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Abstract: In this paper, we propose the selection of most suitable mother wavelet function for Turkish phonemes using discrete wavelet 

transform. The determination of most similar mother wavelet function to the signal has been a challenge in speech processing. The optimum 

mother wavelet function for Turkish phonemes have been determined by using quantitative measures which were energy and Shannon 

entropy, information theoretic measures which were joint entropy, conditional entropy, mutual information, and relative entropy from 

wavelet coefficients of the phonemes. In this study, 101 potential functions were investigated to determine the most appropriate mother 

wavelet. Experimental results showed that the most appropriate wavelet functions for /ç/ and /ş/ phonemes which are unvoiced fricatives 

have been found as Reverse Bi-orthogonal 3.9 (rbio3.9) and Reverse Bi-orthogonal 5.5 (rbio5.5), respectively. By considering all the 

results, it was seen that the Bi-orthogonal 3.1 (bior3.1) and Discrete Meyer (dmey) wavelet functions were the most suitable mother 

wavelets for all other phonemes. 

Keywords: Discrete wavelet transform, energy, entropy, information theoretic measure, mother wavelet selection, Turkish phonemes  

 

1. Introduction 

One of the most important characteristics which distinguish human 

beings from all other living being is the ability of communicating 

using speech sounds. The evaluation process of human voice is 

quite complicated due to the diversity of physical properties and 

complex nature of the speech signals. Phonetics objectively 

examines the quality of sound and physical characteristics without 

taking into account the meaning attributed to the words and how 

the voice organs act during the formation of voices [1]. Also, 

phonetics is divided into three main branches as articulating, 

acoustic, and auditory [2-3]. Phonetics determines the sounds 

(phonemes) necessary for defining the audible expressions of all 

the world's languages in an accurate and consistent manner. The 

phonemes are the smallest unit of sound that are used to separate 

words semantically and focus on the natural characteristics of 

sound in the languages. In addition to all these, the phoneme is not 

an inter-lingual unit based on an understanding and each language 

has its own phonemes. 

The analysis of the speech signals is performed by acoustic 

analysis on the basis of phonemes. The acoustic analysis is defined 

as the study of speech signals in electronic media. The analysis is 

based on objective parameters which are fundamental frequency, 

pitch perturbation (jitter) and amplitude perturbation (shimmer) 

and the analysis can be easily repeated [4]. In recent years, the 

acoustic analysis parameters are commonly used in the evaluation 

of medical and surgical outcomes [5], speaker and speech 

recognition [6], speech analysis and synthesis, linguistic and 

phonetic knowledge acquisition [7], diagnosis of sound diseases 

[8], and planning of treatment and monitoring of treatment 

processes [9]. Wavelet transform which is a multi-resolution 

analysis technique is one of the most widely used methods in the 

acoustic analysis [10]. However, the basis function that is most 

appropriate to the structure of the signal should be determined. The 

basic features of wavelet basis functions such as regularity, 

symmetry, orthogonality, compact support, and the vanishing 

moments have been largely used in determining the proper wavelet 

for specific applications in various fields [11-12]. To determine the 

most suitable basis wavelet function, regularity and symmetry 

properties were used for analysing Auditory-Evoked Potentials 

(AEP) and the optimum mother wavelet function was found as Bi-

orthogonal 5.5 [13]. Bhatia et. al. [10] reported that the Morlet, 

Gaussian, Paul-4, and B-spline wavelets were determined to be the 

most appropriate mother wavelet functions for event detection and 

segmentation in electrocardiogram (ECG) signals after taking into 

account reality, complexity, and orthogonality properties. 

In studies on selecting the appropriate wavelet family, the use of 

only the basic features of wavelets is not reliable and it is difficult 

to apply to all wavelet families. In addition to these basic features, 

the quantitative and information theoretic measures can be used in 

order to determine the most appropriate wavelet. The quantitative 

measure which is the sum of absolute values of wavelet 

coefficients was used to choose the most appropriate mother 

wavelet for analysis of EEG and EMG signals [14-15].  

In [16], the most appropriate main wavelet selection was 

investigated for various biomedical signal classification problems. 

In this study, genetic algorithm was used to optimize the 

determination of the best main wavelet function. In the 

experimental evaluation, the proposed solutions for the best main 

wavelet selection were compared with the manual hit-and-trial 

methods. According to the results, sym8 and db8 for EEG signals, 

sym6 and sym9 for ECG signals and bior2.6 and db8 wavelets for 

EMG signals were determined as the most suitable main wavelets. 

The results show that automatic main wavelet selection algorithm 

solutions are consistent with manual selection of wavelet 

functions. 

In another study [17], the most suitable main wavelet selection was 
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performed and automatic feature extraction system was proposed 

for gear and bearing fault diagnosis using wavelet based signal 

processing. 324 candidate main wavelets were studied in the 

selection of the main wavelet function and it was found that the 

db44 wavelet function had the most similar form in both gear and 

bearing vibration signals. The results also show that although the 

db44 wavelet is the most similar main wavelet function for 

vibration signals, it is not a suitable function for all wavelet-based 

processes [17]. In a similar study, to select the appropriate main 

wavelet for the analysis of the acoustic emission (AE) signal, the 

AE signal was obtained from the faulty control valve that had three 

leakage stages; small, critical and damaged. The analysis using 

Wavelet Packet Transform (WPT) is expected to reveal AE 

properties in different leaks. The selection criteria for the main 

wavelet to be used in WPT are based on the Energy / Shannon 

entropy ratio. Four main wavelet families were used for selection: 

Daubechies, Symlet, Biorthogonal and Coiflet. For further 

analysis, the highest main wavelet with energy/Shannon entropy 

ratio is selected [18]. 

In a study in which the most suitable wavelet function selection 

was used to classify hyperspectral image classification, two criteria 

were applied in the selection of optimal base wavelet for three 

wavelet types such as Daubechies (db), Symlet (sym) and Coiflet 

(coif). The energy criterion includes entropy factor and 

energy/Shannon entropy ratio, while the matching criterion works 

according to the correlation coefficients. It is recommended that 

coif1, db3 and db7 main wavelets should be used in hyperspectral 

image classification for both energy and shape criteria [19]. 

In a study of voice processing, /a/ vowels which were recorded 

from healthy subjects and patients with Unilateral Vocal Fold 

Paralysis were analysed using discrete wavelet transform [20]. 

They used energy and Shannon entropy measures to determine the 

suitable base wavelet and the appropriate mother wavelet function 

was found as Daubechies 6. Agbinya [21] intended to find the 

optimum wavelet for voiced-unvoiced detection, pitch 

determination, and speech compression. The most appropriate 

wavelet was determined by using the energy calculated from 

approximation coefficients and Battle-Lemarie wavelet function 

was found as the optimum base wavelet for speech analysis and 

synthesis. In another study, they used mean square error (MSE) 

measure between the original and reconstructed signals to 

determine optimal wavelet for speech signals [22]. They concluded 

that Discrete Meyer was the most suitable base wavelet for speech 

signals. In determining the optimum wavelet function for bearing 

vibration signals detection, they recommended the use of energy to 

Shannon entropy ratio and information theoretic measures [23]. 

According to the results of this study, Bior5.5 and rBior 5.5 

wavelet functions were found as the most suitable base wavelet at 

Discrete Wavelet Transform (DWT), respectively. Also, complex 

Morlet was determined as the best function for bearing vibration 

signals detection using continuous wavelet transforms. 

In this study, the most suitable mother wavelet functions for 

Turkish phonemes were determined by using DWT. Daubechies, 

Coiflet, Discrete Meyer, Symlet, Bi-orthogonal, and Reverse Bi-

orthogonal wavelet families were selected as candidate wavelet 

functions. In order to determine the most appropriate wavelet 

function, the quantitative measures which are energy and Shannon 

entropy, information theoretic measures which are joint entropy, 

conditional entropy, and mutual information, and the relative 

entropy were computed by using the detail coefficients of DWT. 

Finally, as a key contribution of our work, it is aimed to analyse 

the speech signals more effectively by determining the appropriate 

wavelet functions for Turkish phonemes. 

The rest of this paper is organized as follows. In Section 2, we 

present the recording procedure, a brief introduction to the wavelet 

transform, wavelet selection measures and procedure of mother 

wavelet selection. In Section 3, we present the experimental results 

for Turkish phonemes. Finally, Section 4 contains some 

concluding remarks. 

2. Materials and Methods 

2.1. Experimental Data 

2.1.1. Subjects 

Our subjects were 15 male and 15 female native Turkish speakers. 

Their ages ranged from 20 to 30 with an average of 25.33±2.31 for 

male and 24.13±2.5 for female. No history of hearing or speech 

disorders was known for any of the speakers. 

2.1.2. Speech Stimuli 

The choice of monosyllabic words for an audio corpus should be 

made considering that the corpus will represent the general 

phonetic properties of the language. One of the most important 

problems encountered while creating audio corpus is that there are 

too many monosyllabic words in Turkish language. Therefore, 

monosyllabic words which are frequently used in Turkish language 

are chosen when the audio corpus is designed. The Turkish 

alphabet consists of 29 letters with 8 vowels and 21 consonants. 

The alphabet lacks the /q/, /w/ and /x/ of English whereas it 

includes letters with a diacritic, such as /ç/, /ş/, and /ğ/. Each 

subjects uttered the monosyllabic words as given in Table 1. These 

monosyllabic words are commonly used in Turkish language. The 

monosyllable words have three phonemes which are initial 

consonant, vowel, and final consonants. Also, vowel acts as the 

core of words. 

 

2.1.3. Recording Procedure 

The recordings were made in a sound treated booth using a Shure 

PG58 microphone and a computer with Creative Sound Blaster 

THX sound card. The distance between microphone and mouth 

was set to 20 cm. The syllables were recorded at 44100 Hz 

sampling rate and 24-bit resolution. The list of syllables was in 

front of the subjects during the recording and there was 

approximately five seconds between each word. 

Table 1. List of Turkish monosyllabic audio corpus 

Turkish words In English Turkish words In English 

bağ Link maç match 

can Soul not note 

çok Very pul stamp 

diş Teeth rol role 

fen Science sır secret 

gün Day şen cheerful 

hak Right tıp medicine 

jön Artist var exist 

kat Floor yol way 

leş Carrion zor difficult 

 

2.2. Wavelet Transform 

In recent years, the wavelet transform has been a signal processing 

technique widely used in several fields such as data compression, 

fingerprint verification, speaker and face recognition, DNA and 

protein analysis, blood pressure, heart rate and ECG analysis, and 

speech de-noising [24-25]. 
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In particular, the Wavelet Transform (WT) is widely used in the 

analysis of non-stationary signals. In contrast to the Short-Time 

Fourier Transform (STFT), Wavelet Transform (WT) uses short 

windows at high frequencies and long windows at low frequencies 

[26]. This property is obtained by looking at the similarities 

between scaling and shift of a base wavelet. While scaling offers 

ideas about local regularity, time refers to the moment of the 

formation of wavelet. Also, time is an important factor that 

determines sudden changes occurring in the wavelet analysis [23]. 

Wavelet transform is divided into two groups according to the 

method of operation as Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT). The computation of the 

wavelet coefficients for each scale is difficult and time consuming 

in CWT. Therefore, DWT has been used more frequently for non-

stationary signal analysis. 

Discrete Wavelet Transform can be computed by using filters 

developed by [26]. This method, also known as Mallat algorithm, 

is a fast filtering algorithm with the two channels of sub-band 

coders. According to the Mallat algorithm, DWT is based on the 

principle of filtering the signal from high-pass and low-pass as 

seen in Fig. 1. In each scale, detail (D) and approximation (A) 

coefficients length are halved with frequency range. DWT is a 

special case of wavelet transform and can be expressed as: 

𝑊(𝑗, 𝑘) = ∑ ∑ 𝑥(𝑘)2−𝑗 2⁄ 𝜓(2−𝑗𝑛 − 𝑘) 

𝑘𝑗

   

 

(1) 

where 𝜓, 𝑗, and 𝑘 represents mother wavelet, scaling and time-

shifting, respectively. 

According to Mallat algorithm, approximation (𝑎𝑗,𝑘) and detail 

(𝑑𝑗,𝑘) coefficients consist of the inner product of scaling function 

𝜙(𝑡) and wavelet function 𝜓(𝑡) with the signal, respectively. The 

approximation and detail coefficients can be expressed as: 

𝑎𝑗,𝑘 = 〈𝑥(𝑡), 𝜙𝑗,𝑘(𝑡)〉 = ∫ 𝑥(𝑡) 2𝑗 2⁄ 𝜙∗(2𝑗𝑡 − 𝑘)𝑑𝑡  

 

(2) 

𝑑𝑗,𝑘 = 〈𝑥(𝑡), 𝜓𝑗,𝑘(𝑡)〉 = ∫ 𝑥(𝑡) 2𝑗 2⁄ 𝜓∗(2𝑗𝑡 − 𝑘)𝑑𝑡  

 

(3) 

 

 

Fig. 1.  Procedures of a four level signal decomposition using discrete 

wavelet transform 

 

2.3. Wavelet Selection Measures 

The optimum mother wavelet can be determined by using the 

properties of mother wavelet or similarity between the signal and 

mother wavelet. In wavelet analysis, the mother wavelets will give 

different results at analyzing the same signal. The mother wavelets 

are usually characterized by properties such as orthogonality, 

compact support, symmetry and vanishing moment. The properties 

of mother wavelet are considered in determining the optimum 

mother wavelets [27]. However, more than one mother wavelet 

with the same properties often exists. To overcome this problem, 

the similarity between the signal and mother wavelet are 

considered in determining the most suitable mother wavelet [28]. 

In this study, the quantitative measures which are energy and 

Shannon entropy, information theoretic measures which are joint 

entropy, conditional entropy, and mutual information, and the 

relative entropy were computed to select the most suitable mother 

wavelet. 

2.3.1.  Quantitative Measures 

The quantitative measures such as energy and Shannon entropy can 

be used as well as qualitative measures in determining the optimum 

wavelet. 

 

2.3.1.1. Energy 

 

Energy is calculated by taking the sum of squares of wavelet 

coefficients in scales [29]. If the dominant frequency of the signal 

corresponds to a certain scale, the energy is high on that scale. The 

energy of a signal can be determined from the wavelet coefficients 

as expressed in (4). 

𝐸(𝑠) = ∑|𝑤𝑡(𝑠, 𝑖)|2

𝑁

𝑖=1

 

 

 

(4) 

where 𝑁 represents the number of the coefficients in scales. 

2.3.1.2. Shannon Entropy      
        

The energy distribution of the coefficients can be identified with 

entropy [23]. There are various way of measuring entropy such as 

Shannon, Minimum, and Collision. Shannon entropy is one of the 

most widely used types and is calculated as follows: 

𝐻 = − ∑ 𝑝𝑖

𝑁

𝑖=1

𝑙𝑜𝑔2𝑝𝑖    

 

 

(5) 

where 𝑝 denotes the probability distribution of the signal. 

Shannon entropy is calculated according to two different methods 

of computing the probability distribution. In the first method, the 

entropy is calculated for each scale and the average entropy of 

scales is used to determine the optimum wavelet. In this method, 

the probability distribution is determined as follows [23]: 

𝑝𝑖(𝑠) =
|𝑤𝑡(𝑠, 𝑖)|2

𝐸(𝑠)
 

 

(6) 

In the second method, the energy is calculated by (4) for each scale. 

Then, the probability of each scale is computed by dividing the 

energy of each scale to the total energy of scales [23]. The 

probability distribution can be defined as: 

𝑝(𝑠) =
𝐸(𝑠)

∑ 𝐸(𝑠)
 

 

(7) 

2.3.2. Information Theoretic Measures 

Only wavelet coefficients are used in the computation of the 

energy and entropy measures. However, wavelet coefficients 
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naturally depend on the analysed signal. Information theoretic 

measures that define the relationship between sequences are used 

in determining the optimum wavelet function. In information 

theoretic measures, the data sequence 𝑋 expresses the voice signal. 

Similarly, the data sequence 𝑌 represents the wavelet coefficients 

in the related scales. 

 

2.3.2.1. Joint Entropy 

 

Joint entropy, 𝐻(𝑋, 𝑌), describes the information between the 

signal and coefficients, and can be expressed as follows [30]: 

𝐻(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑝(𝑥, 𝑦)

𝑦𝜖𝑌𝑥𝜖𝑋

 

 

(8) 

where 𝑝(𝑥, 𝑦) represents the joint probability distribution of  data 

sequences. 

 

2.3.2.2. Conditional Entropy 

 

The amount of information contained in the wavelet coefficients is 

measured by the conditional entropy 𝐻(𝑌|𝑋) when the probability 

distribution of the analysed signal is known [31]. The conditional 

entropy can be expressed as: 

𝐻(𝑌|𝑋) = − ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥)𝑙𝑜𝑔2𝑝(𝑦|𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋

 

 

(9) 

In (9), 𝑝(𝑥)  and 𝑝(𝑦|𝑥) represent the probability distribution of 

the signal and the conditional probability distribution of the 

wavelet coefficients, respectively. The conditional probability can 

be defined as: 

𝑝(𝑦|𝑥) =
𝑝(𝑥, 𝑦)

𝑝(𝑥)
 

 

(10) 

As a result, conditional entropy is further defined as: 

𝐻(𝑌|𝑋) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2

𝑝(𝑥, 𝑦)

𝑝(𝑥)
𝑦𝜖𝑌𝑥𝜖𝑋

 

 

(11) 

𝐻(𝑌|𝑋) = 𝐻(𝑋, 𝑌) − 𝐻(𝑋) 
 

(12) 

 

2.3.2.3. Mutual Information 

 

The mutual information, 𝐼(𝑋; 𝑌), measures shared information 

between the analysed signal and wavelet coefficients [30]. The 

mutual information is defined as: 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦𝜖𝑌𝑥𝜖𝑋

 

 

(13) 

𝐼(𝑋; 𝑌) = −𝐻(𝑋, 𝑌) + 𝐻(𝑋) + 𝐻(𝑌) 
 

(14) 

 

2.3.2.4. Relative Entropy 

 

The relative entropy defines the distance between probability 

distributions of voice signal and wavelet coefficients [31]. The 

relative entropy is expressed as: 

𝐷(𝑋‖𝑌) = ∑ 𝑝(𝑥)𝑙𝑜𝑔2

𝑝(𝑥)

𝑝(𝑦)
𝑥𝜖𝑋

 

 

(15) 

The relative entropy is always non-negative and if the probabilities 

of the data sequences are equal, the relative entropy will be zero. 

The lowest relative entropy criteria should be used to determine 

the most appropriate mother wavelet [23]. 

 

2.3.3. Probability Estimation 

Non-parametric density estimation is an important tool for 

statistical analysis of data. Non-parametric estimators can be used 

to evaluate data access to the multi-mode structure. The superiority 

of the non-parametric approach offers more flexibility compared 

to classical approaches for a given data set in modelling. Currently, 

the most popular non-parametric density estimation approach is the 

kernel density estimation (KDE) [32].  Kernel estimators are found 

with the kernel functions at each point of data and these estimators 

will smooth each data point from the local neighbourhood data 

points. The estimation is dependent on the shape and bandwidth of 

kernel function. The estimated density at any point is calculated as 

given in (16). 

𝑓(𝑥) =
1

𝑁
∑ 𝐾 (

𝑥 − 𝑥(𝑖)

ℎ
)

𝑁

𝑖=1

 

 

(16) 

where 𝐾 and ℎ denote kernel function and bandwidth, respectively. 

𝐾 is typically selected as a smoothed single-mode function. 

Although there are various kernel functions, Gaussian kernel 

functions are the most commonly used [33]. 

In this study, it is intended to select suitable mother wavelets for 

Turkish phonemes. For this purpose, the probability density 

functions of the wavelet coefficients and voice signals are 

calculated using KDE method. Also, two-dimensional KDE is 

calculated for the joint probability density function between the 

voice signals and the wavelet coefficients. 

2.4. Procedure of Mother Wavelet Selection 

The sampling frequency of the records used in this study is 44100 

Hz and it has been reduced to 11025 Hz since the human ear 

responds to frequencies between 20 Hz and 20 kHz. The number 

of levels in the DWT was chosen as seven, taking into 

consideration the frequency range in Table 2. Then, the detail 

coefficients were selected to determine the optimum wavelet for 

phonemes. 

 

Table 2. The frequency range according to the decomposition levels 

Level (L) Freq. Range (Hz) Level (L) Freq. Range (Hz) 

1 2756-5512 5 172-343 

2 1378-2755 6 86-171 

3 689-1377 7 43-85 

4 344-688   

 

The syllables were split into phonemes using voice activity 

detection (VAD) method. The voice activity was declared if the 

measured values higher or lower than the thresholds. The syllable 

signal was calculated by the short term energy and zero crossing 

rates for end point detection by VAD. If zero crossing rates was 

small and energy was high, we defined the signal as voiced, 

otherwise it was unvoiced. The phonemes were analysed by DWT 

for six different mother wavelet families. The phonemes were 

decomposed into seven levels by DWT and the quantitative 

measures, the information theoretic measures, and relative entropy 

were computed for six wavelet families. Then, the most suitable 

mother wavelet for each phoneme was determined according to the 
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quantitative and information theoretic measures by taking the 

average of subject values. Daubechies, Symlets, Coiflets, Bi-

orthogonal, Reverse Bi-orthogonal and Discrete Meyer wavelet 

families were examined in this paper. Each wavelet family could 

be expressed by its filter order. Bi-orthogonal wavelets can use 

filters with similar or dissimilar orders for decomposition (Nd) and 

reconstruction (Nr). The mother wavelet families used in this study 

are given in Table 3. 

Table 3. Studied wavelet families 

No. Wavelet Family (short form) Order 

1-45 Daubechies (db) db1-db45 

46-60 Bi-orthogonal (bior) bior1.1-bior6.8 

61-75 Reverse Bi-orthogonal (rbio) rbio1.1-rbio6.8 

76-80 Coiflet (coif) coif1-coif5 

81 Discrete Meyer (dmey) dmey 

82-101 Symlet (sym) sym2-sym20 

 

Maximum energy, minimum Shannon entropy, minimum joint 

entropy, minimum conditional entropy, maximum mutual 

information, and minimum relative entropy criteria have been used 

in determining the best appropriate mother wavelet function 

belonging to six wavelet families for Turkish phonemes. 

3. Experimental Results 

In this paper, we have made an attempt to analyze various basis 

functions of discrete wavelet transform for Turkish phonemes. In 

the analysis, Shannon entropy was calculated according to two 

different methods of computing the probability. In the first method, 

the Shannon entropy values were found for each scale and then 

averaged for each subject. According to simulation results, it was 

observed that the average entropy values of subjects were close to 

each other in all phonemes. It has been difficult to decide the 

appropriate mother wavelet for the relevant phonemes from these 

entropy results. In the second method, the probability of each scale 

was computed by dividing the energy of each scale to the total 

energy of scales. The average entropy values of subjects for the 

phonemes yielded successful results in the determination of the 

appropriate wavelet function. Fig. 2 shows the average entropy 

values of subject which was computed by the second method for 

vowel /a/. 

 

Fig. 2.  The average Shannon entropy values of vowel /a/ by using the 

second method 

According to the results obtained in our study, the joint entropy 

and conditional entropy values of the phonemes have not been 

considered because these entropy values belonging to six wavelet 

families were close to each other. Fig. 3 shows the energy values 

of vowel /e/ and consonant /t/. As can be seen from Fig. 3, it was 

observed that the most suitable mother wavelet for all phonemes 

of male and female subjects was found as bior3.1 wavelet function 

according to the energy measure criterion.  

Fig. 4 shows the energy, Shannon entropy, relative entropy, and 

mutual information values of phoneme /a/. As can be seen from 

Fig. 4, it was inferred that the bior3.1 wavelet function was 

selected as the most appropriate wavelet function for vowel /a/ 

according to the high-energy, low-Shannon entropy, low relative 

entropy, and high mutual information criteria. 

Similarly, Discrete Meyer (dmey) and Reverse Bi-orthogonal 

(rbio3.9) wavelet functions were selected as the optimum mother 

wavelet for phoneme /j/ and /ç/ as shown in Fig. 5 and Fig. 6, 

respectively. In Fig. 5, although the most appropriate mother 

wavelet was bior3.1 for phoneme /j/ according to the energy 

measure, the Discrete Meyer (dmey) mother wavelet was selected 

as the most appropriate wavelet function since the dmey wavelet 

for this phoneme was suitable according to other criteria. Similarly, 

as can be seen in Fig. 6, the rbio3.9 mother wavelet was selected 

as the most appropriate wavelet among all candidate wavelet 

families when all criteria were taken into account. 

Finally, Table 4-8 present the most appropriate mother wavelets 

for all phonemes in Turkish language for male, female and the 

average of both gender when the quantitative, mutual information, 

and relative entropy criterion were considered. 

 

Table 4. Optimal mother wavelet for Turkish vowel phonemes 

Vowel Phonemes Male Female Average 

/a/ bior3.1 bior3.1 bior3.1 

/e/ bior3.1 dmey bior3.1 

/ı/ bior3.1 dmey dmey 

/i/ dmey dmey dmey 

/o/ bior3.1 bior3.1 bior3.1 

/ö/ bior3.1 dmey bior3.1 

/u/ bior3.1 dmey dmey 

/ü/ dmey dmey dmey 

 

Table 5. Optimal mother wavelet for Turkish nasal phonemes 

Nasal Phonemes Male Female Average 

/m/ dmey dmey dmey 

/n/ dmey dmey dmey 

 

Table 6. Optimal mother wavelet for Turkish fricative phonemes 

Fricative Phonemes Male Female Average 

/c/ dmey dmey dmey 

/j/ dmey dmey dmey 

/v/ bior3.1 bior3.1 bior3.1 

/z/ bior3.1 dmey dmey 

/ç/ rbio3.9 rbio3.9 rbio3.9 

/f/ bior3.1 bior3.1 bior3.1 

/h/ bior3.1 bior3.1 bior3.1 

/s/ bior3.1 bior3.1 bior3.1 

/ş/ rbio5.5 rbio5.5 rbio5.5 
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Table 7. Optimal mother wavelet for Turkish plosive phonemes 

Plosive Phonemes Male Female Average 

/b/ bior3.1 dmey bior3.1 

/d/ bior3.1 dmey dmey 

/g/ bior3.1 dmey bior3.1 

/p/ bior3.1 dmey bior3.1 

/t/ bior3.1 bior3.1 bior3.1 

/k/ bior3.1 bior3.1 bior3.1 

 

 

Table 8. Optimal mother wavelet for Turkish liquid phonemes 

Liquid Phonemes Male Female Average 

/ğ/ bior3.1 dmey bior3.1 

/l/ dmey dmey dmey 

/r/ bior3.1 dmey bior3.1 

/y/ dmey dmey dmey 

 

 

 

 

Fig. 3.  The average energy values of: (a) vowel /e/, (b) consonant /t/ 

 

 

 

Fig. 4.  The average values of vowel /a/: (a) Energy, (b) Shannon entropy, (c) Relative entropy, (d) Mutual information 
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Fig. 5.  The average values of consonant /j/: (a) Energy, (b) Shannon entropy, (c) Relative entropy, (d) Mutual information 

 

 

Fig. 6.  The average values of consonant /ç/: (a) Energy, (b) Shannon entropy, (c) Relative entropy, (d) Mutual information 

 

4. Conclusions 

This study concentrated on the selection of the best mother wavelet 

function among 101 different wavelets for Turkish phonemes. The 

quantitative, information theoretic and relative entropy measure 

results were used to determine the best mother wavelet. Based on 

these selection criteria results, it was observed that the Bi-

orthogonal (bior3.1) and Discrete Meyer (dmey) wavelet functions 

were the best candidate mother wavelets. The information 

theoretic measures which are joint and conditional entropy have 

not been significant difference among mother wavelets for Turkish 

phonemes. Therefore, these measures were not used to determine 

the appropriate wavelet. However, the mutual information and 

relative entropy have been observed that they could be used in 

determining the appropriate wavelet. 

 

The determination of suitable base wavelet for phonemes was 

examined for three cases which take into account male, female, and 

their average. Based on the simulation results, it was observed that 

some phonemes have different optimum mother wavelet for male 

and female subjects. The most appropriate wavelet function has 

been determined as bior3.1 for most phonemes of male subjects 

while dmey has been determined for most phonemes of female 

subjects. In order to determine a common suitable wavelet for each 

phoneme objectively without gender consideration, the average of 

the criteria values for both male and female was taken and the 

dominant base wavelet was determined as the optimal wavelet 

function. 

The experimental results showed that the optimal mother wavelet 

was not same for all Turkish phonemes. To overcome this problem, 

three suitable wavelets that yielded the best results for each 
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measure of a phoneme were chosen as candidate mother wavelets. 

Final decision for the choice of mother wavelet was made among 

these sets of candidate wavelets which provide the majority of the 

high energy, low Shannon entropy, low relative entropy and high 

mutual information criteria. As can be seen in Table 6, rbio3.9 and 

rbio5.5 were determined as the most suitable base wavelets for /ç/ 

and /ş/ phonemes, respectively. These unvoiced fricative 

phonemes have different appropriate wavelets from the other 

phonemes and these differences may have occurred due to the 

articulation position of these phonemes. 

So far, the most suitable wavelet function determination studies 

have been obtained depending on the application area and different 

conditions. The most appropriate wavelet function for vowel /a/ in 

English was determined as db6 in diseased voice analysis [20], 

while Battle-Lemarie and Discrete Meyer wavelet functions were 

determined as optimal wavelets in speech analysis and synthesis 

for English [21-22]. However, there is no study in the literature 

which selects the most appropriate wavelet function based on 

phoneme for all phonemes of Turkish language. Therefore this 

study will fill this gap. 

Finally, in this study, it was aimed to select the optimum mother 

wavelets for all phonemes in Turkish. These optimum mother 

wavelets can be used for voice processing, speech and speaker 

recognition, speech enhancement and voice activity detection 

studies in Turkish language. 
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