F̃ (u) − εC3F̃ (u)

+εϑ2 − Cϑ3c|z(θtω)| + 1
2(αλ1+β1−2β2−ε)∥q(x, t)∥2 + (αλ1+β1)

2 ∥v∥2,
(4.19)

where α1 depends on 1, 1
2
√

λ1
, 1

2
√

λ1
((3ε+ β2), α

√
λ1

2 , β1
4
√

λ1
and σ1 = min[εϑ1,

ε
2 ]. Hence we

conclude that
d
dt

(
∥φ∥2

E + 2F̃ (u)
)

≤ −2
(
σ − α1c|z(θtω)| − c2|z(θtω)|2√

λ1
+ σ1

)
∥φ∥2

E

−2C3εF̃ (u) + Cϑ3c|z(θtω)| + 1
2(αλ1+β1−2β2−ε)∥q(x, t)∥2 + εϑ2.

(4.20)

Put
r0(t, θtω) = κ(1 + c|z(θtω)| + ∥q(x, t)∥2),

where κ is a positive constant depends only on εϑ2, Cϑ3 ,
1

2(αλ1+β1−2β2−ε) , such that

d
dt

(
∥φ∥2

E + 2F̃ (u)
)

≤ −2
(
σ − α1c|z(θtω)| − c2|z(θtω)|2√

λ1
+ σ1

)
∥φ∥2

E

−2C3εF̃ (u) + r0(t, θtω).
(4.21)

By using Gronwall’s inequality in (4.21) on [τ, t], and then replacing ω to θ−tω yield

∥φ∥2
E ≤

(
∥φ∥2

E + 2F̃ (u)
)

≤
(
∥φτ ∥2

E + 2F̃ (uτ )
)
e−2Cm(σ̄−c|z(θtω)|−c2|z(θtω)|2)(t−τ)

+
∫ 0

τ−t r0(θs−tω)e−2Cm(σ̄−c|z(θs−tω)|−c2|z(θs−tω)|2)(s−t,ω)ds,

(4.22)

where σ̄ = min{σ, c3ε
2 , σ1}, and y(t, ω) = ∥φ∥2

E + 2F̃ (u) ≥ ∥φ∥2
E ≥ 0.

Using (1.4) and Young inequality, there exists a constant c4 ≥ 0, such that

F̃ (uτ ) =
∫
Rn
F (uτ )dx ≤ c4

(
1 + ∥uτ ∥2 + ∥uτ ∥p+2

p+2

)
. (4.23)
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Due to φτ = (uτ , vτ )⊤ ∈ B(τ, θ−tω) and B ∈ D, which is tempered with respect to the
norm of E, since φτ (θ−tω) ∈ B(θ−tω), there exists T = T (τ, ω,B) > 0, such that, for all
t ≥ T . 

e−σt
(
∥φτ ∥2

E + F̃ (uτ )
)

≤ 1,

lim
r→−∞

e−σr
(
∥φτ ∥2

E + F̃ (uτ )
)

= 0.
(4.24)

Thus, by Lemma 3.1 and for any set {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, φτ = (uτ (x), u1,τ (x) +
εuτ (x) − cuτz(θτω))⊤ ∈ {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D(E). We deduce that

lim sup
t→∞

(∥φτ (θ−tω)∥2
E + 2εC3(∥uτ ∥2 + ∥uτ ∥p+2

H1 ))e−2cm(σ̄−c|z(θtω)|−c2|z(θtω)|2)(t−τ) = 0,

limt→∞
∫ 0

τ−t r0(θs−tω)e−2cm(σ̄−c|z(θs−tω)|−c2|z(θs−tω)|2)(s−t,ω)ds < ∞.
(4.25)

When q(x, t) only satisfying (1.7) and (1.8) which is a tempered random variable, then by
(4.23)-(4.25), for any non-random bounded B ⊆ E with radius r(ω), there exists a random
variable T = T (τ,B, ω) > 0, such that for any φτ ∈ B0(ω), {φ ∈ E : ∥φτ (θ−tω)∥E ≤
ϱ2(ω)} is closed measurable absorbing ball in D(E), ∀ t ≥ T .
The proof is completed. �

Next we construct the uniform estimates on the tail parts of the solutions for large
space variables when time is sufficiently large in order to prove the pullback asymptotic
compactness of the cocycle associated with equation (3.4) on the unbounded domain Rn.
We can choose a smooth function ρ defined on R+, such that 0 ≤ ρ(s) ≤ 1, for all s ∈ R+

and

ρ(s) =
{

0, for 0 ≤ s ≤ 1,
1, for s ≥ 2. (4.26)

Then there exist constant µ1 and µ2, such that |ρ′(s)| ≤ ϕ1, |ρ
′′(s)| ≤ ϕ2, for any s ∈ R+.

Given k ≥ 1, denote by Hk = {x ∈ Rn : |x| < k} and Rn\Hk the complement of Hk. To
prove the asymptotic compactness of the RDS, we prove the following lemma.

Lemma 4.3. Let conditions (1.3)-(1.8) hold. B={B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and
φτ (ω) ∈ B(τ, ω). Then for every η > 0 and P-a.e ω ∈ Ω, there exists T̄ = T̄ (τ,B, ω, η) > 0
and K̄ = K̄(τ, ω, η) ≥ 1, such that φ(t, ω, φτ (ω)) is a solution of (3.4) satisfying, for all
t ≥ T̄ , k ≥ K̄,

∥φ(τ, τ − t, θ−tω, φτ (θ−tω))∥2
E(Rn\Hk) ≤ η. (4.27)

Proof. Taking the inner product of the second equation of (3.4) with ρ[ |x|2
k2 ]v in L2(Rn),

we find that
1
2

d

dt

∫
Rn

ρ

[
|x|2

k2

]
|v|2 dx =

∫
Rn

ρ

[
|x|2

k2

]
[(ε − g(u))v − αAv − ε(ε − g(u))u + (εα − 1)Au)] vdx (4.28)

+
∫
Rn

ρ

[
|x|2

k2

]
[c ((3ε − g(u))u − v − cuz(θtω)) z(θtω) − cαAuz(θtω) − f(u) + q(x, t))] vdx.

In order to estimate the left hand side, we are substituting v in the first term of (3.4), so
it follows that ∫

Rn
ρ

[
|x|2

k2

]
ε(−ε+ g(u))uvdx

=
∫
Rn ρ

[
|x|2
k2

]
(ε− g(u))u

[
du
dt + εu− cuz(θtω)

]
dx

≤ ε(−ε+ β1)
∫
Rn ρ

[
|x|2
k2

] [
1
2

d
dt |u|2 + (ε− c|z(θtω)|)|u|2

]
dx,

(4.29)
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(εα− 1)
∫
Rn

(−△u) ρ
[

|x|2

k2

]
vdx

= (εα− 1)
∫
Rn(∇u)∇

[
ρ
[

|x|2
k2

] [
du
dt + εu− cuz(θtω)

]]
dx

= (εα− 1)
∫
Rn ∇u

[
2x
k2 ρ

′
[

|x|2
k2

]
v
]
dx

+(εα− 1)
∫
Rn(∇u)

[
ρ
[

|x|2
k2

]
∇
[

1
2

du
dt + εu− cuz(θtω)

]]
dx

≤ (εα− 1)
∫
Rn ρ

[
|x|2
k2

] [
1
2

d
dt |∇u|2 + ε|∇u|2 − c|∇u|2|z(θtω)|

]
dx

+(εα− 1)
√

2
k ϕ1

(
∥∇u∥2 + ∥v∥2) ,

(4.30)

and

−α
∫
Rn

(−△v)ρ
[

|x|2

k2

]
vdx

= −α
∫
Rn(∇v)∇

[
ρ
[

|x|2
k2

]
v
]
dx

≤ α
∫
Rn ∇v

(
2x
k2 ρ

′
[
[ |x|2

k2

]
v
)
dx− α

∫
Rn ρ

[
|x|2
k2

]
|∇v|2dx

≤ α
∫

k<|x|<
√

2k
2x
k2ϕ1|∇v||v|dx− α

∫
Rn ρ

[
|x|2
k2

]
|∇v|2dx

≤ α
√

2
k ϕ1(∥∇v∥2 + ∥v∥2) − α

∫
Rn ρ

[
|x|2
k2

]
|∇v|2dx.

(4.31)

For the nonlinear term, according to (1.6) and (1.7), (4.20), and applying Young inequality,
after detailed computations, we obtain

−
∫
Rn
ρ

[
|x|2

r2

]
f(u)vdx

≥ − d
dt

∫
Rn ρ

[
|x|2
r2

]
F (u)dx− εk

∫
Rn ρ

[
|x|2
k2

]
F (u)dx

+ (εϑ1 − ϑ3c|z(θtω)|)
∫
Rn ρ

[
|x|2
r2

]
|∇u|2 dx

+ (εϑ2 − cϑ3c|z(θtω)|)
∫
Rn ρ

[
|x|2
r2

]
dx.

(4.32)

By the Cauchy-Schwartz inequality, the Young inequality and ∥∇v∥2 ≥ λ1∥v∥2, we deduce
that∫

Rn
ρ

[
|x|2

r2

]
q(x, t)vdx ≤

∫
Rn
ρ

[
|x|2

r2

]
|q(x, t)|2

4αλ1
dx+ α

∫
Rn
ρ

[
|x|2

r2

]
|∇v|2dx, (4.33)

cz(θtω) ((3ε+ β2) − cz(θtω))
∫
Rn
ρ

[
|x|2

r2

]
uvdx

≤ cz(θtω) (3ε+ β2) + cz(θtω))
∫
Rn ρ

[
|x|2
r2

]
|u||v|dx

≤ 1
2
(
(3ε+ β2)c|z(θtω)| + c2|z(θtω)|2

) ∫
Rn ρ

[
|x|2
r2

] [
|u|2 + |v|2

]
dx,

(4.34)

and

αcz(θtω)
∫
Rn

(−△u)ρ
[

|x|2

r2

]
vdx ≤ αc|z(θtω)|

∫
Rn

(∇u)∇
[
ρ

[
|x|2

r2

]
v

]
dx

= αc|z(θtω)|
∫
Rn

2|x|
r2 ρ′

[
|x|2

r2

]
|∇u|vdx

+ αc|z(θtω)|
∫
Rn
ρ

[
|x|2

r2

]
|∇u||∇v|dx

≤ αc|z(θtω)|
√

2
r
ϕ1(∥∇u∥2 + ∥v∥2) + αc|z(θtω)|

2

∫
Rn
ρ

[
|x|2

r2

]
|v|2dx

+ αλ1c|z(θtω)|
2

∫
Rn
ρ

[
|x|2

r2

]
|∇u|2dx. (4.35)
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Collecting all (4.29)-(4.35), from (4.28), we have

1
2
d

dt

∫
Rn

ρ

[
|x|2

k2

] (
|v|2 + ε(ε− β1)|u|2 + (1 − αε)|∇u|2 + 2F̃ (u)

)
dx

≤ −(ε− c|z(θtω)|)
∫
Rn

ρ

[
|x|2

k2

] [
|v|2 + ε(ε− β1)|u|2 + (1 − αε− εϑ1)|∇u|2 − εkF̃ (u)

]
dx

+
√

2
k
ϕ1
[
α(∥∇v∥2 + ∥v∥2) + (1 − αε)(∥∇u∥2 + ∥v∥2) + αc|z(θtω)|(∥∇u∥2 + ∥v∥2]

+ 1
2
(
c(3ε+ β2)|z(θtω)| + c2|z(θtω)|2

) ∫
Rn

ρ

[
|x|2

k2

] [
|u|2 + |v|2

]
dx

+ 1
4(αλ1 − β2)

∫
Rn

ρ

[
|x|2

k2

]
|g(x, t)|2dx+ (ϑ2ε− cϑ3c|z(θtω)|)

∫
Rn

ρ

[
|x|2

k2

]
dx. (4.36)

Moreover, using Lemma 4.1 and ∥∇u∥2 ≥ λ1∥u∥2, when ε is small enough, need

ϱ = min[ε, εk
2

],

1 − αε− εϑ1 ≥ 1 − αε,

α1 = min
√

2
k
ϕ1(1 − αε, α),

Υ(t, ω) = 1
4(αλ1 − β2

|q(x, t)|2 + (ϑ2ε− Cϑ3c|z(θtω)|) .

(4.37)

By all the above inequalities, we can write that

d

dt

∫
Rn
ρ

[
|x|2

k2

] [
|v|2 + ε(ε− β1)|u|2 + (1 − αε)|∇u|2 + 2F̃ (u)

]
dx

≤ −(ϱ− c|z(θtω)|)
∫
Rn ρ

[
|x|2
k2

] [
|v|2 + ε(ε− β1)|u|2 + (1 − αε)|∇u|2 + F̃ (u)

]
dx

+1
2
(
c(3ε+ β2)|z(θtω)| + c2|z(θtω)|2

) ∫
Rn ρ

[
|x|2
r2

] [
|u|2 + |v|2

]
dx

+α1
[
∥∇v∥2 + ∥∇u∥2 + ∥v∥2]+

∫
Rn ρ

[
|x|2
r2

]
Υ(t, ω)dx.

(4.38)

Setting

X = ∥v∥2 + ε(−ε+ β1)∥u∥2 + (1 − αε)∥∇u∥2. (4.39)

So, it follows that

d

dt

∫
Rn

ρ

[
|x|2

r2

] [
|X(t, τ, ω,Xτ (ω))| + F̃ (u)

]
dx

≤ −2
[
ϱ− 1

2
(
c(3ε+ β2)|z(θtω)| + c2|z(θtω)|2

)] ∫
Rn

ρ

[
|x|2

r2

] [
|X(t, τ, ω,Xτ (ω))| + F̃ (u)

]
dx

+ α1
[
∥∇v∥2 + ∥∇u∥2 + ∥v∥2]+

∫
Rn

ρ

[
|x|2

r2

]
Υ(t, ω)dx. (4.40)

Integrating (4.40) over [τ, t], we find that, for all t ≥ τ∫
Rn
ρ

[
|x|2

r2

] [
|X(t, τ, ω,Xτ )|2E + 2F̃ (u(t, τ, ω, uτ )

]
dx

≤ e2Γ(t−τ) ∫
Rn ρ

[
|x|2
r2

] [
|Xτ |2E + F̃ (uτ )

]
dx

+α1
∫ t

τ e
2Γ(r−t) (∥∇v(r, τ, ω, vτ )∥2 + ∥∇u(r, τ, ω, uτ )∥2 + ∥v(r, τ, ω, vτ )∥2) dr

+
∫ t

τ e
2Γ(r−t) ∫

Rn ρ
[

|x|2
r2

]
Υ(r, θrω)dxdr,

(4.41)
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where Γ = ϱ− 1
2
(
c(3ε+ β2)|z(θtω)| + c2|z(θtω)|2

)
. By replacing ω by θ−tω, we have

∫
Rn
ρ

[
|x|2

r2

] [
|X(t, τ, θ−tω,Xτ (θ−tω))|2E + 2F̃ (u(t, τ, θ−tω, uτ ))

]
dx

≤ e2Γ(t−τ) ∫
Rn ρ

[
|x|2
r2

] [
|Xτ (θ−tω)|2E + F̃ (uτ )

]
dx

+
∫ 0

τ−t e
2Γ(r−t) ∫

Rn ρ
[

|x|2
r2

]
Υ(r, θrω)dxdr

+α1
∫ 0

τ−t e
2Γ(r−t) (∥∇v(r, τ, θrω, vτ )∥2

+∥∇u(r, τ, θrω, uτ )∥2 + ∥v(r, τ, θrω, vτ )∥2) dr.
(4.42)

Let Xτ = (uτ , vτ )⊤ ∈ B(τ, θ−tω), B ∈ D is tempered, by (4.23) and (4.24), we know that
the first term on the right-hand side of (4.42) goes to zero as t → −∞. So, there exist
T̄1(τ,B, ω) > 0 and k̄1 = k̄1(τ, ω,B), for all t ≥ T̄1,

lim
r→∞

e−Γr
∫
Rn
ρ

[
|x|2

r2

] [
|Xτ (θ−tω)|2E + F̃ (uτ )

]
dx ≤ 2ζ. (4.43)

Together with the Lemma 4.1 and (1.8), there are T̄2 = T̄2(τ,B, ω) > 0 and k̄1 = k̄1(τ, ω) ≥
1 such that for all t ≥ T̄2 and k ≥ k̄1,

∫ 0

τ−t
e2Γ(r−t)

∫
Rn
ρ

[
|x|2

k2

]
Υ(r, θrω)dxdr ≤ ζ. (4.44)

From Lemma 4.2, there are T̄3 = T̄3(τ,B, ω) > 0 and k̄2 = k̄2(τ, ω) ≥ 1, such that for all
t ≥ T̄3 and k ≥ k̄2,

α1

∫ 0

τ−t

e2Γ(r−t) (∥∇v(r, τ, θrω, vτ )∥2 +∥∇u(r, τ, θrω, uτ )∥2 + ∥v(r, τ, θrω, vτ )∥2) dr ≤ ζ. (4.45)

Setting {
T̄ = max{T̄1, T̄2, T̄3},
k̄ = {k̄1, k̄2},

(4.46)

by (4.43)-(4.45), we arrive at

∥X(t, τ, θ−tω,Xτ (θ−tω))∥2
E(Rn\Hk) ≤ 4ζ. (4.47)

Then we complete the proof. �

Now we derive uniform estimates on the high-mode parts of the solution in bounded
domains H2k = {x ∈ Rn : |x| < 2k}, these estimates will also be used to establish pullback
asymptotic compactness. Denote q(s) = I−p(s), where p(s) is the cut-off function defined
by (4.24). Given positive integer r, we define two new variables ũ and ṽ by


ũ(t, τ, ω, uτ ) = q

[
|x|2

k2

]
u(t, τ, ω, uτ ),

ṽ(t, τ, ω, vτ ) = q

[
|x|2

k2

]
v(t, τ, ω, vτ ).

(4.48)
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Multiplying (3.4) by q
[

|x|2
k2

]
and using (4.48), we have that

ũt = ṽ − εũ+ cũz(θtω),

ṽt = (ε− g(u))ṽ + α

[
△ṽ − v△q

[
|x|2

k2

]
− 2∇v∇q

[
|x|2

k2

]]

+ ε(ε− g(u))ũ+ (1 − εα)
[
△ũ− u△q

[
|x|2

k2

]
− 2∇u∇q

[
|x|2

k2

]]

+ c ((3ε− g(u)) − cz(θtω)) ũz(θtω) + αc

[
△ũ− u△q

[
|x|2

k2

]
− 2∇u∇q

[
|x|2

k2

]]
z(θtω)

− cvz(θtω) − q

[
|x|2

k2

]
f(u) + q

[
|x|2

k2

]
q(x, t).

(4.49)
Suppose that ũ = ṽ = 0 for |x| = 2k, consider the eigenvalue problem

Aũ = λũ in H2k, with ũ = 0, on ∂H2k, (4.50)

the problem has a family of eigenfunctions {ei}i∈N with the eigenvalue {λi}i∈N:

0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·, λi → +∞ (i → +∞),

such that {ei}i∈N , is an orthonormal basis of L2(H2k) for given n, let

Xn = {e1, · · ·, en} and Pn : L2(H2k) → Xn

be the projection operator.

Lemma 4.4. Suppose that the condition (1.3)-(1.8) hold. Let B={B(ω)}ω∈Ω ∈ D and
φτ (τ, ω) ∈ B(τ, ω). Then for every η > 0 and P-a.e ω ∈ Ω, there exists T̄ = T̄ (B, η, ω) > 0
and K̄ = K̄(ω, η) > 1 and N̄ = Ñ(η, ω) > 0, such that the solution φ(t, ω, φτ (τ, ω)) of
(3.4) satisfies, for all t ≥ T̄ , k ≥ K̄, k ≥ N̄ ,

∥(I − Pn)ψ(τ, τ − t, θ−τω, φτ )∥2
E(H2k) ≤ η. (4.51)

Proof. Let[
ũn,1 = Pnũ,

ṽn,1 = Pnṽ,
and

[
ũn,2 = (I − Pn)ũ,
ṽn,2 = (I − Pn)ṽ.

(4.52)

Multiplying the first equation of (4.50) with (I − Pn), we get

ṽn,2 = d

dt
ũn,2 + εũn,2 − cũn,2z(θtω), (4.53)

then applying (1 − Pn) to the second equation of (4.50) and taking the inner product for
results with ṽn,2 in L2(H2k), we show that

1
2
d

dt
∥ṽn,2∥2 = (ε− g(u)) ∥ṽn,2∥2 − α ∥∇ṽn,2∥ − α

(
v△q

[
|x|2

k2

]
+ 2∇v∇q

[
|x|2

k2

]
, ṽn,2

)

+ ε(ε− g(u)) (ũn,2, ṽn,2) + (1 − εα)
(

△ũn,2 − u△q

[
|x|2

k2

]
− 2∇u∇q

[
|x|2

k2

]
, ṽn,2

)

+ c ((3ε− g(u)) − cz(θtω)) (ũn,2, ṽn,2) z(θtω) + (I − Pn)q
[

|x|2

k2

]
(q(x, t) − f(u), ṽn,2)

+ αc

(
△ũn,2 − u△q

[
|x|2

k2

]
− 2∇u∇q

[
|x|2

k2

]
, ṽn,2

)
z(θtω) − c ∥∇ṽn,2∥ |z(θtω)|. (4.54)
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Next, we need to estimate each term on the right-hand side of (4.54)

ε(ε− g(u))(ũn,2, ṽn,2) = ε(ε− g(u))
(
ũn,2,

d

dt
ũn,2 + εũn,2 − cũn,2z(θtω)

)
≤ ε(ε− β1)

(
1
2

d
dt∥ũn,2∥2 + (ε− c|z(θtω)|) ∥ũn,2∥2

)
,

(4.55)

and
(εα− 1)(−△ũn,2, ṽn,2)

= (εα− 1)(−△ũn,2,
d
dt ũn,2 + εũn,2 − cũn,2z(θtω))

≤ (εα− 1)(∇ũn,2,∇( d
dt ũn,2 + εũn,2 − cũn,2z(θtω)))

≤ (εα− 1)(∇ũn,2,∇( d
dt ũn,2 − (−ε+ c|z(θtω)|)ũn,2)

≤ (εα− 1)1
2

(
d
dt∥∇ũn,2∥2 − (−ε+ c|z(θtω)|)∥∇ũn,2∥2

)
.

(4.56)

For the nonlinear term, by (1.4)-(1.7) we have(
(I − Pn) q

[
|x|2

k2

]
f(u), ṽn,2

)
≤
(
(I − Pn) q

[
|x|2
k2

]
f(u), d

dt ũn,2 + εũn,2 − cũn,2z(θtω)
)

≤ d
dt

(
(I − Pn)q

[
|x|2
k2

]
f(u), ũn,2

)
−
(
(I − Pn)q

[
|x|2
k2

]
f́u(u)ut, ũn,2

)
+ (εc3 − c|z(θtω)|)

(
(I − Pn)q

[
|x|2
k2

]
f(u), ũn,2

)
.

(4.57)

By (1.4), using Hölder inequality and Gagliardo-Nirenberg inequality, the nonlinear term
in (4.54) satisfies

2ε
(

(I − Pn)q( |x|2

k2 )f́u(u)ut, ũn,2

)
≤ c12ε(I − Pn)q( |x|2

k2 ) (1 + ∥u∥p) ∥ut∥∥ũn,2∥
≤ M1∥ut∥∥ũn,2∥ +M2∥u∥p

6∥ut∥∥ũn,2∥ 6
3−p

≤ M1λ
− 1

2
n+1∥ut∥∥∇ũn,2∥ +M3∥u∥p

H1∥ut∥∥ũn,2∥
2−p

2 ∥∇ũn,2∥
p
2

≤ M1λ
−1
n+1∥ut∥∥∇ũn,2∥ +M3λ

p−2
4

n+1∥u∥p
H1∥ut∥∥ũn,2∥

≤ M4∥∇ũn,2∥ +M5λ
−1
n+1∥ut∥2 +M5λ

p−2
2

n+1∥u∥2p
H1∥ut∥2

≤ M4∥∇ũn,2∥ +M6λ
−1
n+1

(
∥u∥2 + ∥v∥2 + ∥u∥4 + |z(θtω)|4

)
+M6λ

p−2
2

n+1

(
∥u∥6

H1(Rn) + ∥v∥6 + |z(θtω)|
12

3−p

)
.

(4.58)

Similarly, we also have

2ε
(
(I − Pn)q( |x|2

k2 )f(u), ũn,2
)

≤ c12ε(I − Pn)q( |x|2
k2 )

(
∥u∥ + ∥u∥p+1) ∥ũn,2∥

≤ M7∥u∥∥ũn,2∥ +M8∥u∥p+1
2(p+1)∥ũn,2∥ 6

3−p

≤ M7λ
− 1

2
n+1∥u∥∥∇ũn,2∥ +M9λ

− 1
2

n+1∥u∥p
H1∥∇ũn,2∥

≤ M10∥∇ũn,2∥ +M11λ
−1
n+1

(
∥u∥2 + ∥u∥2p

H1

)
.

(4.59)

By using the Cauchy-Schwartz inequality and the Young inequality, we have that(
(I − Pn)q

[
|x|2

k2

]
q(x, t), ṽn,2

)
≤ 2λ1

2αλ1 + δε+ 1

∥∥∥∥∥(I − Pn)q
[

|x|2

k2

]
q(x, t)

∥∥∥∥∥
2

+ 2αλ1 + δε+ 1
2

∥ṽn,2)∥2 , (4.60)

c ((3ε+ β2) − cz(θtω)) (ũn,2, ṽn,2) z(θtω)
≤ 1

2((3ε+ β2)c|z(θtω)| + 1
2c

2|z(θtω)|2)(∥ũn,2∥2 + ∥ṽn,2∥2). (4.61)



506 A.D. Abdelmajid, Q. Ma, A.E. Mohamed

Next, we have(
uAq

[
|x|2

k2

]
− 2∇u∇q

[
|x|2

k2

]
, ṽn,2

)
=
(
−u

(
4x2

k4 q
′′
[

|x|2
k2

]
+ 2

k2 q
′
[

|x|2
k2

])
− 4x

k2 ∇uq′
[

|x|2
k2

]
, ṽn,2

)
≤
∫

k<|x|<2
√

2k

(
−u

(
4x2

k4 q
′′
[

|x|2
k2

]
+ 2

k2 q
′
[

|x|2
k2

])
− 4x

k2 ∇uq′
[

|x|2
k2

]
, ṽn,2

)
=
(
−u

(
8

k2ϕ2 + 2
k2ϕ1

)
− 4

√
2

k ∇uϕ1, ṽn,2
)

≤
(

8ϕ2+2ϕ1
k2 ∥u∥ ∥ṽn,2∥ + 4

√
2

k ϕ1 ∥∇u∥ ∥ṽn,2∥
)

≤ 1
2

(
(8ϕ2+2ϕ1

k2 )2 ∥u∥2 + 32ϕ2
1

k2 ∥∇u∥2
)

+ 1
2 ∥ṽn,2∥2 ,

(4.62)

and

α(vAq
[

|x|2

k2

]
− 2∇v∇q

[
|x|2

k2

]
, ṽn,2)

= α(−v
(

4x2

k4 q
′′
[

|x|2
k2

]
+ 2

k2 q
′
[

|x|2
k2

])
− 4x

k2 ∇vq′
[

|x|2
k2

]
, ṽn,2)

≤ α
∫

k<|x|<2
√

2k

(
−v

(
4x2

k4 q
′′
[

|x|2
k2

]
+ 2

k2 q
′
[

|x|2
k2

])
− 4x

k2 ∇vq′
[

|x|2
k2

]
, ṽn,2

)
= α

(
−u

(
8

k2ϕ2 + 2
k2ϕ1

)
− 4

√
2

k ∇vϕ1, ṽn,2
)

≤ α
(

8ϕ2+2ϕ1
k2 ∥v∥ ∥ṽn,2∥ + 4

√
2

k ϕ1 ∥∇v∥ ∥ṽn,2∥
)

≤ α
2

(
(8ϕ2+2ϕ1

k2 )2 ∥v∥2 + 32ϕ2
1

k2 ∥∇v∥2
)

+ α
2 ∥ṽn,2∥2 .

(4.63)

By applying (4.55)-(4.63) and (4.54), after detailed computations we obtain
1
2
d

dt

(
∥ṽn,2∥2 + ε(ε− β1)∥ũn,2∥2 + (1 − εα)∥∇ũn,2∥2 +

(
2(I − Pn)q

[
|x|2

k2

]
f(u), ũn,2

))
≤ −

(
ε− c|z(θtω)|)(∥ṽn,2∥2 + ε(ε− β1)∥ũn,2∥2 + (1 − εα)∥∇ũn,2∥2)

− (ε− c|z(θtω)|)
(

(I − Pn)q
[

|x|2

k2

]
f(u), ũn,2

)
+ 2λ1

2αλ1 + δε+ 1

∥∥∥∥(I − Pn)q
[

|x|2

k2

]
q(x, t)

∥∥∥∥2

+
(
c(3

2
ε+ β2)|z(θtω)| + 1

2
c2|z(θtω)|2

)(
∥ũn,2∥2 + ∥ṽn,2∥2

)
+ 2β2 − α

2

(
(8ϕ2 + 2ϕ1

k2 )2 ∥v∥2 + 32ϕ2
1

k2 ∥∇v∥2
)

+ αc|z(θtω)| + α− (εα− 1)
2

(
(8ϕ2 + 2ϕ1

k2 )2 ∥u∥2 + 32ϕ2
1

k2 ∥∇u∥2
)

+M4∥∇ũn,2∥ +M6λ
−1
n+1

(
∥u∥2 + ∥v∥2 + ∥u∥4 + |z(θtω)|4

)
+M6λ

p−2
2

n+1

(
∥u∥6

H1(Rn) + ∥v∥6 + |z(θtω)|
12

3−p

)
. (4.64)

Recalling the norm ∥ · ∥E , we have
d

dt

(
∥ψn,2∥2

E +
(

2(I − Pn)q
[

|x|2

k2

]
f(u), ũn,2

))
≤ −2

(
γ − κc|z(θtω)| − c2|z(θtω)|2

)(
∥ψn,2∥2

E +
(

2(I − Pn)q
[

|x|2

k2

]
f(u), ũn,2

))
+ 2λ1

2αλ1 + δε+ 1

∥∥∥∥(I − Pn)q
[

|x|2

k2

]
q(x, t)

∥∥∥∥2

+ 2β2 − α

2

(
(8ϕ2 + 2ϕ1

k2 )2 ∥v∥2 + 32ϕ2
1

k2 ∥∇v∥2
)

+ αc|z(θtω)| + α+ (1 − εα)
2

(
(8ϕ2 + 2ϕ1

k2 )2 ∥u∥2 + 32ϕ2
1

k2 ∥∇u∥2
)

+M6λ
p−2

2
n+1

(
∥u∥6

H1(Rn) + ∥v∥6 + |z(θtω)|
12

3−p

)
+M6λ

−1
n+1

(
∥u∥2 + ∥v∥2 + ∥u∥4 + |z(θtω)|4

)
, (4.65)
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where γ = min[εc3, ε], note that 0 ≤ p < 3, λn → +∞ when (n → +∞). Therefore, given
η > 0, there exists N̄ = N̄(η) > 1 and K̄1 = K̄1(η) > 0 such that for all n ≥ N̄ , k ≥ K̄1

d

dt

(
∥ψn,2∥2

E +
(

2(I − Pn)q
[

|x|2

k2

]
f(u), ũn,2

))
≤ 2Γ(t, ω)

(
∥ψn,2∥2

E +
(
2(I − Pn)q

[
|x|2
k2

]
f(u), ũn,2

))
+µ

(
∥(I − Pn)q

[
|x|2
k2

]
q(x, t)∥2 + c

k4 ∥u∥2 + c
k2 ∥∇u∥2 + c

k4 ∥v∥2 + c
k2 ∥∇v∥2

)
+λ

(
+∥u∥4 + |z(θtω)|4 + ∥u∥6

H1(Rn) + ∥v∥6 + |z(θtω)|
12

3−p

)
,

(4.66)

where µ, λ, c are positive constants, Γ(t, ω) = γ − κc|z(θtω)| − c2|z(θtω)|2. Applying
Gronwall’s lemma over [τ − t , τ ] and replacing ω by θ−τω on (4.66), for all t≥ 0, then we
estimate every term on the right-hand side of the results.
For the first terms, by using condition (1.4), (4.59), (4.66) and φτ ∈ B(τ− tn, θ−tnω), B ∈
D, there exists T̄1 = T̄1(τ,B, ω, η) > 0 and K̄1 = K̄1(τ, ω, η) ≥ 1 such that t ≥ T̄1, k ≥ K̄1,

e2
∫ τ−t

τ
Γ(r,ω)dr

(
∥ψτ ∥2

E +
(

2(I − Pn)q
[

|x|2

k2

]
f(uτ ), ũn,τ

))
≤ 2η, (4.67)

by conditions (1.7) and (1.8), q(x, t) ∈ L2(Rn), there is N̄2 = N̄2(τ, ω, η) ≥ N̄1 > 0, such
that for all n ≥ N̄1,

c

∫ τ

−∞
e2
∫ τ

s
Γ(r−τ,ω)dr∥(I − Pn)

[
|x|2

k2

]
q(x, s)∥2ds ≤ η. (4.68)

Due to Lemma 4.1, Lemma 4.2 and (4.66), there exists T̄2 = T2(τ,B, ω, η) > 0 and
K̄2 = K̄2(τ, ω, η) ≥ 1, such that for all t ≥ T̄2 and k ≥ k̄2∫ τ

τ−t e
2
∫ τ

s
(Γ(r−τ,ω))dr

(
c

k4 ∥u(s, τ − t, θ−τω, ũτ )∥2 + c
k2 ∥∇u(s, τ − t, θ−tω, ũτ )∥2

)
ds

+
∫ τ

τ−t e
2
∫ τ

s
(Γ(r−τ,ω))dr

(
c

k4 ∥v(s, τ − t, θ−τω, ṽτ )∥2 + c
k2 ∥∇v(s, τ − t, θ−tω, ṽτ )∥2

)
ds ≤ η.

(4.69)
For the fourth term on the right-hand side of results, by Lemmas 3.1, 4.1, 4.2, ([19] Lemma
4.3) and (4.59), there exists T̄3 = T̄3(τ,B, ω, η) > 0, such that for all t ≥ T̄3,

cη

∫ τ

τ−t
e2
∫ τ

s
Γ(r−τ,ω)drλ

(
∥u(τ, τ − t, θ−τω, ũτ )∥4 + |z(θtω)|4

+∥u(τ, τ − t, θ−τω, ũτ )∥6
H1(Rn) + ∥v(τ, τ − t, θ−τω, ũτ )∥6 + |z(θtω)|

12
3−p

)
ds

≤ ηR(τ, ω).

(4.70)

Let
T̄ = max{T̄1, T̄2, T̄3}
K̄ = {K̄1, K̄2}, (4.71)

then by (4.67)-(4.70) and (4.66), there is N̄3 = N̄3(τ, ω, η) ≥ N̄2 > 0 such that for all
n ≥ N̄3, we have for all t > T̄ and n > N̄

∥ψn,2(τ, τ − t, θ−τω, ψτ )∥2
E +

(
2(I − Pn)

[
|x|2

k2

]
f(uτ ), ũn,τ

)
≤ η(4 + R(τ, ω)) (4.72)

which implies formula (4.72) holds. Therefore, we conclude

∥(I − Pn)ψn,2(t, θ−tω, ψτ (θ−tω))∥2
E(H2k) ≤ η(4 + R(τ, ω)).

Then we complete the proof. �
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5. Random attractors
In this section, we prove the existence of a D-random attractor for the random dynamical

system Φ associated with the stochastic wave equation (3.7) on Rn. We are now ready to
apply the lemmas in Section 4 to prove the asymptotic compactness of solutions on Rn.
It follows from Lemma 4.1, that it is Φ has a closed random absorbing set in D, which
along with the D-pullback asymptotic compactness will imply the existence of a unique
D-random attractor. The D-pullback asymptotic compactness of Φ is given below and
will be proved by using the uniform estimates on the tails of solutions.

Lemma 5.1. We assume that (1.3)-(1.8) hold. Then the random dynamical system ϕ of
problem (3.4) is D-pullback asymptotically compact in E(Rn), that is, for every τ ∈ R, ω ∈
Ω and B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D ω ∈ Ω, the sequence {φ(τ, τ − tn, θ−τω, φτ,n)}
has a convergent subsequence in E(Rn) provided tn −→ ∞ and φτ,n ∈ B(τ − tn, θ−tnω)

Proof. Let tn −→ ∞, B ∈ D and φτ,n ∈ B(τ − tn, θ−tnω). Then by Lemma 4.1, for P-a.e
ω ∈ Ω, we have that {φ(τ, τ − tn, θ−τω, φτ,n)} is bounded in E(Rn), that is, for every
τ ∈ R, ω ∈ Ω, there exists L1 = L1(τ, ω,B) > 0, such that for all L̃ ≥ L1,

∥φ(τ, τ − tn, θ−τω, φτ,n)∥2
E(Rn) ≤ ρ2(τ, ω); (5.1)

moreover, it follows from Lemma 4.3 that there exist k1 = k1(τ, ω, η) > 0 and L2 =
L2(τ,B, ω, η) > 0, such that for all L̃ ≥ L2,

∥ψ(τ, τ − tn, θ−τω, φτ,n)∥2
E(Rn\Hk1 ) ≤ η. (5.2)

Next, by using Lemma 4.4, there are N = N(τ, ω, η) > 0, k2 = k2(τ, ω, η) > k1 and
L3 = L3(τ,B, ω, η) > 0, such that for all L̃ ≥ L3,

(I − Pn)∥̃φ(τ, τ − tn, θ−τω, φτ,n)∥2
E(H2k2 ) ≤ η. (5.3)

By means of (4.49) and (5.1), we find that {Pnφ̃(τ, τ − tn, θ−τω, φτ,n)} is bounded infinite-
dimensional space PnE(H2k2), which associated with (5.3) implies {ψ(τ, τ−tn, θ−τω, ψτ,n)}
is precompact in H1

0 (H2k2) × L2(H2k2).

Note that q
[

|x|2
k2

]
= 1 for {x ∈ Rn : |x| ≤ k2}, recalling (4.49), we find that {φ(τ, τ −

tn, θ−τω, φτ,n)} is pre-compact in E(H2k2), which along with (5.2) show that the pre-
compactness of this sequence in E(Rn), this completes the proof. The main result of this
section can now be stated as follows. �

Theorem 5.2. We assume that (1.3)-(1.8) hold. Then the continuous cocycle Φ associated
with problem (3.4) has a unique D-pullback attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D

in Rn.

Proof. Notice that the continuous cocycle Φ has a closed random absorbing set {A(ω)}ω∈Ω
in D by Lemma 4.2. On the other hand, by (3.9) and Lemma 5.1, the continuous cocycle
Φ is D-pullback asymptotically compact in the Rn. Hence the existence of a unique D-
random attractor for Φ follows from Lemma 2.8 immediately. �
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